Use of CNNs for the Classification of Medical Images
Autor: | Marwan Al Omari |
---|---|
EAN: | 9783346653963 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 01.06.2022 |
Kategorie: | |
Schlagworte: | CNN ISIC2018 deep learning machine learning neural networks |
15,99 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Project Report from the year 2021 in the subject Computer Sciences - Artificial Intelligence, grade: 17/20, University of Poitiers, language: English, abstract: This research project structures different enhanced architectures and models of CNNs using in particular the VGG16 model, for its featured simplicity and efficiency along with its pre-trained wights on ImageNet. The VGG16 models are well trained using transfer learning mechanism in fine-tuning the architecture on the ISIC2018 Task3 dataset. Then, the models are projected for skin cancer image classification in highlighting the state-of-the-art performance. Deep learning models have showed great capabilities in data modelling on the various applications of image processing, including segmentation, classification, tagging, and many others. In particular, convolutional neural network (CNNs) has proved to be effective in capturing deep features on unstructured data that are well sited in the state-of-the-art. It is well competitive in comparison to the traditional algorithms of machine learning.