The Inclusion-Based Boundary Element Method (iBEM)
Autor: | Huiming Yin, Gan Song, Liangliang Zhang, Chunlin Wu |
---|---|
EAN: | 9780128193853 |
eBook Format: | ePUB |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 14.04.2022 |
Untertitel: | Inclusion-Based Boundary Element Method (iBEM) |
Kategorie: | |
Schlagworte: | Boundary element method boundary integral equations crack propagation eigenvalues elastic waves finite element method galerkin methods homogenization method inclusions particle re stress concentration thermal conductivity wave propagation |
160,00 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
The Inclusion-Based Boundary Element Method (iBEM) is an innovative numerical method for the study of the multi-physical and mechanical behaviour of composite materials, linear elasticity, potential flow or Stokes fluid dynamics. It combines the basic ideas of Eshelby's Equivalent Inclusion Method (EIM) in classic micromechanics and the Boundary Element Method (BEM) in computational mechanics. The book starts by explaining the application and extension of the EIM from elastic problems to the Stokes fluid, and potential flow problems for a multiphase material system in the infinite domain. It also shows how switching the Green's function for infinite domain solutions to semi-infinite domain solutions allows this method to solve semi-infinite domain problems. A thorough examination of particle-particle interaction and particle-boundary interaction exposes the limitation of the classic micromechanics based on Eshelby's solution for one particle embedded in the infinite domain, and demonstrates the necessity to consider the particle interactions and boundary effects for a composite containing a fairly high volume fraction of the dispersed materials. Starting by covering the fundamentals required to understand the method and going on to describe everything needed to apply it to a variety of practical contexts, this book is the ideal guide to this innovative numerical method for students, researchers, and engineers. - The multidisciplinary approach used in this book, drawing on computational methods as well as micromechanics, helps to produce a computationally efficient solution to the multi-inclusion problem - The iBEM can serve as an efficient tool to conduct virtual experiments for composite materials with various geometry and boundary or loading conditions - Includes case studies with detailed examples of numerical implementation
Huiming Yin is an associate professor in the Department of Civil Engineering and Engineering Mechanics at Columbia University, and the director of the NSF Center for Energy Harvesting Materials and Systems at Columbia Site. His research specializes in the multiscale/physics characterization of civil engineering materials and structures with experimental, analytical, and numerical methods. His research interests are interdisciplinary and range from structures and materials to innovative construction technologies and test methods. He has taught courses in energy harvesting, solid mechanics, and composite materials at Columbia University.
Huiming Yin is an associate professor in the Department of Civil Engineering and Engineering Mechanics at Columbia University, and the director of the NSF Center for Energy Harvesting Materials and Systems at Columbia Site. His research specializes in the multiscale/physics characterization of civil engineering materials and structures with experimental, analytical, and numerical methods. His research interests are interdisciplinary and range from structures and materials to innovative construction technologies and test methods. He has taught courses in energy harvesting, solid mechanics, and composite materials at Columbia University.