The Omega-Theory
Autor: | Jure ?alohar |
---|---|
EAN: | 9780128145814 |
eBook Format: | ePUB |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 10.05.2018 |
Untertitel: | A New Physics of Earthquakes |
Kategorie: | |
Schlagworte: | < B†th?s law Cosserat continuum Earthquakes interactions Fault reactivation Faults interactions Felzer-Brodsky?s law Gutenberg-Richter?s law Omega-cells Omega-sequences Omori?s law Plat Repeating earthquake sequences Strain waves p> |
144,00 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
The Omega-Theory: A New Physics of Earthquakes, Second Edition offers a unifying, mathematical framework to describe and answer the most pressing and unexamined dilemmas of earthquake sequences. Those in the fields of seismology and geology are currently faced with a vast and complex mathematical structure, involving many new, natural laws and theorems. This book interprets this structure as a new physical theory and paradigm, helping users understand the tectonic and seismic processes within the Earth. As such, it is an essential resource for future researchers in the fields of structural geology, physics of the Earth, and seismology. In the last decades, generations of seismologists, geophysicists, and geologists have accumulated enough knowledge and information to allow for the reformulation and solution of this essential problem. Hence, this book provides a great resource for researchers and professionals. - Brings together twenty years of research in the field of geophysics and attacks the problem within the framework of the Cosserat continuum theory - Heavily tested on tens of natural examples and numerical tests - Includes 350 color figures and graphs - Spans across many fields of theoretical physics and geology, such as plate tectonics, synchronization of chaotic systems, solitons and fractals, mathematical set theory, and quantum mechanics
Dr. Zalohar is a physicist and geologist working as an independent researcher, giving scientific and philosophical lectures at various institutions. He obtained his Ph.D. from the University of Ljubljana in 2008. Dr. Zalohar's main research fields are physics of faults and earthquakes, stratigraphy, and palaeontology. Among his most important achievements are a series of articles on the Cosserat mechanics of faulting for the Journal of Structural Geology and the development of the T-TECTO software for fault-slip data and earthquakes analysis, which is now recognized and used by structural geologists around the world. During numerous field trips observing tectonic structures in the Alps he and his colleagues made important paleontological discoveries, including identifying the oldest and only-known fossils of seahorses, pipehorses and pygmy pipehorses, new fossil sites with complete skeletons of Triassic reptilians, and fish and other biota from the Tethys ocean. His most important contribution to science is a discovery of a new physical theory of earthquakes that brings a redefinition and solution of the earthquake prediction problem.
Dr. Zalohar is a physicist and geologist working as an independent researcher, giving scientific and philosophical lectures at various institutions. He obtained his Ph.D. from the University of Ljubljana in 2008. Dr. Zalohar's main research fields are physics of faults and earthquakes, stratigraphy, and palaeontology. Among his most important achievements are a series of articles on the Cosserat mechanics of faulting for the Journal of Structural Geology and the development of the T-TECTO software for fault-slip data and earthquakes analysis, which is now recognized and used by structural geologists around the world. During numerous field trips observing tectonic structures in the Alps he and his colleagues made important paleontological discoveries, including identifying the oldest and only-known fossils of seahorses, pipehorses and pygmy pipehorses, new fossil sites with complete skeletons of Triassic reptilians, and fish and other biota from the Tethys ocean. His most important contribution to science is a discovery of a new physical theory of earthquakes that brings a redefinition and solution of the earthquake prediction problem.