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Preface

This book deals with some micro and macroproperties of solids. Microproper-
ties are perceived at the lattice level and are generally studied by diffraction or
spectroscopic methods. The lattice constant, its temperature variation (mea-
sured through the property of thermal expansion), the amplitudes of atomic
thermal vibrations (reflected in the Debye–Waller factor) and the colour
centres are some examples of microproperties. In contrast, macroproperties
are studied through measurements on material in bulk. Elastic properties,
hardness, dielectric properties and melting temperature are examples of
macro-properties.

The approach is to discuss in detail the physics of some select properties.
Theoretical as well as experimental aspects are kept in view. The beginnings
of studies of these properties can be traced to the earlier part of the last cen-
tury. Due to the basic nature of these properties, there has been continuing
research interest and constant refinement of the experimental methods. New
levels of accuracy in measurement have made it possible to observe second-
order changes like the effects of temperature, pressure, magnetic field, radia-
tion, impurities and other defects; thin film and particle size effects have also
been studied. Apart from bringing out the fundamental aspects, the book also
provides considerable space for a discussion of current trends in research in
the form of a comprehensive ‘overview’. Typically, in each chapter, the ear-
liest reference pertains to the period 1910–1930 and the latest to the period
1995–2005. The behaviour of a variety of materials like metals, alloys, ionic
crystals, semiconductors, mixed valence compounds, optoelectronic materials
and biomaterials is discussed vis-à-vis these properties.

Chapter 1 deals with the lattice constant which is a fundamental attribute
of a crystal lattice. Various methods of accurate determination of lattice
constants are discussed. The accuracy in lattice constant measurement has
now reached almost the limit as it is of the same order as the accuracy in
wavelength measurements. Effects of irradiation, impurities, deuteration of
hydrogen-containing compounds and particle size are discussed. Chapter 2
is on thermal expansion of solids. A variety of experimental methods are



VIII Preface

described including some novel techniques which use holography and gamma
ray absorption. The intimate relation between thermal expansion and an-
harmonicity of lattice vibrations is brought out and the important role of
thermal expansion in throwing light on thermally generated defects is pointed
out. Chapter 3 is devoted to the Debye–Waller factor which is related to the
amplitudes of atomic thermal vibrations. Originally introduced as a correction
for X-ray diffraction intensities, it has emerged as a powerful solid-state probe.
It is related to the lattice dynamical models, the interatomic bond strength,
the lattice strain and surface forces. The hardness of crystals forms the subject
of Chap. 4. Starting with microhardness methods, recent techniques of ultra
and nanohardness are discussed. A variety of aspects are included like tem-
perature and pressure variation and effects of magnetic field, irradiation and
chemical bonding. An interesting new observation is the study of phase tran-
sitions through micro-Raman spectroscopy of indentations obviating the use
of a diamond anvil. Chapter 5 on the dielectric behaviour of materials starts
with the basics of dielectrics. Experimental techniques for different frequency
ranges are considered. It is shown that dielectric properties throw much light
on such diverse aspects as anharmonicity, spectroscopic phenomena, defects
and chemical bonding. Various conduction mechanisms are discussed includ-
ing polaron conduction. The dielectric behaviour of organic compounds and
biomaterials is considered along with inorganic compounds.

To complement the experimental approach, the theoretical approach to
solid-state properties is developed in Chap. 6. The evaluation of thermal
parameters like the Debye temperature and Gruneisen constants and also
mechanical properties like elastic constants is discussed. A new method for the
evaluation of the Raman mode Gruneisen parameter of fluorite type crystals
from dielectric properties is included. A comprehensive treatment of mixed
crystal physics is given in Chap. 7. The properties of mixed crystals are inter-
mediate between those of the parent compounds. This creates the possibility
of controlling the properties by controlling the mixed crystal composition.
Several properties like hardness, dielectric constant, formation energy of de-
fects, effective ionic charge, colour centre wavelengths, melting points, Debye–
Waller factors and transition temperatures are discussed with reference to
their composition dependence. Chapter 8 on the elastic properties of solids is
mainly focused on the serious problem of discrepancies in elastic properties
and some possible checks.

The choice of the properties included in this book was, to some extent,
influenced by the research interests of the authors. Considerable amount of
work was generated through the research programmes undertaken by the au-
thors over several decades. Instead of including the results of our work in the
‘overview’, they are presented as a separate section entitled ‘Some of our re-
sults’ in each chapter. We had the privilege of having Prof. K.A. Gschneidner
(Jr.) and Dr. B.J. Beaudry (Iowa State University), Prof. B.S. Shah (Saurash-
tra University) and Dr. B.R. Rao (Indian Institute of Chemical Technology)
as collaborators. A large number of Ph.D. and M.Phil. students were also
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associated with our work. While reference has been made to them at appro-
priate places as co-authors, we would like to place on record our appreciation
of their role in our research programmes.

We are thankful to Dr. K.S. Rajam and Dr. H.C. Barshilia (National
Aerospace Laboratory, Bangalore) for sharing information on nanoindenta-
tion. Thanks are also due to Prof. K.G. Nickel (University of Tubingen) for
providing material on micro-Raman spectroscopy of indentations. The chap-
ter; Elastic Properties of Solids – ‘A Critical Analysis’ is a modified version of
a recent Review Article: ‘Consistency Checks on Elastic Properties of Solids’
published by two of the authors (DBS, KGS) in the Journal of Materials
Science. Grateful thanks are offered to colleagues at Kluwer Publishers and
their successors, Springer, for kind permission to use substantial material from
the review.

We would like to thank Prof. K.G. Bansigir (Jiwaji, University), Dr. Ch.
V. Purushotham Reddy (Chaitanya Educational Institutes) and Mr. Vinod
Kumar (South Asian Publishers) for much interest. Thanks are offered to
colleagues at the Kakatiya University for their support and cooperation.

Finally, we are grateful to Dr. C. Ascheron of Springer-Verlag for timely
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Warangal, India Dinker Sirdeshmukh
June 2006 Lalitha Sirdeshmukh

K.G. Subhadra

Acknowledgements

The following publishers are thanked for permission to reproduce illustrations
and material from their publications:

1. American Institute of Physics
2. American Physical Society
3. Current Science Association
4. Elsevier Ltd.
5. Indian Academy of Sciences
6. Institute of Physics (UK)
7. International Union of Crystallography
8. Kluwer Publishers
9. Physical Society of Japan

10. Springer-Verlag
11. Wiley - VCH



Contents

1 Lattice Constant – A Solid State Probe . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Strategies for Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Present Level of Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Characterisation of Semiconductor Materials . . . . . . . 16
1.3.2 Characterisation of Doped Crystals . . . . . . . . . . . . . . . . 17
1.3.3 Effect of Deuteration on Lattice Constants . . . . . . . . . 18
1.3.4 Effect of Hydrogen on Lattice Parameters of Rare

Earth Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.5 Lattice Constants of Mixed Crystals . . . . . . . . . . . . . . . 19
1.3.6 Mixed Valence Effects in Lattice Constants . . . . . . . . . 21
1.3.7 Temperature Variation of Lattice Constant . . . . . . . . . 22
1.3.8 Pressure Variation of Lattice Parameters . . . . . . . . . . . 23
1.3.9 Effect of Magnetic Field on Lattice Constant . . . . . . . 23
1.3.10 Radiation Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.11 Effect of Particle Size on Lattice Constant . . . . . . . . . 25
1.3.12 Lattice Constants and Point Defects in Crystals . . . . 25
1.3.13 Lattice Constant Variations due to Dislocations . . . . . 27
1.3.14 Lattice Constant as a Scaling Parameter . . . . . . . . . . . 29

1.4 Some of our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Lattice Parameters – Data Generation . . . . . . . . . . . . . 29
1.4.2 Lattice Constant as a Scaling Parameter . . . . . . . . . . . 31
1.4.3 Temperature Variation of Lattice Constant . . . . . . . . . 33
1.4.4 Radiation Induced Changes in Lattice Constant of

NaBrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.5 Lattice Constants of Mixed Crystals . . . . . . . . . . . . . . . 35



XII Contents

2 Thermal Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Optical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Capacitance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.4 Diffraction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.5 Dilatometric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.6 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Some Novel Experimental Techniques . . . . . . . . . . . . . . 47
2.3.2 Experimental Data on Thermal Expansion of

Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.3 ‘Invar’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4 Thermal Expansion of Inert Gas Solids . . . . . . . . . . . . 51
2.3.5 Correlations of Thermal Expansion with other

Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.6 Thermal Expansion and Vacancies in Solids . . . . . . . . 52
2.3.7 Effect of Gross Defects on Thermal Expansion . . . . . . 53
2.3.8 Effect of Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.9 Surface Thermal Expansion . . . . . . . . . . . . . . . . . . . . . . 57
2.3.10 Pressure Variation of Thermal Expansion . . . . . . . . . . 59
2.3.11 Theories of Thermal Expansion . . . . . . . . . . . . . . . . . . . 60
2.3.12 Negative Thermal Expansion . . . . . . . . . . . . . . . . . . . . . 61
2.3.13 Anisotropy of Thermal Expansion . . . . . . . . . . . . . . . . . 62

2.4 Some of our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1 Coefficients of Thermal Expansion – Data

Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 USBM Inter-Laboratory Project on Thermal

Expansion of MgO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.3 Aspects of Gruneisen Theory . . . . . . . . . . . . . . . . . . . . . 65
2.4.4 Studies of Some Anomalous Phenomena . . . . . . . . . . . 68
2.4.5 Empirical Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Debye–Waller Factors of Crystals . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Brief Outline of the Debye–Waller Theory . . . . . . . . . . . . . . . . . 77
3.3 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Measurement of Integrated Intensity . . . . . . . . . . . . . . . 82
3.3.2 Analysis of Intensity Data . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.3 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 Earlier Work of Historical Importance . . . . . . . . . . . . . 93
3.4.2 Experimental Values of Debye–Waller Factors at

Room Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Contents XIII

3.4.3 Effect of Choice of Atomic Scattering Factors on
Measured B-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.4 Debye–Waller Factor for a Real Crystal . . . . . . . . . . . . 95
3.4.5 Debye Temperatures of Thin Films and Fine

Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.6 Effect of Lattice Strain on B . . . . . . . . . . . . . . . . . . . . . 97
3.4.7 Anisotropy of Debye–Waller Factors . . . . . . . . . . . . . . . 98
3.4.8 Pressure Variation of θM . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.4.9 Temperature Variation of B and θM . . . . . . . . . . . . . . . 101
3.4.10 Anharmonic Effects in Debye–Waller Factors and

Debye Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.4.11 Debye–Waller Factors from Lattice Dynamics . . . . . . . 103
3.4.12 Debye–Waller Factors and Melting . . . . . . . . . . . . . . . . 106
3.4.13 Debye–Waller Factors and Temperature

Dependence of Band-gap in Semiconductors . . . . . . . . 106
3.4.14 Debye Temperature in an Antiferromagnetic

Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.15 Nano Effect on Debye–Waller Factor and Debye

Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.16 Energy of Defect Formation from Debye

Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.17 Effect of Electronic Environment on Debye–Waller

Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.18 Debye–Waller Factor of Mixed Crystals . . . . . . . . . . . . 110
3.4.19 Debye–Waller Factors of Protein Structures . . . . . . . . 110

3.5 Some of our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.5.1 Debye–Waller Factors – Data Generation . . . . . . . . . . 111
3.5.2 Debye–Waller Factors and Mass Ratio . . . . . . . . . . . . . 113
3.5.3 Comparison of Experimental Results with Lattice

Dynamical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5.4 Anisotropy of Debye–Waller Factors . . . . . . . . . . . . . . . 120
3.5.5 Effect of Strain on Debye–Waller Factors . . . . . . . . . . . 122
3.5.6 Effect of Atomic Scattering Factors on B . . . . . . . . . . 123
3.5.7 Debye–Waller Factors and the Electronic

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.5.8 Debye–Waller Factors in Mixed Crystals . . . . . . . . . . . 125
3.5.9 X-ray Debye Temperatures Derived from

Debye–Waller Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.5.10 Comparison of θ from Different Methods . . . . . . . . . . . 126
3.5.11 A modified Expression for the X-ray Debye

Temperature (θM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.5.12 Energy of Defect Formation from Debye

Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



XIV Contents

4 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.2 Leitz–Wetzlar Mini-Load 2 Microhardness Tester . . . . 137
4.2.3 Shimadzu Dynamic Ultra Hardness Tester

DUH 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.4 Nanoindentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.2.5 Relative Hardness Measurement . . . . . . . . . . . . . . . . . . 143

4.3 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3.2 Load Variation of Hardness . . . . . . . . . . . . . . . . . . . . . . 146
4.3.3 Solid Solution Hardening . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.3.4 Impurity Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.3.5 Dislocation Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.3.6 Radiation Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.3.7 Hardness and Chemical Bond . . . . . . . . . . . . . . . . . . . . . 151
4.3.8 Pressure Variation of Hardness . . . . . . . . . . . . . . . . . . . 152
4.3.9 Temperature Variation of Hardness . . . . . . . . . . . . . . . . 153
4.3.10 Empirical Relations with other Physical Properties . . 153
4.3.11 Anisotropy of Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.3.12 Surface Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.3.13 Nanohardness of Thin Films . . . . . . . . . . . . . . . . . . . . . . 158
4.3.14 Effect of Magnetic Field on Hardness . . . . . . . . . . . . . . 158
4.3.15 Hardness of Organic Crystals . . . . . . . . . . . . . . . . . . . . . 159
4.3.16 Micro-Raman Spectroscopy of Indentations . . . . . . . . . 159

4.4 Some of our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.4.1 Load Variation of Hardness . . . . . . . . . . . . . . . . . . . . . . 160
4.4.2 Hardness and Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.4.3 Radiation Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.4.4 Hardness of Doped Crystals . . . . . . . . . . . . . . . . . . . . . . 180
4.4.5 Hardness of Mixed Crystals . . . . . . . . . . . . . . . . . . . . . . 182
4.4.6 Empirical Relations with other Physical Properties . . 182
4.4.7 Temperature Variation of Hardness . . . . . . . . . . . . . . . . 184
4.4.8 Surface Hardness of Crystals . . . . . . . . . . . . . . . . . . . . . 187
4.4.9 Anisotropy of Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5 Dielectric and Electrical Properties of Solids . . . . . . . . . . . . . . 199
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.1.1 Dielectric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.1.2 Dielectric Dispersion and Dielectric Loss . . . . . . . . . . . 201
5.1.3 Dielectric Loss and Conduction . . . . . . . . . . . . . . . . . . . 202
5.1.4 Temperature Variation of Dielectric Constant and

Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Contents XV

5.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.2.1 Measuring Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.2.2 Cell Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.2.3 Procedural Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.2.4 Measurement in the Microwave Region . . . . . . . . . . . . 213
5.2.5 Dielectric Constants from IR Reflectivity . . . . . . . . . . . 213
5.2.6 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.2.7 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.3 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.3.1 Some Important Experimental Results . . . . . . . . . . . . . 216
5.3.2 Temperature Variation of Dielectric Constant . . . . . . . 219
5.3.3 Szigeti’s Theory (Effective Ionic Charge and

Anharmonicity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.3.4 Spectroscopic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.3.5 Conductivity of Ionic Crystals . . . . . . . . . . . . . . . . . . . . 228
5.3.6 Dielectric Constant and Polaron Conduction . . . . . . . 229
5.3.7 Dielectric Constant and Additivity of

Polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.3.8 Dielectric Behaviour of Proteins Dielectric

Properties and Protein Hydration . . . . . . . . . . . . . . . . . 231
5.3.9 Irradiation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.4 Some of our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
5.4.1 Dielectric Properties – Data Generation . . . . . . . . . . . . 235
5.4.2 Analysis of Temperature Variation of Dielectric

Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
5.4.3 Application of Szigeti’s Theory . . . . . . . . . . . . . . . . . . . 241
5.4.4 Spectroscopic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
5.4.5 Polaron Conduction in Garnets . . . . . . . . . . . . . . . . . . . 245
5.4.6 Dielectric Constant and Additivity of

Polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.4.7 Ferroelectric Behaviour in NaCIO3 and NaBrO3 . . . . 247
5.4.8 Analysis of Conductivity Data . . . . . . . . . . . . . . . . . . . . 248
5.4.9 γ-Irradiation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5.4.10 Dielectric Properties and Protein Hydration . . . . . . . . 254

6 Theoretical Evaluation of Some Crystal Properties . . . . . . . . 257
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.2 Elastic Constants of Ionic Crystals . . . . . . . . . . . . . . . . . . . . . . . 257
6.3 Coefficient of Thermal Expansion from Interatomic

Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.3.1 Thermal Expansion Coefficient of Crystals with

Fluorite Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.3.2 Thermal Expansion Coefficients of Some

Anisotropic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260



XVI Contents

6.4 Debye Temperatures from Elastic Constants . . . . . . . . . . . . . . . 261
6.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.4.2 Debye Temperatures from Single Crystal Elastic

Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
6.4.3 θ from Polycrystalline Elastic Data . . . . . . . . . . . . . . . . 265
6.4.4 Brief Review of Earlier Work . . . . . . . . . . . . . . . . . . . . . 266
6.4.5 Some of Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

6.5 Gruneisen Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.5.1 Gruneisen Parameter from Interatomic Potentials . . . 273
6.5.2 γ from Pressure Variation of Debye Temperature . . . . 275
6.5.3 Evaluation of γ from Pressure Derivatives of Elastic

Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6.5.4 Mode Gruneisen Parameters of Fluorite-Type

Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

7 The Physics of Mixed Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

7.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.1.2 Earlier Reviews on Mixed Crystals . . . . . . . . . . . . . . . . 286
7.1.3 Theoretical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

7.2 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.2.1 Molar Volume and Lattice Parameters . . . . . . . . . . . . . 288
7.2.2 Debye–Waller Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
7.2.3 Debye Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.2.4 Hardness of Mixed Crystals . . . . . . . . . . . . . . . . . . . . . . 294
7.2.5 Dielectric Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
7.2.6 Effective Ionic Charge in Mixed Crystals . . . . . . . . . . . 299
7.2.7 Colour Centres in Alkali Halide Mixed Crystals . . . . . 300
7.2.8 Defects in Mixed Crystals . . . . . . . . . . . . . . . . . . . . . . . . 302
7.2.9 Melting Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
7.2.10 Pm3m↔Fm3m Transition in Mixed Crystals . . . . . . . 304

7.3 Some of our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
7.3.1 Lattice Constants of Mixed Crystals . . . . . . . . . . . . . . . 306
7.3.2 Debye–Waller Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
7.3.3 Debye Temperatures of Mixed Crystals . . . . . . . . . . . . 312
7.3.4 Hardness of Mixed Crystals . . . . . . . . . . . . . . . . . . . . . . 315
7.3.5 Dielectric Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
7.3.6 Effective Ionic Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7.3.7 Colour Centres in RbCl–RbBr Mixed Crystals . . . . . . 322
7.3.8 Defects in Mixed Crystals . . . . . . . . . . . . . . . . . . . . . . . . 324
7.3.9 Melting Temperatures of Mixed Crystals . . . . . . . . . . . 325
7.3.10 Pm3m→Fm3m Transition in NH4Cl–NH4Br

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327



Contents XVII

8 Elastic Properties of Solids – A Critical Analysis . . . . . . . . . 331
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
8.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

8.2.1 Piston Displacement Method . . . . . . . . . . . . . . . . . . . . . 331
8.2.2 Shock Wave Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.2.3 X-ray Diffraction Method . . . . . . . . . . . . . . . . . . . . . . . . 334
8.2.4 Optical Interferometric Method . . . . . . . . . . . . . . . . . . . 334
8.2.5 Ultrasonic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
8.2.6 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
8.2.7 Relative Merits and Limitations . . . . . . . . . . . . . . . . . . 337

8.3 Discrepancies in Elastic Properties . . . . . . . . . . . . . . . . . . . . . . . 337
8.4 Consistency Checks for Bulk Moduli . . . . . . . . . . . . . . . . . . . . . 338

8.4.1 Phenomenological Relations as Consistency Checks . . 338
8.4.2 Theoretical Consistency Checks . . . . . . . . . . . . . . . . . . . 343
8.4.3 Empirical Relations as Consistency Checks . . . . . . . . . 352

8.5 Consistency Checks for Single Crystal Elastic Constants . . . . 356
8.5.1 Cubic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8.5.2 Tetragonal Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8.5.3 Trigonal and Hexagonal Crystals . . . . . . . . . . . . . . . . . . 360

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399



1

Lattice Constant – A Solid State Probe

1.1 Introduction

The lattice constants are basic crystallographic parameters as they represent
the dimensions of the unit cell. The number of lattice constants varies from
1 to 6 as we pass from the most symmetric (cubic) to the least symmetric
(triclinic) crystal class. From the lattice constants, other crystal parameters
and properties like molar volume, density and ionic radii can be estimated. The
variations in lattice constants with temperature and pressure yield values of
the thermal expansion coefficient and compressibility, respectively. The effects
of thermally generated defects, doping and radiation induced defects can be
followed through small, but significant, changes in the lattice constants. When
determined with accuracy, the lattice constant provides rich information about
the crystal and is a powerful solid state probe.

1.2 Experimental Methods

1.2.1 Principle

The determination of lattice constant is based on Bragg’s law of X-ray dif-
fraction illustrated in Fig. 1.1 and stated in (1.1).

nλ = 2d sin θ, (1.1)

where, λ is the wavelength, d the interplanar spacing and θ the Bragg angle
and n is the diffraction order parameter. A set of indices h, k, l, (called the
Miller indices) is associated with each plane. Thus, (1.1) can be rewritten as

sin2 θ = λ2/4d2
hkl. (1.2)
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Fig. 1.1. Bragg’s law

Expressing dhkl in terms of the lattice constant ‘a’ and the Miller indices
h, k, l, (1.2) takes the form

sin2 θ = (λ2/4a2)(h2 + k2 + l2) (1.3)

for a cubic crystal. The order parameter n is included in the Miller indices.
There are similar but more complicated equations for crystals of lower

symmetry. Thus, in principle, the lattice constant can be determined with an
experimental set-up that permits recording of X-ray diffraction reflections and
the measurement of the associated Bragg angles.

1.2.2 Experimental Techniques

Several techniques are in use for recording X-ray diffraction patterns. For
lattice constant determination, generally, powder methods are preferred. A
comprehensive discussion of these methods is available in literature [1.1–1.4].
Some of the methods are discussed here.

The Debye–Scherrer Camera (DSC)

The geometry of this camera is shown in Fig. 1.2. Monochromatic X-rays en-
ter through the collimator and fall on a needle-like powder specimen. The
X-rays are diffracted both in the front and in the backward direction by dif-
ferent lattice planes. In the figure, lines with single arrow indicate incident
and undiffracted rays and those with double arrows indicate diffracted rays.
The undiffracted rays are absorbed in the exit port. The photographic film
stays pressed against the inner surface of the cylindrical camera of radius R.
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Fig. 1.2. Geometry of the Debye–Scherrer camera

Fig. 1.3. Debye–Scherrer photograph of Al

A typical photograph taken with this camera is shown in Fig. 1.3. Denoting
the diameter of a Bragg reflection by S, the Bragg angle is given by

θ = (S/4R)(180/π)◦ (1.4)

for forward reflection and

θ = (π/2) − φ = [(π/2) − (S/4R)] (180/π)◦ (1.5)

for back reflection. Generally, the diameter of a DSC is 11.46 cm. The mount-
ing of the film is called ‘Straumanis mounting’. It facilitates recording of the
ring systems in front reflection (θ < 90◦) as well as back reflection (θ > 90◦).
Further, by measuring the distance between the centers of the two punched
holes, the effective radius of the camera can be determined.

Unicam-Type Camera (UC)

A critical examination of the commercially available Unicam camera revealed
that it has the following drawbacks:
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1. It employs the Bradley–Jay mounting with two film strips. The center of
the ring system is not included on either strip making the use of knife
edges unavoidable.

2. The specimen centering device is not convenient to operate and is not
easily accessible. In the original design, the specimen is suspended from
above.

3. The platinum-wound heater is excellent but its spherical design makes any
repair impossible and replacement is too expensive.

A Unicam-type cylindrical camera with 19 cm diameter has been designed
and fabricated [1.5]. While the design is essentially similar to the Unicam
model, some of the drawbacks in the original design have been overcome. As
this camera was indigenously fabricated in the authors’ laboratory, the design
and operation are discussed in detail.

The principle of the cylindrical camera is shown in Fig. 1.4. This is similar
to the Debye–Scherrer camera (Fig. 1.2) but with a difference in film mounting
which will be discussed later. The film forms a cylinder at the axis of which the
powder sample in the form of a thin cylindrical rod is located; for thoroughly
random orientation of the crystallites, the specimen is rotated about its own
axis. The incident rays enter through a collimator and the direct ray is stopped
by a beam stopper. In a back reflection camera, the diffracted rays travel
backward (with respect to the incident beam) along a cone of angle 4φ where
φ = (π/2) − θ.

The essential parts of the camera are shown in Fig. 1.5. These are: the
main base (A), the base plate (B), the specimen holder (C), the central brass

Fig. 1.4. The principle of the Unicam-type cylindrical camera
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Fig. 1.5. Essential parts of the cylindrical camera

cylinder (D), the heater (E) (not shown in the figure), the evacuation chamber
(F) and the film cassette (G).

As mentioned earlier, the specimen holder is different from that in the
Unicam camera. Its design is shown in Fig. 1.6. The centering of the specimen
is accomplished by the device shown in Fig. 1.6a (top view) and Fig. 1.6b
(cross-section). The specimen is mounted in a cavity drilled in the top portion
of a thin brass rod (A) which has a circular base (B). The base is rigidly
fixed over a small horizontal table (C) which is fixed in a slot by means of a
screw (D) with stoppers at the ends. To obtain transverse motion of table (C)
another similar table (E) is fixed below (C). Table (E) is fixed with screw (F).
The two screws (D) and (F) are at right angles to each other and enable the
specimen to be moved linearly. A brass bush is fixed at the bottom of the lower
table (E). The entire arrangement is mounted on a shaft with a provision to
lock it on to the shaft or to release it. The sample filled in a thin capillary tube
is fixed in the cavity of the brass rod (A) using dental cement. Centering of
the specimen is checked by viewing it through a microscope fixed to the main
base. The sample holder is released from the shaft and rotated to bring screw
(D) to the right of the viewer. If the sample does not coincide with the vertical
cross-wire in the microscope, screw (D) is manipulated suitably. The sample
holder is then rotated through a right angle such that screw (F) is on the right
and the specimen is again centred using screw (F). This process is repeated
until no displacement is observed from the axis of rotation. The specimen
holder is now locked on to the shaft. The other end of the shaft connects with
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Fig. 1.6. (a) Top view, (b) cross-section of the specimen holder for the camera in
Fig. 1.5

the spindle of a 1 rpm motor. When the film cassette is in position, the sample
may be observed by its shadow on the fluorescent screen of the beam stop.

For determination of lattice constants at high temperature, a heating
arrangement is necessary. The chief requirements of high temperature opera-
tion are the temperature stability over a period of 6–10 h and the measurement
of specimen temperature. A suitable design is shown in Fig. 1.7. A hollow tube
(A) of length 6 cm and diameter 1.5 cm with a slot (B) and a hole (C) at the
center is brazed at its top to a circular disc (D). The slot is of width 10 mm ex-
tending around the tube over an angle of 220◦ and is at right angles to the axis
of the tube. The hole permits the incident X-ray beam to strike the specimen
and the slot allows the diffracted beam to pass out to the film. A refractory
hollow tube (E) of thickness 1 cm with a similar slot and hole is compounded
with the brass tube. The refractory tube snugly fits over the brass tube. The
refractory tube has linear holes all round through which a coiled super-kanthal
wire (G) is passed. A thin circular asbestos plate (H) with a central hole of
diameter 2 cm is fixed on the lower side of the disc (D) to prevent heat losses
due to conduction. The lead wires of the coils are brought out to the terminals
through a small two-holed ceramic tube (I) fixed in a hole drilled in the brass
disc. There is a hole at the center of the disc through which a brass bush (J)
of length 2.7 cm is press-fitted into the brass tube. Two two-holed ceramic
tubes (K, L) are rigidly fixed vertically in the holes drilled at the bottom of
the bush. The lower ends of the ceramic tubes just enter into the gap provided
for the passage of diffracted X-rays. Chromel–alumel thermocouple wires are
passed through the ceramic tubes such that their junctions (M, N) lie very
close to the specimen on either side of the portion of the sample exposed to
X-rays.

The entire assembly is inserted in the central brass cylinder. A circular
groove (F) is engraved in the disc (D) on the side facing the base of the
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Fig. 1.7. Heating unit for the camera in Fig. 1.5

camera and fits on the top of the central brass cylinder. The disc can be ro-
tated horizontally about the axis of rotation of the sample holder and can
be fixed such that the incident X-ray beam after passing through the hole in
the heater strikes the sample and diffracted X-rays reach the film arranged
to receive backward reflection. The heater wire and thermocouple wires out-
side the heater are passed through ceramic beads. The free ends of the heater
and thermocouple wires are connected to the terminals on the base plate of
the camera. The thermocouples are connected to two separate millivoltmeters.
The heater is fed from an AC supply through a stabilizer and a variac. A tem-
perature of about 800◦C can be attained within 20 min. The temperature sta-
bility is obtained by adjusting the output of the variac to give a constant
voltage. The temperature distribution in the heater was investigated by po-
sitioning the thermocouple along the exposed length of the specimen. It was
observed that the temperature remains fairly steady along the length of the
specimen exposed to X-rays. The temperature recorded by the two thermo-
couples always agreed within 0.5◦C. The constancy of temperature with time
is excellent once the equilibrium is reached. The fluctuation in temperature
during exposure was < ±1◦C up to 400◦C and < ±2◦C at higher tempera-
tures. The heater is so designed that it can be lifted in and out of the camera
as a single unit during the sample mounting and alignment procedure. Also
if the heater element is burnt out it can be replaced easily.

Unlike the original Unicam camera which employs Bradley–Jay film
mounting, Van Arkel type of mounting is employed in this camera. With this
mounting, both sides of the ring system are recorded and the ring diameters
of back reflection lines can be measured without the need for knife-edge or
any other calibration. A photograph of the camera in the assembled form is
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Fig. 1.8. Photograph of the cylindrical camera

Fig. 1.9. Diffraction pattern for (a) MgO and (b) PbF2 taken with the cylindrical
camera

shown in Fig. 1.8. As will be discussed later, the error function suitable for
this camera is f(θ) = (1/2) [(cos2 θ/ sin θ) + (cos2 θ/θ)].

As examples, the diffraction patterns of MgO and PbF2 obtained with this
camera are shown in Fig. 1.9. The extrapolation plots are shown in Fig. 1.10.

Symmetric Focusing Camera (SFC)

The geometry of a symmetric focusing camera is shown in Fig. 1.11. The basic
principle of the design of a symmetric focusing camera is that if a divergent
beam of X-rays falls on a sample spread over a cylindrical surface, the dif-
fracted beam is focused provided the slit, the sample and the film lie on a
circle called the focusing circle. When these conditions are satisfied, the re-
flections are sharp and intense. Further, since the effective film-to-specimen
distance is large, compared to that in a Debye–Scherrer camera of the same
radius, the resolution is larger.

A camera based on this principle designed by Sirdeshmukh and Deshpande
[1.6] is described. The camera is 15 cm in diameter. From a carefully cut
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Fig. 1.10. Extrapolation plots for (a) MgO and (b) PbF2

Fig. 1.11. Geometry of a symmetric focusing camera

cylinder, a minor segment is cut away. The major segment is the film-holder.
It can record reflections with Bragg angles in the range of 65◦ onwards. The
main parts of the camera are shown in Fig. 1.12. It has at its base a tripod
(A) with leveling screws (B). The tripod carries a horizontal bench (C) which
can rotate about a vertical axis. It can be locked onto the tripod by means
of the screw (D). The horizontal bench carries an upright (E) which consists
of a fixed piece and a sliding piece. The slider can be moved up and down
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Fig. 1.12. Main parts of the symmetric focusing camera

Fig. 1.13. Diffraction pattern of aluminium using the symmetric focusing camera

by the micrometer screw (F). At the top of the sliding piece is a platform
(G) which carries the film holding assembly (H) along with the collimator (I).
The upright (J) is mounted over the horizontal bench. The upright can be
displaced towards or away from the film-holder. There is also provision for
lateral displacement of the upright. At its top the upright carries the sample
holding tube (K) which can be displaced in the vertical direction by means of
the screw (L). The tube is coupled to a motor (M) through an eccentric cam.

For convenience a flat sample is used instead of a sample with a cylindrical
surface. The systematic errors in this camera have been analysed and it was
found that the function φ tan φ is a suitable error function. Here φ = (π/2)–θ.
A diffraction photograph of Al is shown in Fig. 1.13 and the extrapolation plot
for Al is shown in Fig. 1.14. The extrapolated value of 4.0499(2) Å agrees well
with the value 4.0499(1) Å obtained by Wilson [1.7].

For lattice constant measurement at higher temperatures, a tubular heater
is introduced such that the sample surface is at the central region of the heater.
The temperature is measured with a copper–constantan thermocouple welded
at the back of the sample holder.
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Fig. 1.14. Extrapolation plot for Al

Flat Film Camera (FFC)

The geometry of the flat film camera is shown in Fig. 1.15. As the name indi-
cates, a flat film is employed. For accurate determination of lattice constants,
the back-reflection geometry is used. Because of the limitation of size of the
film, only a few reflections are recorded (Fig. 1.16). If S is the diameter of a
ring and D the film-to-specimen distance, the angle θ is given by

θ = (π/2) − φ = [(π/2) − (1/2) tan−1(S/2D)] [180/π]◦. (1.6)

X-Ray Powder Diffractometer

The X-ray diffractometer is a versatile technique which facilitates at once the
measurement of the Bragg angle of a reflection, its intensity and its profile.

The detection of the diffracted beam is done with a GM counter (almost
obsolete now) or a proportional counter or a scintillation counter. The elec-
tronic circuitry for stability and detection is quite involved. Detailed discus-
sion of these aspects is given in the texts mentioned at the beginning of this
section. The specimen preparation is to be done with care (see Chap. 3). The
geometry of the system shown in Fig. 1.17 and described later follows the
treatment by Peiser et al. [1.1].

The point of divergence A is the line focus of the X-ray tube. BOB′ is the
trace of the specimen. The detector C is carried on the arm pivoted at O; OA
and OC are equal. The detector and the sample rotate maintaining a θ–2θ
relationship so that ON, the normal to BOB′ always bisects ∠AOC. AOC is
the focusing circle. The detector moves along the circle described about O.
The focusing circle AOC (which has no physical reality) changes continuously
as the sample and detector traverse. This is known as the Bragg–Brentano
focusing system.

While the instrument uses a divergent beam, it is also necessary to limit
the divergence. This is done with the help of special devices known as Soller
slits. As the detector occupies some length, its movement restricts the angular
region that can be explored – generally up to θ = 60◦. For accuracy in lattice
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Fig. 1.15. Geometry of the flat film camera

Fig. 1.16. Powder photograph of two silver gold alloys using a flat film camera
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Fig. 1.17. Geometry of the X-ray powder diffractometer

constant determination, higher angles are preferred (see Sect. 1.2.3). However,
because of the distances involved, the stringent geometry and the efficient
detection, the XRD has a high resolution even at low angles. A typical XRD
pattern is shown in Fig. 1.18.

Most of the commercial models of diffractometers are based on the prin-
ciples discussed in the preceding paragraphs. However, in Bond’s [1.8] dif-
fractometer, a single crystal is employed and two wide-aperture detectors are
placed in the symmetric back-reflection configuration (Fig. 1.19). The crystal
is turned so that a reflection from the crystal is recorded by the two detectors
in succession. A high precision is obtained by this method.

1.2.3 Strategies for Accuracy

Errors occur in the determination of lattice constants. These errors are of two
types: systematic and random. Differentiation of the Bragg equation leads to

(Δd/d) = −(cot θ)Δθ. (1.7)
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Fig. 1.18. Typical X-ray diffractogram of a powder sample (Ag)

Fig. 1.19. Geometry of Bond’s (single crystal) diffractometer

Thus an error Δθ in the measurement of the angle results in a large error
(Δd/d) at low angles and a smaller error at high angles. In fact (Δd/d) → 0
as θ → 90◦. Hence, the first strategy for accurate determination is to use high
angle reflections, generally θ > 60◦.

But the effect of errors still remains to be attended. Systematic errors arise
due to errors in geometrical parameters or physical effects. For instance, in a
cylindrical camera, errors may arise due to the following causes:

1. Error in camera radius
2. Displacement of sample from camera center
3. Absorption of beam by sample
4. Divergence of beam
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Table 1.1. Error functions for different techniques

Technique f(θ) f(θ) at high θ

i Cylindrical (DSC and UC) camera 1
2

[
cos2 θ

θ
+ cos2 θ

sin θ

]
cos2 θ

ii Flat film camera (back reflection) cos 2φ − cos2 2φ cos2 θ
iii Symmetric focusing camera φ tan φ cos2 θ
iv Diffractometer cos θ cot θ cos2 θ

The errors have been worked out and it has been shown that (Δd/d) is a
function of the Bragg angle. Thus,

(Δd/d) = f(θ), (1.8)

where f(θ) is the error function. Error functions for various techniques are
given in Table 1.1. It may be seen from the table that in each case f(θ) → 0
as θ → 90◦. For a cubic crystal

Δd/d = Δa/a. (1.9)

From (1.8) and (1.9), it follows that:

Δa = aobs − atrue = atrue f(θ). (1.10)

Hence, a plot of aobs obtained from each reflection against the corresponding
f(θ) will be a straight line. When this line is extrapolated to θ = 90◦ the
intercept gives atrue.

Random errors are minimized, first, by measuring θ repeatedly and taking
the mean and, second, by drawing the extrapolation plot by least square
analysis. Instead of a graphical extrapolation, Cohen [1.9] suggested error
elimination by a least square processing of the data starting with the sin2 θ
values.

1.2.4 Present Level of Accuracy

A summary of the accuracy in lattice constant measurement possible with
different methods is given in Table 1.2. It can be seen that an accuracy of
one part in (1–5) × 104 can be achieved with routine methods while a higher
accuracy of one part in (1–2) ×105 is possible with special methods. This is
just an order less than the accuracy in X-ray wavelengths [one part in (5–10)
×105]. Results of some studies where lattice constants have been measured
with very high accuracy are given in Table 1.3.

1.3 An Overview

There is an enormous amount of information on the lattice constants of ma-
terials. This information is scattered in a vast number of papers published
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Table 1.2. Accuracy of lattice parameter determination by various methods

Method Accuracy in a

1 part in
Rotating crystal camera < 10,000
Weissenberg camera < 10,000
Debye–Scherrer camera 15,000
Diffractometer (asymmetric) 15,000
Unicam camera 50,000
Focusing camera 50,000
Kossel line method 100,000
Bond’s method 200,000
Uncertainty (in λ) 500,000

Table 1.3. Accurate values of lattice constants (a) of some crystals; method and
accuracy given wherever mentioned in source

Crystal Method Temperature [◦C] a [Å] Ref.

Al 25 4.04958 [1.10]
Au 25 4.07825 [1.10]
Cu 18 3.61496 [1.10]
NaCl 26 5.64056 [1.10]
NaBr 26 5.97324 [1.10]
KCl 25 6.29294 [1.10]
KI 25 7.06555 [1.10]
Diamond FFC 25 3.56696(7) [1.11]
W DSC 25 3.16491(5) [1.13]
Ge Kossel 25 5.657736(8) [1.14]
GaAs Bond 25 5.653663(5) [1.14]

in various journals. Among them, mention may be made of Acta Crystallo-
graphica, Proceedings of the Physical Society (London), Journal of the Phys-
ical Society of Japan, Journal of Applied Physics and Journal of Chemical
Physics. Exhaustive compilations of data on lattice constants is available
in [1.10, 1.15, 1.16]. In this section, some studies where the measurement of
lattice constant has been used to probe various physical phenomena in solid
state are discussed.

1.3.1 Characterisation of Semiconductor Materials

For semiconductor devices, material with highest purity and free from defects
is required. The lattice parameter provides a useful control on device material.
Silicon being the most commonly used semiconductor material, its lattice
parameter has been determined with very high precision so much so that it is
now used as a standard in X-ray diffraction instrumentation. Some results on
the lattice parameter of silicon are given in Table 1.4. There is good internal
consistency among the values of the lattice parameters obtained by various
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Table 1.4. Lattice constant of silicon

Single crystal sample Powder sample

a [Å] Ref. a [Å] Ref.

5.43108 [1.17] 5.43085 [1.12]
5.43106 [1.18] 5.43090 [1.21]
5.43107 [1.19] 5.43089 [1.22]
5.43107 [1.20] 5.43092 [1.20]

workers using single crystal samples. Similarly, there is agreement among the
results obtained using powder samples But between the two sets of results
(single crystal and powder), there is a consistent difference of 0.00015 Å, the
value for the single crystal sample being larger. Parrish [1.12] suggested that
this difference may be caused by the formation of a layer of SiO2 formed in
the process of grinding. A more plausible explanation is given by Hubbard
et al. [1.20] in terms of crystal boundary effects.

Doping has significant effect on semiconductor behaviour. The addition of
impurities alters the carrier concentration and hence the electrical behaviour.
Tap et al. [1.23] and Gille and Schenk [1.24] studied the effect of doping PbTe
with Bi and Tl ions on the lattice parameter. The addition of Bi ions reduces
the lattice parameter. This is to be expected since the ionic radius of Bi3+ is
smaller than that of Pb2+. Although the radius of the Tl+ ions is larger than
that of Pb2+, the lattice parameter decreases on addition of Tl+ ions. This
is explained on the basis of a difference in the binding between Tl and Te in
relation to that between Pb and Te on the basis of complexes formed by Tl+

with the vacancies in PbTe.

1.3.2 Characterisation of Doped Crystals

Doping of crystals (addition of small but controlled quantities of impurities)
has an effect on many physical properties of crystals. The effect is particularly
prominent in optical, mechanical and electrical properties. Doping also has an
effect on the lattice parameter and hence the lattice parameter can be used
to characterize doped crystals.

Stott et al. [1.25] measured the lattice parameters of calcium fluoride doped
with La, Tm and Y ions. The results are shown in Fig. 1.20. It is seen that
the addition of rare earth ions results in an increase in the value of the lat-
tice parameter. The per cent change in lattice constant for unit molar frac-
tion of impurity has values 6, 6 and 13 for Y, Tm and La, respectively, and
thus seems to depend on the radius of the rare earth ion. Another obser-
vation is that the value of the lattice parameter varies slightly depending
on the section of the crystal boule from where the specimen is chosen. This
indicates that the distribution of the impurity within the crystal is slightly
inhomogeneous.
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Fig. 1.20. Lattice parameters of: (a) undoped CaF2; (b) CaF2 containing
0.074 mol% TmF3; (c) CaF2 containing 0.088 mol% YF3 and (d) CaF2 containing
0.045 mol% LaF3

1.3.3 Effect of Deuteration on Lattice Constants

The substitution of hydrogen by deuterium in hydrogen-containing substances
is seen in lattice constant changes. Zimmerman [1.26] made measurements of
lattice constant of crystals in the LiHxD1−x system. The lattice constants of
LiH and LiD are 4.0831(4) and 4.0684(5) Å. The composition dependence
of the partially substituted crystals was found to be linear.

Belouet et al. [1.27] studied the effect of deuteration on potassium dihy-
drogen phosphate (KDP) crystals. KDP is a tetragonal crystal. It can be seen
from Fig. 1.21 that the ‘a’ parameter varies continuously with the deuteration
parameter x. Further in the high x region, the measured values of ‘a’ show
negative deviations from additivity. On the other hand, there is no systematic
variation in the ‘c’ parameter due to deuteration.

1.3.4 Effect of Hydrogen on Lattice Parameters of Rare Earth
Elements

The rare earth elements easily absorb hydrogen and this causes changes
in the lattice parameter. A systematic study was made by Spedding and
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Fig. 1.21. Plot of lattice parameter a (Å) and lattice parameter c (Å) against
deuteration parameter x of KH2(1−x)D2xPO4 crystals. Dashed line represents addi-
tive variation of ‘a’

Beaudry [1.28]. Very pure rare earth metal samples were heated in a hydro-
gen atmosphere until saturation and the lattice parameters were determined
with the help of a Debye–Scherrer camera. The observed changes are shown
in Table 1.5 and also in Fig. 1.22. It is seen that (i) the lattice parameters in-
crease with hydrogen treatment, (ii) the increase in the ‘c’ parameter is more
than that in the ‘a’ parameter and (iii) the increments in ‘a’ and ‘c’ vary from
element to element.

1.3.5 Lattice Constants of Mixed Crystals

Mixed crystals are an important class of materials. Typical data on the com-
position variation of lattice parameters of the KI–RbI mixed crystal system
taken from Van Den Bosch et al. [1.29] are shown in Fig. 1.23. The lattice pa-
rameters aC of a mixed crystal system AxB1−x generally follow the equation:

an
C = xan

A + (1 − x)an
B, (1.11)
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Table 1.5. Lattice parameters of the ABAB rare earth metals [1.28]

Rare earth metal
Lattice parameter Increase in parameter

due to hydrogen

a[Å] c[Å] a [Å] c [Å]

Gadolinium 3.6336 ± 4 5.7810 ± 5 0.0003 0.0008
Terbium 3.6055 ± 4 5.6966 ± 6 0.0007 0.0001
Dysprosium 3.5915 ± 2 5.6501 ± 4 0.0013 0.0017
Holmium 3.5778 ± 2 5.6178 ± 3 0.0032 0.0052
Erbium 3.5592 ± 2 5.5850 ± 3 0.0052 0.0115
Thulium 3.5375 ± 4 5.5540 ± 2 0.0092 0.0216
Lutetium 3.5052 ± 4 5.5494 ± 5 0.0224 0.0598
Yttrium 3.6482 ± 2 5.7318 ± 6 0.0103 0.0383
Scandium 3.3088 ± 2 5.2680 ± 3 0.0371 0.0347

Fig. 1.22. Effect of hydrogen on the lattice parameters of rare earth metals

where aA and aB are the lattice parameters of the end members A and B,
respectively, and x is the molar fraction of crystal A in the mixture. From
the data on a number of systems, Sirdeshmukh and Srinivas [1.30] found that
(1.11) with n = 1 provides the best description of the composition dependence
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Fig. 1.23. Composition dependence of lattice parameters of K1−xRbxI mixed
crystal

of lattice parameter in a mixed crystal system. Data on several mixed crystal
systems will be discussed in Chap. 7.

Depending on the system, the composition of mixed crystals can be de-
termined by potentiometric titration, polarography, atomic absorption spec-
troscopy or X-ray fluorescence. The lattice parameter can also be used as a
means to estimate the composition. This method of characterisation has the
advantage that using a small quantity of the material, lattice parameters can
be measured with high accuracy.

1.3.6 Mixed Valence Effects in Lattice Constants

Mixed valence compounds have gained great prominence in recent years. The
typical situation in these compounds is that the 5d bands of the rare earth
ions are above the sharp 4f bands but the band gap is very narrow – often of
the order of 0.5 eV. Under stimulation like pressure and temperature changes
or by addition of other ions to the lattice, overlapping develops enabling the
4f electrons to participate in valence. Thus, several compounds belonging to
this category show sudden changes in valence which, further, assumes a non-
integral value.

In Fig. 1.24, the lattice parameter data obtained by Kaldis et al. [1.31]
for the system TmSexTe1−x are shown. This system has the NaCl structure.
The composition dependence of lattice parameter is very much different from
that in Fig. 1.23 where it is linear. With the addition of Se, the valence of Tm
suddenly changes from 2 to anywhere around 2.7. This results in the S-shaped
curve. Here also, a number of parallel lines can be drawn to represent the
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Fig. 1.24. Lattice parameters for the system TmSexTe1−x

Vegard’s law variation for a given value of valence. Thus the curve can be
used to characterize the valence in these compounds.

Sampathkumaran and Vijayaraghavan [1.32] studied another interesting
system – mixed crystals of CeNi2Si2 (which is a mixed valence crystal) and
CeCu2Si2 (which is a heavy Fermion system). The lattice parameter variation
with composition is shown in Fig. 1.25. Anomalous variation in the c parame-
ter is observed at x = 0.65. At the same composition, anomalous variation is
observed in magnetic susceptibility. It is suggested that the x-dependence of
c may be useful in identifying heavy Fermion materials.

1.3.7 Temperature Variation of Lattice Constant

The temperature variation of lattice constant provides an important method
for the determination of thermal expansion of crystals. The special advantage
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Fig. 1.25. Composition dependence of lattice parameters for the system
CeCu2−xNixSi2; dashed line indicates additive behaviour

of this method is that a very minute quantity of the material serves as sample.
Further, in anisotropic crystals, the thermal expansion in several directions
can be determined in a single experiment. Studies of temperature variation
of lattice constants reveal many interesting phenomena like negative thermal
expansion and phase transitions. Several studies of temperature variation of
lattice parameters of crystals are cited in Chap. 2.

1.3.8 Pressure Variation of Lattice Parameters

By enclosing the sample in a pressure medium or in a diamond anvil press,
the changes in lattice constant can be studied. From these changes, the linear
compressibilities can be evaluated. A minute crystal or a small quantity of
material in the powder form serves as sample. This method and results on
several materials are quoted in Chap. 8.

1.3.9 Effect of Magnetic Field on Lattice Constant

There is very little work on this aspect. Kida et al. [1.33] studied the effect
of magnetic field on the ‘c’ lattice constant of Dy which is antiferromagnetic
with TN = 179K and ferrimagnetic with TC = 91K. The study was carried
out by making measurements on the (006) reflection from a single crystal
using X-rays.

The variation of ‘c’ with magnetic field is shown in Fig. 1.26. There is a dis-
continuous change in ‘c’ in the experiments conducted at 130 and 150 K. This
‘gap’ in c-parameter vanishes at 170 K. The observations have been explained
in terms of exchange integrals.
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Fig. 1.26. Variation of lattice parameter c of Dy with magnetic field at different
temperatures

Fig. 1.27. Lattice parameter as a function of γ-irradiation time for NaClO3

1.3.10 Radiation Damage

Irradiation of solids by high energy radiation affects several physical proper-
ties. Irradiation effects are seen in lattice parameter values also.

Stapien et al. [1.34] studied the damage in NaClO3 crystals irradiated with
γ-rays from a 60Co source. The variation in the value of lattice parameter as
a function of irradiation time is shown in Fig. 1.27. There is a fast increase
in lattice parameter during the first 50 h of irradiation. Thereafter, the rate
of increase slows down and the lattice parameter reaches a saturation value.
There is considerable evidence to show that on irradiation the ClO3 ion breaks
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into a number of species including gaseous oxygen and ozone. The strains pro-
duced in the lattice by these radiolysis products result in the lattice parameter
variations.

Zircon is a mineral of gem quality. It is a tetragonal crystal. It has been ob-
served that zircon samples from different locations show a considerable range
of physical properties. This applies to the lattice parameter values also. These
variations cannot be explained in terms of differences in chemical composition.
It is known that zircon samples invariably contain uranium and thorium as
impurities. It has been suggested that the differences in lattice parameters are
due to effects of irradiation by α-particles originating in the radioactive dis-
integration of uranium and thorium. That it is so can be seen from the plots
of the lattice parameters a and c as a function of the α activity (Fig. 1.28).
These results are taken from the work of Holland and Gottfried [1.35]. The
plots are smooth curves. The observed variation could be due to a combination
of causes like ionisation by the α particles and displacement of atoms by recoil
nuclei.

The interesting result of this study of lattice parameters of zircon is that
since lattice parameters are found to correlate with α-activity and since the
latter correlates with the age of the mineral, it may be possible to use the
lattice parameter as a measure of the age in zircon samples.

1.3.11 Effect of Particle Size on Lattice Constant

A smaller particle size shows two effects on X-ray (or electron) diffraction
patterns. First, there is a broadening of the powder diffraction lines and, sec-
ond, there is a measurable change in the lattice constant. A detailed electron
diffraction investigation by Boswell [1.36] on a few metals and some alkali
halides clearly established that the lattice constant decreases with decreasing
particle size. This is further confirmed by numerous subsequent studies. Typ-
ical results obtained by Boswell are given in Table 1.6. The decrease in lattice
constants with decrease in particle size is consistent with the theory of surface
effects in crystals [1.37].

1.3.12 Lattice Constants and Point Defects in Crystals

Lattice parameter determination yields interesting information regarding
point defects in crystals. It is well known that the formation of vacancies
in metals or Schottky defects in ionic crystals leads to an increase in bulk vol-
ume as new atomic layers are formed on the crystal surface. This means that
the bulk density (ρm) decreases. No such change takes place when Frenkel de-
fects are formed. On the other hand, the existence of pure interstitials results
in an increase in bulk density.

The density of a crystal can be calculated from the lattice parameter from
the relation:

ρx = Mn /NA a3, (1.12)
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Fig. 1.28. Variation of lattice parameters c and a of zircon with α-activity

where M is the molecular weight, n the number of formula units in the unit
cell, NA Avogadro’s number and a the lattice constant. ρx is called the X-ray
density or ideal density. Its value is not affected by the presence of a small
number of defects. From the above discussion, we have the following relations
between ρm and ρx:

Schottky defects ρm < ρx

Frenkel defects ρm = ρx

Interstitials ρm > ρx


