
Advances in Intelligent Systems and Computing 246

Computational 
Intelligence, 
Cyber Security 
and Computational 
Models

G. Sai Sundara Krishnan  R. Anitha
R. S. Lekshmi  M. Senthil Kumar
Anthony Bonato  Manuel Graña
Editors

Proceedings of ICC
3
, 2013



Advances in Intelligent Systems and Computing

Volume 246

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/11156

http://www.springer.com/series/11156


About this Series

The series ‘‘Advances in Intelligent Systems and Computing’’ contains publications on theory,

applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all

disciplines such as engineering, natural sciences, computer and information science, ICT,

economics, business, e-commerce, environment, healthcare, life science are covered. The list of

topics spans all the areas of modern intelligent systems and computing.

The publications within ‘‘Advances in Intelligent Systems and Computing’’ are primarily

textbooks and proceedings of important conferences, symposia and congresses. They cover

significant recent developments in the field, both of a foundational and applicable character. An

important characteristic feature of the series is the short publication time and world-wide

distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Gy}or, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk



G. Sai Sundara Krishnan • R. Anitha
R. S. Lekshmi • M. Senthil Kumar
Anthony Bonato • Manuel Graña
Editors

Computational Intelligence,
Cyber Security and
Computational Models

Proceedings of ICC3, 2013

123



Editors
G. Sai Sundara Krishnan
R. Anitha
R. S. Lekshmi
M. Senthil Kumar
Applied Mathematics and Computational

Sciences
PSG College of Technology
Coimbatore, Tamil Nadu
India

Anthony Bonato
Department of Mathematics
Ryerson University
Toronto, ON
Canada

Manuel Graña
School of Computing
University of Basque Country
Paseo Manuel De Lardizalbal 1
San Sebastian
Spain

ISSN 2194-5357 ISSN 2194-5365 (electronic)
ISBN 978-81-322-1679-7 ISBN 978-81-322-1680-3 (eBook)
DOI 10.1007/978-81-322-1680-3
Springer New Delhi Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954037

� Springer India 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Dedicated
To

Dr. G. R. Damodaran
Founder Principal
PSG College of Technology
Coimbatore–641004
India



Preface

The rapid development of network technologies and computing machines has
broadened the scope of research and development in computer science and allied
areas. To provide a broad interdisciplinary research forum, the International
Conference on Computational Intelligence, Cyber Security, and Computational
Models (ICC3-2013) has been organized by the Department of Applied Mathe-
matics and Computational Sciences of PSG College of Technology, during 19–21
December, 2013. We are proud to place on record that this International Con-
ference is a part of the centenary year celebrations of Dr. G. R. Damodaran,
Founder Principal, PSG College of Technology, Coimbatore, India.

The primary objective of this conference is to present state-of-the-art scientific
results, explore cutting-edge technologies, and promote collaborative research in
the areas of revolutionary ideas using computational intelligence, cyber security,
and computational models. The conference aims to serve as a platform to establish
research relations worldwide.

Computational Intelligence (CI), as a branch of science is applicable in many
fields of research, including engineering, data analytics, forecasting, and bio-
medicine. CI systems are inspired by imitable aspects of living systems. They are
used in image and sound processing, signal processing, multidimensional data
visualization, steering of objects, expert systems, and many practical implemen-
tations. The common feature of CI systems is that it processes information by
symbolic representation of knowledge. CI systems have the capability to recon-
struct behaviors observed in learning sequences, form rules of inference, and
generalize knowledge in situations where they are expected to make predictions or
classify objects based on previously observed categories. The CI track comprises
research articles which exhibit potential practical applications.

With worldwide escalation in the number of cyber threats, there is a need for
comprehensive security analysis, assessment, and action to protect critical infra-
structure and sensitive information. Large-scale cyber attacks in various countries
threaten information security which, could pose a threat to national security and
requires effective crisis management. Such information security risks are becoming
increasingly diversified, advanced, and complex and conventional means of security
fail to ensure information safety. The cyber security track in this conference aims to
bring together researchers, practitioners, developers, and users to arrive at a common
understanding of the challenges and build a global framework for security and trust.
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Fields such as theory of computation, data analytics, high performance com-
puting, quantum computing, weather forecasting, and flight simulation need
computational models like stochastic models, graph models, and neural networks
to make predictions about performance of complicated systems. Solutions to many
technical problems require extensive mathematical concepts to model the problem
and to understand the behavior of associated complex systems by computer sim-
ulations. With the advent of efficient computations, solutions to complex problems
can be found using computational modeling and research.

ICC3-2013 received a total of 117 technical submissions out of which only 33
full papers and five short papers were selected for presentation and publication in
the proceedings. This selection was done through a stringent blind peer review
process. Besides these, research papers by invited speakers have also been
included in this proceedings.

The organizers of ICC3-2013 wholeheartedly appreciate the peer reviewers for
their support and valuable comments for ensuring the quality of this proceeding.
We also extend our warmest gratitude to Springer for their support in bringing out
the proceedings volume in time and with excellent production quality.

We would like to thank all invited speakers, international advisory committee
members, and the chairpersons for their excellent contributions. We hope that all
the participants of the conference will be benefited academically from this event
and wish them success in their research career.
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The Robber Strikes Back

Anthony Bonato, Stephen Finbow, Przemysław Gordinowicz,
Ali Haidar, William B. Kinnersley, Dieter Mitsche, Paweł Prałat
and Ladislav Stacho

Abstract We consider the new game of Cops and Attacking Robbers, which is
identical to the usual Cops and Robbers game except that if the robber moves to a
vertex containing a single cop, then that cop is removed from the game. We study
the minimum number of cops needed to capture a robber on a graph G, written
cc(G). We give bounds on cc(G) in terms of the cop number of G in the classes of
bipartite graphs and diameter two, K1,m-free graphs.

Keywords Cops and robbers � Cop number � Bipartite graphs � Claw-free graphs

1 Introduction

Cops and Robbers is a vertex-pursuit game played on graphs, which has been the
focus of much recent attention. Throughout, we only consider finite, connected,
and simple undirected graphs. There are two players consisting of a set of cops and
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Ryerson University, Toronto, Canada
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a single robber. The game is played over a sequence of discrete time steps or
rounds, with the cops going first in the first round and then playing on alternate
time steps. The cops and robber occupy vertices, and more than one cop may
occupy a vertex. When a player is ready to move in a round, they may move to a
neighbouring vertex or pass by remaining on their own vertex. Observe that any
subset of cops may move in a given round. The cops win if after some finite
number of rounds, one of them can occupy the same vertex as the robber. This is
called a capture. The robber wins if he can avoid capture indefinitely. A winning
strategy for the cops is a set of rules that if followed result in a win for the cops,
and a winning strategy for the robber is defined analogously.

If we place a cop at each vertex, then the cops are guaranteed to win. Therefore,
the minimum number of cops required to win in a graph G is a well-defined
positive integer, named the cop number of the graph G. We write c(G) for the
cop number of a graph G. For example, the Petersen graph has cop number 3.
Nowakowski and Winkler [14], and independently Quilliot [19], considered the
game with one cop only; the introduction of the cop number came in [1]. Many
papers have now been written on cop number since these three early works; see the
book [8] for additional references and background on the cop number. See also
the surveys [2, 4, 5].

Many variants of Cops and Robbers have been studied. For example, we may
allow a cop to capture the robber from a distance k, where k is a non-negative
integer [7], play on edges [12], allow one or both players to move with different
speeds or teleport, or allow the robber to be invisible. See Chap. 8 of [8] for a non-
comprehensive survey of variants of Cops and Robber.

We consider a new variant of the game of Cops and Robbers, where the robber
is able to essentially strike back against the cops. We say that the robber attacks a
cop if he chooses to move to a vertex on which a cop is present and eliminates her
from the game. In the game of Cops and Attacking Robbers, the robber may attack
a cop, but cannot start the game by moving to a vertex occupied by a cop; all other
rules of the game are the same as in the classic Cops and Robbers. We note that if
two cops are on a vertex u and the robber moves to u, then only one cop on u is
eliminated; the remaining cop then captures the robber, and the game ends. We
write cc(G) for the minimum number of cops needed to capture the robber. Note
that cc(G) is the analogue of the cop number in the game of Cops and Attacking
Robbers; our choice of notation will be made more transparent once we state
Theorem 1. We refer to cc(G) as the cc-number of G. Since placing a cop on each
vertex of G results in a win for the cops, the parameter cc(G) is well defined.

To illustrate that cc(G) can take different values from the cop number, consider
that for the cycle Cn with n vertices, we have the following equalities (which are
easily verified):

ccðCnÞ ¼
1 if n ¼ 3;
2 if 4� n� 6;
3 else:

8
<

:
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We outline some basic results and bounds for the cc-number in Sect. 2. We
consider bounds on cc(G) in terms of c(G) in Sect. 3. In Sect. 4, we give the bound
of cc(G) B c(G) ? 2 in the case that G is bipartite; see Theorem 9. In the final
section, we supply in Theorem 10 an upper bound for cc(G) for K1,m-free, diameter
two graphs.

For background on graph theory, see [20]. For a vertex u, we let N(u) denote the
neighbour set of u, and let N½u� ¼ NðuÞ [ fug denote the closed neighbour set of u.
The set of vertices of distance 2 to u is denoted by N2(u). We denote by (G) the
minimum degree in G. In a graph G, a set S of vertices is a dominating set if every
vertex not in S has a neighbour in S. The domination number of G, written c(G), is
the minimum cardinality of a dominating set. The girth of a graph is the length of
the shortest cycle contained in that graph and is ? if the graph contains no cycles.

2 Basic Results

In this section, we collect together some basic results for the cc-number. As the
proofs are either elementary or minor variations of the analogous proofs for the
cop number, they are omitted. The first result on the game of Cops and Attacking
Robbers is the following theorem; note that the second inequality naturally inspires
the notation cc(G). We use the notation �cðGÞ for the edge cop number, which is a
variant where the cops and robber move on edges; see [12].

Theorem 1 If G is a graph, then

cðGÞ� ccðGÞ�minf2cðGÞ; 2�cðGÞ; cðGÞg:

The following theorem is foundational in the theory of the cop number.

Theorem 2 [1] If G has girth at least 5, then

cðGÞ� dðGÞ:

The following theorem extends this result to the cc-number.

Theorem 3 If G has girth at least 5, then

ccðGÞ� dðGÞ þ 1:

Isometric paths play an important role in several key theorems in the game of
Cops and Robbers, such as the cop number of planar graphs (see Chap. 4 of [8]).
We call a path P in a graph G isometric if the shortest distance between any two
vertices is equal in the graph induced by P and in G. For a fixed integer k C 1,
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an induced subgraph H of G is k-guardable if, after finitely many moves, k cops
can move only in the vertices of H in such a way that if the robber moves into H at
round t, then he will be captured at round t ? 1 by a cop in H. For example, a
clique in a graph is 1-guardable.

Aigner and Fromme [1] proved the following result.

Theorem 4 [1] An isometric path is 1-guardable.

We have an analogue of Theorem 4 for the cc-number.

Theorem 5 An isometric path is 2-guardable in the game of Cops and Attacking
Robbers, but need not be 1-guardable.

See Fig. 1 for an example where the robber can freely move onto an isometric
path without being captured by a sole cop.

A graph G is called planar if it can be embedded in a plane without two of its
edges crossing. It was shown first in [1] that planar graphs require at most three
cops to catch the robber; see [8] for an alternative proof of this fact. Given the
results above, we may conjecture that the cc-number of a planar graph is at most 4
or even 5, but either bound remains unproven.

Outerplanar graphs are those that can be embedded in the plane without
crossings in such a way that all of the vertices belong to the unbounded face of the
embedding. Clarke proved the following theorem in her doctoral thesis.

Theorem 6 [11] If G is outerplanar, then c(G) B 2.

The counterpart to Theorem 6 is the following.

Theorem 7 If G is outerplanar, then cc(G) B 3.

Meyniel’s conjecture—first communicated by Frankl [13]—is one of the most
important open problems surrounding the game of Cops and Robbers. The con-
jecture states that cðnÞ ¼ Oð

ffiffiffi
n
p
Þ, where c(n) is the maximum of c(G) over all

n-vertex, connected graphs. Cops and Robbers has been studied extensively for
random graphs (see for example, [3, 9, 15, 16]), partly owing to a search for
counterexamples to Meyniel’s conjecture. However, it was recently shown that
Meyniel’s conjecture holds asymptotically almost surely (that is, with probability
tending to 1 as the number of vertices tends to infinity) for both binomial random
graphs G(n, p) [17] as well as random d-regular graphs [18].

C

R

Fig. 1 One cop cannot guard the isometric path (depicted in bold). We assume that the robber
has just arrived at their vertex, and it is the cop’s turn to move
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In [9], it was shown that for dense random graphs, where p ¼ n�oð1Þ and p\1� �
for some �[ 0, asymptotically almost surely we have that

cðGðn; pÞÞ ¼ ð1þ oð1ÞÞcðGðn; pÞÞ ¼ ð1þ oð1ÞÞ log1=ð1�pÞ n: ð1Þ

Note that (1) implies that c(G(n, p)) = (1 ? o(1))cc(G(n, p)) for the stated
range of p; in particular, applying (1) to the p = 1/2 case (which corresponds to
the uniform probability space of all labelled graphs on n vertices), we have that for
every �[ 0, almost all graphs satisfy cc Gð Þ=c Gð Þ 2 ½1; 1þ ��. Unfortunately, the
asymptotic value of the cop number is not known for sparser graphs. However, it
may be provable that cðGðn; pÞÞ ¼ ð1 þ oð1ÞÞccðGðn; pÞÞ for sparse graphs,
without finding an asymptotic value.

We finish the section by noting that graphs with cc(G) = 1 are precisely those
with a universal vertex. However, characterizing those graphs G with cc(G) = 2 is
an open problem. Graphs with cc(G) = 2 include cop-win graphs without uni-
versal vertices and graphs which are not cop win but have domination number 2.
Before the reader conjectures this gives a characterization, note that the graph in
Fig. 2 with cc-number equalling 2 is in neither class.

3 How Large Can the cc-Number Be?

One of the main unanswered questions on the game of Cops and Attacking
Robbers is how large the cc-number can be relative to the cop number. Many of
the results from the last section might lead one to (mistakenly) conjecture that

ccðGÞ� cðGÞ þ 1

for all graphs, and this was the thinking of the authors and others for some time.
We provide a counterexample below.

By Theorem 1, we know that cc(G) is bounded above by 2c(G). For example,
this is a tight bound for a path of length at least 3. However, we do not know an
improved bound which applies to general graphs, nor do we possess graphs G with
c(G) [ 2 whose cc-number equals 2c(G). In this section, we outline one approach

Fig. 2 A graph G with c(G) = cc(G) = 2 and c(G) = 3
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which may ultimately yield such examples. Improved bounds for several graph
classes are outlined in the next two sections.

Our construction utilizes line graphs of hypergraphs. For a positive integer k, a
k-uniform hypergraph has every hyperedge of cardinality k. A hypergraph is linear
if any two hyperedges intersect in at most one vertex. The line graph of a
hypergraph H, written as L(H), has one vertex for each hyperedge of H, with two
vertices adjacent if the corresponding hyperedges intersect.

Lemma 8 Let H be a linear k-uniform hypergraph with minimum degree at least 3
and girth at least 5. If L(H) has domination number at least 2k, then
cc(L(H)) [ 2k.

Proof Suppose there are at most 2k - 1 cops. Since the domination number of
L(H) is at least 2k, the robber can choose an initial position that lets him survive
the cops’ first move. To show that 2k - 1 cops cannot catch the robber in the game
of Cops and Attacking Robbers on L(H), suppose otherwise, and consider the state
of the game on the robber’s final turn (that is, just before he is to be captured). Let
v be the robber’s current vertex, Ev the corresponding edge of H, and
w1;w2; . . .;wk the elements of Ev. The neighbours of v in L(H) are precisely those
vertices corresponding to the edges of H that intersect Ev; denote by Swi the set of
vertices (other than v) corresponding to edges containing wi. Each Swi is a clique;
moreover, since H has minimum degree at least 3, each contains at least two
vertices. By hypotheses for H, it follows that the Swi are disjoint and that no vertex
outside Swi dominates more than one vertex inside. Finally, since H has girth at
least 5, no vertex in G dominates vertices in two different Swi (that is, the
neighbourhoods N[Swi ] only have v in common).

Consider the cops’ current positions. The cops must dominate all of N[v], since
otherwise the robber would be able to survive for one more round (by moving to an
undominated vertex). Since the N[Swi ] only have v in common, for some j, we have
at most one cop in N [Swj ]. If in fact there are no cops in N[Swj ], then no vertices of
Swj are dominated, a contradiction. Thus, Swj contains exactly one cop. Since each
vertex outside Swj dominates at most one vertex inside and Swj contains at least two
vertices, the cop must actually stand within Swj . However, since she is the only cop
within N[Swj ], the robber may attack the cop without leaving himself open to
capture on the next turn. Thus, the robber always has a means to avoid capture on
the cops’ next turn. Hence, at least 2k cops are needed to capture the robber, as
claimed. h

We aim to find, for all k, graphs G such that c(G) = k and cc(G) = 2k. This,
however, remains open for all k C 3.

As an application of the lemma, take H to be the Petersen graph. It is easily
verified that c(L(H)) = 2; see also [12]. Lemma 8 with k = 2 shows that
cc(L(H)) C 4; hence, Theorem 1 then implies that cc(L(H)) = 4. See Fig. 3 for a
drawing of the line graph of the Petersen graph.
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4 Bipartite Graphs

For bipartite graphs, we derive the following upper bound.

Theorem 9 For every connected bipartite graph G, we have that cc(G)
B c(G) ? 2.

Proof Fix a connected bipartite graph G. Let k = c(G); we give a strategy for
k ? 2 cops to win the game of Cops and Attacking Robbers on G. Label the cops
C1;C2; . . .;Ck;C�1 ;C

�
2. Intuitively, cops C1, C2, …, Ck attempt to follow a winning

strategy for the ordinary Cops and Robber game on G; since they must avoid being
killed by the robber, they may not be able to follow this strategy exactly, but can
follow it ‘‘closely enough’’. Cops C�1 and C�2 play a different role: They occupy a
common vertex throughout the game, and in each round, they simply move closer
to the robber. This has the effect of eventually forcing the robber to move on every
turn. (Since the cops move together, the robber cannot safely attack either one.)
Further, when the robber passes, the cops C1;C2; . . .;Ck pass. Therefore, we may
suppose throughout that the robber moves to a new vertex on each turn.

It remains to formally specify the movements of C1;C2; . . .;Ck. To each cop Ci,
we associate a shadow Si. Throughout the game, the shadows follow a winning

strategy for the ordinary game on G. Let CðtÞi ; S
ðtÞ
i ; and RðtÞ denote the positions of

Ci, Si, and the robber, respectively, at the end of round t. We maintain the fol-
lowing invariants for 1 B i B k and all t:

1. SðtÞi 2 N CðtÞi

h i
(that is, each cop remains on or adjacent to her shadow).

2. if Cðtþ1Þ
i 6¼ Sðtþ1Þ

i , then Sðtþ1Þ
i and RðtÞ belong to different partite sets of G.

3. Cðtþ1Þ
i is not adjacent to R(t) (that is, the robber never has the opportunity to

attack any cop).

On round t ? 1, each cop Ci moves as follows:

(a) If CðtÞi 6¼ SðtÞi , then Ci moves to SðtÞi .

(b) If CðtÞi ¼ SðtÞi , and Sðtþ1Þ
i is not adjacent to R(t), then Ci moves to Sðtþ1Þ

i .
(c) Otherwise, Ci remains at her current vertex.

Fig. 3 The line graph of the Petersen graph
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By invariant (1), this is clearly a legal strategy.
We claim that all three invariants are maintained. Invariant (1) is straightforward

to verify. For invariant (2), first suppose that CðtÞi ¼ SðtÞi , but Cðtþ1Þ
i 6¼ Sðtþ1Þ

i . By the

cops’ strategy, this can happen only when Sðtþ1Þ
i is adjacent to R(t), in which case,

the shadow and robber belong to different partite sets, as desired. Now, suppose that

CðtÞi 6¼ SðtÞi and Cðtþ1Þ
i 6¼ Sðtþ1Þ

i . By the cops’ strategy, we have Cðtþ1Þ
i ¼ SðtÞi . It

follows that Cðtþ1Þ
i 6¼ CðtÞi , Sðtþ1Þ

i 6¼ SðtÞi , and Rðt�1Þ 6¼ RðtÞ. Thus, if SðtÞi and Rðt�1Þ

belong to different partite sets, then so must Sðtþ1Þ
i and RðtÞ; that is, the invariant is

maintained. For invariant (3), if Sðtþ1Þ
i is adjacent to RðtÞ, then we may suppose that

Sðtþ1Þ
i 6¼ SðtÞi , since otherwise the shadow would have captured the robber in round

t ? 1. By the cops’ strategy, we now have that Cðtþ1Þ
i 6¼ Sðtþ1Þ

i . But now, the cop
and her shadow are in different partite sets by invariant (1), and the shadow and
robber are in different partite sets by invariant (2), so the cop and robber are in the
same partite set, contradicting adjacency of the cop and the robber.

Since the shadows follow a winning strategy, eventually some shadow Si captures

the robber; that is, for some t, we have that either SðtÞi ¼ RðtÞ or Sðtþ1Þ
i ¼ RðtÞ. In the

former case, invariant (3) implies that CðtÞi 6¼ SðtÞi and invariant (1) implies that Ci

captures the robber in round t ? 1. Now, consider the case when Sðtþ1Þ
i ¼ RðtÞ. By

invariant (2), since Sðtþ1Þ
i is not adjacent to RðtÞ, we in fact have that Cðtþ1Þ

i ¼
Sðtþ1Þ

i ¼ RðtÞ so the cops have won. h

5 K1;m-Free, Diameter 2 Graphs

We provide one more result giving an upper bound on the cc-number for a set of
graph classes.

Theorem 10 Let G be a K1;m-free, diameter 2 graph, where m C 3. Then,

ccðGÞ� cðGÞ þ 2m� 2:

When m = 3, Theorem 10 applies to claw-free graphs; see [10] for a character-
ization of these graphs. The cop number of diameter 2 graphs was studied in [6].

Proof of Theorem 10 A cop C is backup to a cop C0 if C is in N[C0], note that a cop
with a backup cannot be attacked without the robber being captured in the next
round.

Now, let c(G) = r, and consider c(G) cops labelled C1;C2; . . .;Cr. We refer to

these r-many cops as squad 1. Label an additional 2m - 2 cops as dCi;1 and dCi;2 ,
where 1 B i B m - 1; these cops form squad 2. The intuition behind the proof is
that the cops in squad 2 act as backup for those in squad 1, who play their usual

10 A. Bonato et al.



strategy on G. Further, the cops cCi;j are positioned in such a way that the cops Ck

need only restrict their movements to the second neighbourhood of some fixed
vertex.

More explicitly, fix a vertex x of G. Move squad 2 so that they are contained in

N[x]. Next, position each of the cops dCi;1 on x. Hence, R must remain in N2(x) or
he will lose in the next round (in particular, no squad 2 cop is ever attacked).
Throughout the game, we will always maintain the property that there are m - 1
cops on x.

We note that the squad 2 cops in N(x) can move there essentially as if that
subgraph were a clique, and in addition, preserve the property that m - 1 cops

remain on x. To see this, if dCi;2 were on y 2 NðxÞ and the cops would like to move

to z 2 NðxÞ, then move dCi;2 to x, and move some squad 2 cop from x to z. In
particular, a cop from squad 2 can arrange things so that she is adjacent to a cop in
squad 1 after at most one move. We refer to this movement of the squad two cops
as a hop, as the cops appear to jump from one vertex of N(x) to another (although
what is really happening is that the cops are cycling through x). Note that hops
maintain m - 1 cops on x.

We now describe a strategy S for the cops, and then show that it is winning.
The cops in squad 1 play exactly as in the usual game of Cops and Robbers; note
that the squad 1 cops may leave N2(x) depending on their strategy, but R will never
leave N2(x). The squad 2 cops play as follows. Squad 2 cops do not move unless
the following occurs: a squad 1 cop Ck moves to a neighbour of R, and Ck has no

backup from a squad 1 cop. In that case, some squad 2 cop cCi;j hops to a vertex of
N(x) which is adjacent to Ck. There are a sufficient number of squad 2 cops to
ensure this property, since if m (or more) squad 1 cops move to neighbours of R,
then some of these cops must be adjacent to each other as G is K1,m-free (in
particular, the cops in N(R) play the role of backups to each other).

Hence, the squad 1 cops may apply their winning strategy in the usual game and
ensure that whenever they move to a neighbour of R, some squad 2 cop serves as
backup. In particular, R will never attack a squad 1 cop for the duration of the game.
Thus, S is a winning strategy in the game of Cops and Attacking Robbers. h

Acknowledgments The authors were supported by grants from NSERC and Ryerson University.
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Some Applications of Collective Learning

Balaraman Ravindran

Abstract Much of the real-world data have complex dependencies between the
individual tuples. For example, the chance that a patient has a particular disease
depends on the prevalence of the disease in the immediate neighborhood.
One approach to handling such linked data is ‘‘collective learning.’’ In collective
learning, one deals with a set of data points taken at a time. The dependencies
between the data points are modeled as a graph, with the nodes representing the
tuples and the edges between them representing the influence of the tuples on one
another. A variety of domains lend themselves naturally to such graph-based
modeling. There have been a variety of collective learning and inferencing
approaches that have been proposed in the literature. In this talk, I will give a brief
introduction to collective learning and describe two applications.

keywords Sentiment analysis � Functional site prediction � Interaction network �
Label misclassification

The first of these is a sentiment analysis task. Sentiment analysis is the task of
identifying the sentiment expressed in the given piece of text about the target
entity under discussion. In this work, we look at the problem of analyzing senti-
ments at different granularities. For example, we want to analyze sentiment about a
movie as whole as well as about the acting and directing. Models built for such
multigrain sentiment analysis assume fully labeled corpus at fine-grained level or
coarse-grained level or both. Huge amount of online reviews are not fully labeled
at any of the levels, but are partially labeled at both the levels. We propose a
multigrain collective classification framework to not only exploit the information
available at all the levels but also use intra dependencies at each level and
interdependencies between the levels. We demonstrate empirically that the pro-
posed framework enables better performance at both the levels compared to
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baseline approaches. Part of this work was reported in ECAI 2010, and it is a joint
work with S. Shivashankar and Shamshu Dharwez.

The second task is that of functional site prediction in proteins. Functional site
prediction is an important problem in the structural genomics era where we have a
large number of experimentally determined protein structures with unknown
function. The functional sites provide useful insights into protein function. In this
paper, we propose a method for prediction of functional residues in a given protein
from its three-dimensional (3D) structure. Our method exploits correlation
between labels of interacting residues to obtain significant performance
improvements over the existing methods on the benchmark dataset. We represent
each protein as a weighted undirected residue interaction network, where spatially
proximal residues in terms of their van der Waal’s radii are connected by an edge.
The edge weight captures correlation between the labels of interacting residues.
The correlation is estimated based on the features of interacting residues. We then
obtain a label assignment by minimizing combined cost of residue-wise label
misclassification and violation of label correlation constraints. We solve this
problem in two stages, where the first stage minimizes residue-wise label mis-
classification cost followed by an iterative collective inference scheme that adjusts
the labels predicted in the first stage so as to minimize the correlation constraint
violations. Our approach significantly outperforms state-of-the-art methods on
standard benchmark dataset. This work was reported in ACM BCB 2012, and it is
a joint work with Ashish V. Tendulkar, Saradindu Kar, and Deepak Vijayakeerthi.
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Subconscious Social Computational
Intelligence

M. Graña

Abstract The success of social network Web services mediating social interactions,
as well as the increasing observation capabilities of human interactions in real life,
has prompted the emergence of new computational paradigms, namely social
computing, computational social science, and social intelligence. Subconscious
social intelligence appears when the social network service is able to provide solu-
tions, generated by a hidden intelligent layer, to problems posed by the social player.
This paper discusses some features of subconscious social intelligence and ensuing
challenges for machine learning systems implementing the hidden intelligent layer.

Keywords Social computing � Social intelligence � Subconscious reasoning �
Learning systems

1 Introduction

This paper discusses the requirements for machine learning systems contributing to
the development of a nascent computational field, which can be identified by the
name of subconscious social computing. Reviewing the related fields of social
computing and computational social science will help to clarify the subtle dis-
tinctive features of this new class of systems. We describe the general scheme of
subconscious social computing highlighting its contrast with the previous ones,
including the description of one instance, the EU-financed SandS project [1, 3, 4, 6].
Then, we identify requirements posed by this kind of systems on learning
subsystems implementing the subconscious intelligent layer, discussing how
computational intelligence approaches can cope with them.
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2 Social Computing Paradigms

Computational social science [2] aims to understand the dynamics of social sys-
tems form of data that can be extracted from all existing sources of human
behavior observation, ranging from surveillance cameras, mobile identification
tags to social Web services or electronic commercial transactions. From compu-
tational social science point of view, the social players are subjects of observation
and experimentation, searching for answers to questions such as:

• which interaction pattern leads to economic success?
• how social interaction influences contagious sickness diffusion?
• what is the best way to promote a product?
• what social hints can be useful to predict the fate of a stock asset?

To this end, computational social science deals with intelligent and efficient
hardware/software systems able to process huge amounts of data coming from all
kinds of observational sources within some real-time constraints. Big networking
data are subject to statistical and data mining analysis, providing answers to the
institutional or corporate costumer.

Social computing [5, 8] concerns the development of software for the enhanced
interaction between social players and to develop simulation scenarios to forecast
the effects of policies and forces, such as technological innovation, on societies.
Examples of these systems are entertainment/therapeutic social games involving
autonomous intelligent agents, negotiation, recommender and reputation systems,
security applications for the detection of criminal social activities, and artificial
societies of agents designed to provide adaptation to changing environments (i.e.,
traffic) through competition, platforms for scientific collaboration offering infor-
mation about the current state of the research community and research effort
planning. Social computing is developing into a productive model where
rewarding mechanisms are required to control the desired output of the system [7].

Social intelligence is the emergence of problem-solving behavior out of social
interactions from the point of view of the social player. In other words, the social
player expects to obtain solutions to his/her problems from the pool of intelligence
available from a social network and the computational resources that may be at
work behind the social service. We may further distinguish between conscious and
subconscious intelligent computing. In the former, social players contribute
information and the intelligence to create/discover solutions. In the latter, an
underlying intelligent layer is able to provide innovative solutions to old and new
problems, following an autonomous process that is not directly controlled by the
social players. Figures 1 and 2 illustrate the differences between paradigms. The
social interaction layer in both figures includes all means of sharing information
between users, but does not contemplate any information transformation.
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3 Subconscious Social Intelligence

In the social computing and computational social science paradigms illustrated in
Fig. 1, there is an underlying computational layer that performs data mining over
observations of the social interactions. The social player is unaware of it and does
not directly benefit from it. This lack of benefit motivates research in rewarding

Fig. 1 Social computing and computational social science paradigm

Fig. 2 Subconscious social intelligence paradigm
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mechanisms [7]. The results of these computations are delivered to a third party,
either government institutions or industry. The productive model of social com-
puting relies on the technological prowess of this data mining layer that provides
the benefit from the investment in the social interaction layer.

On the other hand, in the subconscious social intelligence paradigm illustrated
by Fig. 2, the social intelligence layer below the social interaction layer is dedi-
cated to provide solutions to problem statements posed by the social players. To
that end, repositories of problem statements and problem solutions are maintained,
along with a mapping between them. The upward and downward red arrows model
the flow of problem statements and solutions. Problem statements posed by social
players flow downward to the social intelligence, matching problem solutions are
searched in the repository (horizontal red double-headed arrow), if one is found, it
flows upward to the social interaction layer to be retrieved by the interested social
player. If there is no solution matching the statement, the statement is percolated
further down to the subconscious reasoning and problem solver layer that works to
produce a solution that will be pushed upward to the social intelligence layer
solutions repository, and the user at the social interaction layer. The subconscious
reasoning and problem solver is trained on problem solutions that percolate from
the social intelligence layer. The product of the social intelligence goes directly
back to the user, and there is no beneficiary institution, either company of
government. The aim of the system is empowering the social player to solve
his/her real-life problems, maybe against the pressures of some institution, or
within its. As a corollary, social players do not need to be rewarded externally to
use/contribute the system.

4 Requirements for Learning Systems

The requirements for learning systems meeting the SandS networked intelligence
and the general subconscious reasoning and problem solver of Fig. 2 are as follows:

• Quick learning times that allow for quick adaptation to changing environments
and supporting the effects of scale that potentially big social communities will
introduce. Social network services can experience dramatic rises in user
involvement and subsequent computational load. Moreover, changes in problem
specification may involve addition/removal of variables with ensuing retraining
processes.

• Flexibility to cope with diverse data representations and desired outputs. The
desired responses may be categorical and continuous, involving both classifi-
cation and regression, even in the same problem-solving process.

• Robust performance when dealing with multidimensional heterogenous output.
Most machine learning approaches have serious degradation when the desired
output is multivariable, and even worse when it is composed of diversely typed
variables.
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• Minimal uncertainty: In the development of subconscious social intelligence, we
want to perform one-shot training with minimal uncertainty about the achieved
performance. Machine learning papers often report average or peak results of
extensive computational experiments. These results do not provide a perfor-
mance guarantee for a specific instance of the learning process, nothing prevents
it to be catastrophically stupid.

• Robust incremental learning to process incoming batches of user feedback
driving the adaptation process. Incremental learning, on the fly adaptation, is not
an optional feature in this setting. Social systems and the needs of the social
players are continuously evolving. Training systems with a sample of data are
meaningless after some period of time.

• Easy implementation/learning of forward and backward mappings, the former to
provide solutions and the latter to translate the user feedback into error measures
driving learning processes. Social players want to be able to understand why a
solution works, which is the chain of reasoning that produces this improved
solutions, and to have some control on the responses of the system to required
adaptive changes.

• Hybridization of diverse computational paradigms to allow the composition of
selection/classification/regression modules to cope with the complex landscape
of user problem statement. It is not likely that a single learning paradigm will be
able to cope with all kinds of social player requests and needs. Many kinds of
intelligence may need to be called upon to provide answers at diverse levels.

5 The SandS Project

The EU-funded SandS project (http://www.sands-project.eu) aims to build an
instance of the subconscious social intelligence in the domotic domain. SandS
social players are users of household appliances that exchange information about
them in the form of ‘‘recipes’’ of use. The software structure under development in
the project follows the pattern of Fig. 2. The SandS social network has a repository
of household tasks that have been posed by the users and a repository of appliance
recipes, which are related by a map between (to and from) tasks and recipes. This
map needs not to be one-to-one. User queries interrogate the database of known/
solved household tasks. If the queried task is already known, then the corre-
sponding recipe can be send to the user appliance. After recipe execution, the user
can express its satisfaction with the results. When the queried task is unknown and
unsolved, it is forwarded to the underlying SandS networked intelligence to pro-
duce a new recipe by an intelligent system reasoning able to learn and predict new
recipes maximizing user satisfaction. The source of recipes filling the repository is,
therefore, twofold. On the one hand, engaged user and/or appliance manufacturing
companies consciously provide new recipes. On the other hand, the underlying
networked intelligence is the subconscious generator of new solutions.
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More specifically, Fig. 3 shows an intuitive representation of the architecture and
interactions between the system elements. The SandS social network mediates the
interaction between populations of users, each owning a set of appliances. The
SandS social network has a repository of tasks that have been posed by the eahoukers
and a repository of recipes for the use of appliances. These two repositories are
related by a map between (to and from) task and recipes. This map needs not to be
one-to-one. Blue arrows correspond to the path followed by the eahouker queries,
which are used to interrogate the database of known/solved tasks. If the task is
already known, then the corresponding recipe can be returned to the eahouker
appliance (black arrows). The eahouker can express its satisfaction with the results
(blue arrows). When the queried task is unknown and unsolved, the social network
will request a solution from the SandS networked intelligence that will consist in a
new recipe deduced from the past knowledge stored in the recipe repository. This
new solution will be generated by intelligent system reasoning. The eahouker would
appreciate some explanation of the sources and how it has been reasoned to be
generated; therefore, explicative systems may be of interest for this application.

In the SandS social network, input data should be in the form of household task
codifications, while the output may correspond to recipe parameter settings, which
may be continuous variables, i.e., water temperature in the washing machine, or
categorical, i.e., steps in the washing process. The user feedback may be expressed
in simple terms, such a Likert scale of satisfaction, which needs to be translated
into an error measure that may drive the recipe learning. Household tasks per-
formed by different appliances need to be solved by specific learned systems,
which amounts to perform some partition in the task/recipe space by a selection
mechanism driven by the task specification.

Fig. 3 Social and smart system prototypical architecture
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6 Conclusions

Subconscious social intelligence is a new way to pose the problem-solving power
of social networks, combining conscious social computing built from explicit
interactions from social players and subconscious problem solving trained from
the experiences percolated from the social interaction down to a subconscious
reasoning layer. The consideration of this kind of systems amounts to a radical
shift on how social Web services are designed and deployed. It would no longer be
the needs and requirements of the large corporations owning huge computational
facilities that drive the system computational intelligence. Instead of the social
players, the individual users of the system are the ones reaching the benefits of the
social interaction for a better personal and social life.

Acknowledgments Work performed under Grant agreement 317947 of the EU, SandS project,
the research and funds unit UFI11/07 of the UPV/EHU, and university research group Grant
IT874-13 from the Basque Country Government.

References

1. B. Apolloni, M. Fiasche, G. Galliani, C. Zizzo, G. Caridakis, G. Siolas, S. Kollias,
M. Grana-Romay, F. Barriento, and S. San-Jose. Social things - the sands instantiation.
In Internet of Things: Smart Objects and Services IoT-SoS 2013. IEEE PRESS, 2013.

2. D. Lazer et al. Computational social science. Science, 323(5915):721–723, 2009.
3. M. Grana, B. Apolloni, M. Fiasche, G. Galliani, C. Zizzo, G. Caridakis, G. Siolas, S. Kollias,

F. Barriento, and S. San Jose. Social and smart: towards an instance of subconscious social
intelligence. In H. Papadopoulos L. Iliadis and C. Jayne (Eds.), editors, EANN 2013, volume
part II, pages 302-3011. Springer Berlin Heidelberg, 2013.

4. M Grana and I Rebollo. Instances of subconscious social intelligent computing. In CASON
2013. IEEE PRESS, 2013.

5. W. Mao, A. Tuzhilin, and J. Gratch. Social and economic computing. IEEE Intelligent
Systems, 26(6):19-21, 2011.

6. M. Grana I. Marques, A. Savio, and B. Apolloni. A domestic application of intelligent social
computing: the sands project. In SOCO 2013. Springer Berlin Heidelberg, 2013.

7. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Incentives and rewarding in social
computing. Communications of the ACM, 56(6):72-82, 2013.

8. F.-Y. Wang, K.M. Carley, D. Zeng, and W. Mao. Social computing: From social informatics to
social intelligence. Intelligent Systems, IEEE, 22(2):79-83, 2007.

Subconscious Social Computational Intelligence 21



Modeling Heavy Tails in Traffic Sources
for Network Performance Evaluation

Vaidyanathan Ramaswami, Kaustubh Jain, Rittwik Jana
and Vaneet Aggarwal

Abstract Heavy tails in work loads (file sizes, flow lengths, service times, etc.)
have significant negative impact on the performance of queues and networks. In
the context of the famous Internet file size data of Crovella and some very recent
data sets from a wireless mobility network, we examine the new class of LogPH
distributions introduced by Ramaswami for modeling heavy-tailed random vari-
ables. The fits obtained are validated using separate training and test data sets and
also in terms of the ability of the model to predict performance measures accu-
rately as compared with a trace-driven simulation using NS-2 of a bottleneck
Internet link running a TCP protocol. The use of the LogPH class is motivated by
the fact that these distributions have a power law tail and can approximate any
distribution arbitrarily closely not just in the tail but in its entire range. In many
practical contexts, although the tail exerts significant effect on performance
measures, the bulk of the data is in the head of the distribution. Our results based
on a comparison of the LogPH fit with other classical model fits such as Pareto,
Weibull, LogNormal, and Log-t demonstrate the greater accuracy achievable by
the use of LogPH distributions and also confirm the importance of modeling the
distribution in its entire range and not just in the tail.

Keywords Network performance � Heavy tailed random variables � LogPH
distribution � Markov chain

V. Ramaswami (&) � R. Jana � V. Aggarwal
Florham Park, New Jersey, USA
e-mail: ram@ramaswami.com

K. Jain
College Park, Maryland, USA

G. S. S. Krishnan et al. (eds.), Computational Intelligence, Cyber Security
and Computational Models, Advances in Intelligent Systems and Computing 246,
DOI: 10.1007/978-81-322-1680-3_4, � Springer India 2014

23



1 Introduction

The negative impact of heavy tails in work loads on the performance of systems is
well known in the queuing literature. Indeed, many new scheduling strategies
came to be invented primarily to avoid these bad effects of very large work loads
(even if they be infrequent and from a small set of customers) for systems with
schedules such as the First-in-First-Out discipline. Concern about heavy tails
nevertheless holds even in the context of modern-day systems such as high-speed
and wireless networks. Indeed, the increasing presence of bandwidth-intensive
video and streaming audio has heightened the concern particularly in wireless
networks as evidenced, for example, by the AT&T experience soon after the
introduction of the iPhone.

An early work drawing attention to the presence of heavy tails in Internet file
sizes is that of Crovella [4]. We use Crovella’s data set and model the distribution
as a LogPH distribution and also in terms of classical models such as Pareto,
Weibull, LogNormal, and Log-t. The LogPH distribution was proposed by
Ramaswami [6] who identified it to have a power law tail and dense (in the weak
convergence metric) in the class of all distributions on [1, ?). A LogPH random
variable Y is a random variable that can be written as Y = eX where X is a phase-
type random variable as defined by Neuts [9, 10]; see also [7] for a discussion on
phase-type (PH) distributions. The first formal reference to LogPH was made in
the paper by Ghosh et al. [6] on modeling traffic to a public Wi-Fi network. A
detailed mathematical treatment of the LogPH class of distributions has been given
in Ahn et al. [1]. That work of Ahn et al. demonstrates the power of the LogPH
class to model heavy-tailed distributions in their entire range in the context of
several financial examples. This paper demonstrates its power in the context of
network performance modeling.

Needless to say, there are many attempts in the literature (see [1, 5, 8]) in
queuing, performance analysis, risk theory, and finance to model heavy-tailed
distributions; a key idea is to use some distributions (such as Pareto or Weibull)
with a known heavy tail to model the tail and then a mixture to obtain a fit across
the entire range. Unfortunately, these attempts have not resulted in a single class of
models that can be used dependably in a large number of contexts, and further-
more, many aspects of the fitting methodology appear to be adhoc. Also, it would
appear prudent to adopt more stringent standards in assessing the statistical quality
of the fits in terms of a test data set that is separate from the training data set used
for fitting a model. Also, it is desirable not only to consider the fitted random
variable, but also to assess the quality of the fit in terms of its ability to predict
performance of systems in which the models are used. Judged in this context, this
paper may be found interesting and useful by many.

This paper is organized as follows. In Sect. 2, we provide a quick discussion of
various classical models used in the context of heavy tails and also of the LogPH
distribution. A brief discussion of a method based on the EM algorithm to fit
LogPH distributions is given. In Sect. 3, we fit LogPH distributions to two data
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sets, the Crovella Internet file size data set [4] and a very recent (2012) data set on
file sizes downloaded by mobile phone users in a cellular mobility network. We
also provide a comparison of the LogPH fit with various other models such as the
Pareto, Weibull, LogNormal, and Log-t. In addition to visual comparisons of
the empirical with fitted distributions, we also provide some quantitative measures
that aid such comparison. We wish to note that in the comparisons related to
wireless mobility, since several data sets were available, we have taken a more
stringent approach of having a ‘‘training set’’ based on which the model fits were
made and a separate ‘‘test set’’ for comparing the models. Unfortunately, we had
only one data set in the case of the Crovella data; we did comparisons with
bootstrapped samples generated from this data set and found the fit to hold good
for them as well. This step was undertaken primarily to make sure that we did not
run the risk of overfitting. In Sect. 4, we take the Crovella data set and make a
trace-driven simulation of a bottleneck Internet link and compare the performance
results (queue lengths, throughput) against simulations run with fitted models
using LogPH, Pareto, Weibull, LogNormal, and Log-t. Our results show that the
LogPH gives more accurate results and thereby increase our confidence in the
LogPH model class.

Our results give us great confidence in the ability of the LogPH class to model
heavy-tailed distributions in a way to yield more accurate performance predictions
in the network context. Much further work is needed on this class of models with
regard to various issues including metrics for assessing goodness of fit, comparing
different fits as well as certain issues related to the use of heavy traffic distributions
with an infinite support. We will discuss some of these open issues. It is our hope
that this work and the success of the LogPH class reported in Ahn et al. [1] will
draw the attention of researchers and help improve our understanding of this class
and our ability to model heavy-tailed phenomena more accurately. With this
perspective, we will present not only the results obtained by us, but we shall also
dwell on some of the gaps that need to be filled through further research.

2 Background

2.1 Phase-Type Distribution

A Phase-Type (PH) distribution is defined as the distribution of the time until
absorption of a Markov chain with an absorbing state. This general class was
introduced by M.F. Neuts [9, 10]. To be specific, consider a Markov chain with
states 0,1,…, n, initial probability vector (0, s) and infinitesimal generator Q. The
row vector s is of size n and satisfies s1 = 1, where 1 is a column vector of 1’s.
Assuming state 0 is an absorbing state, Q can be denoted as
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Q ¼ 0 0
t T

ffi �

where t is a column vector of size n and T is a n 9 n non-singular matrix satis-
fying, T(i, i) \ 0, T(i, j) [ 0 for i = j, and T1 ? t = 0. Thus, the Markov chain is
completely characterized by parameters s and T. The random variable X describing
the time until absorption of the Markov chain into state 0 is called a PH random
variable, denoted PH (s, T). The number of non-absorbing states (n) is called the
order of the PH random variable. The distribution and density functions of the PH
random variable defined above are given by

FðxÞ ¼ 1� sexpðTxÞ1; for x� 0; ð1Þ

f ðxÞ ¼ sexpðTxÞt; for x [ 0: ð2Þ

PH distributions are known to be dense in the class of all distributions on [0, ?).
That is, they can approximate any distribution arbitrarily closely. Furthermore, they
have many interesting closure properties and are highly tractable due to the con-
nection with a Markov chain, which makes conditioning arguments easy. For these
reasons, they have attracted much attention in applied probability. A property of the
PH distribution is that its tail is asymptotically exponential; more specifically, for
the distribution above, P(X [ x) & Ke-gx for large x, where -g\ 0 is the
eigenvalue of T closest to zero.

2.2 LogPH Distribution

The LogPH distribution, denoted by LogPH(s, T), is defined as the distribution of
the random variable Y that can be written as Y = exp(X) where X has a PH
distribution with (s, T). The LogPH random variable Y has its distribution function
and density function as

FYðyÞ ¼ 1� seT logy1; y� 1

and

fYðyÞ ¼
1
y
seTlogyt; y� 1; t ¼ �T1:

From the exponential decay of the tail of the PH distribution, it easily follows
that the LogPH random variable has a power law tail. Specifically, for large y,
P(Y [ y) & K/yg, where g is as defined earlier. Also, from the fact that PH-type
distributions are dense on [0, ?), it follows by standard continuity theorems
governing weak convergence (see Whitt [12]) that LogPH distributions are dense
in the set of all distributions defined on [1, ?). These properties make LogPH an
attractive candidate class for modeling heavy-tailed random variables. In this
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context, we wish to note that the restriction of its range to [1, ?) is not particularly
limiting for two reasons: (a) In many cases, one could rescale the data and fit
LogPH to the scaled data set or (b) one can use a similar construction based on the
bilateral PH random variables, which generalize the PH distribution to the entire
real line; see Ahn and Ramaswami [2].

2.3 Some Classical Heavy-Tailed Distributions

Traditionally, modeling of heavy-tailed random variables has been focused mainly
on the tail of the distribution. Some of the commonly used distributions are Pareto,
Weibull, and LogNormal. Pareto has the following tail distribution:

Pr½Z [ z� ¼ b

z

� �a

; z� b ð3Þ

where a and b are the shape and the scale parameters, respectively. Various
enhancements of the Pareto distribution have also been used to match the mean, to
select the cutoff at which the asymptotic power law takes over. A Pareto random
variable Y can be realized as exp (X) where X is an exponential random variable; in
this sense, one may consider the LogPH class as a natural generalization of the
Pareto distribution since the exponential distribution is the most trivial example of
a PH distribution.

The Weibull distribution does not have a power law in the tail distribution, but
still the tail decays more slowly than the exponential. Denoted by a and b are the
shape and scale of the distribution,

Pr½Z [ z� ¼ exp � z=bð Þaf g; z [ 0; a \1: ð4Þ

LogNormal distribution is modeled as a distribution, which is normal in the log
scale. Specifically, Z has a LogNormal distribution if we can write

Z ¼ eX ; where X�Nðl; r2Þ: ð5Þ

The normal distribution has a fast decaying tail e�x2=2, and this has led some
researchers to use the t-distribution in place of the normal and define a
Log-t distribution as a model for heavy-tailed distributions. Like the normal, the
t-distribution also is symmetric about the origin and that could limit some of its
applicability.

While the literature abounds in many applied examples where the above dis-
tributions and mixtures involving them have been used successfully for specific
situations, there are some basic challenges in their use. These distributions do not
form a dense class that provides a guarantee that one may effect a fit from any one
of the members to a desired accuracy. Also, often one is forced to make a trade-off
between matching the tail and matching the head of the distribution and to come
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up with ad hoc procedures for fitting a mixture that attempts to give a good model
in the entire range of the data. We refer to Ahn et al. for a discussion of the issues
in light of a famous data set—the Danish fire insurance data—that has been used
as an important test data set in the statistical literature.

2.4 Fitting a LogPH Distribution

A LogPH distribution is fitted to the data by fitting a PH distribution to the
logarithms of the data values (to the base e). If only a very small fraction of data
values exist that are less than 1, we may discard them, or alternately, we may
rescale the data by dividing all the elements by the minimum value so that all
logarithms are positive and then fit a LogPH to these log values.

The standard approach to fitting a phase-type distribution is to use the EM
algorithm whose details are provided in a paper by Asmussen et al. [3]. The EM
algorithm is based on the following observations. Suppose the true distribution is a
phase-type distribution of order n. If one knew the number of visits to each of the
n transient states in the Markov chain and the amount of times spent in each of
them before the Markov chain gets absorbed, these values together would con-
stitute a set of sufficient statistics for the unknown parameters of the Markov chain.
Now, the EM algorithm starts with a trial phase-type distribution of order n and
iterates on the following two steps: (1) E-step: Consider the number and duration
of visits to the transient states as missing values and replace them with their
conditional expectation evaluated with respect to the current estimate of the
parameters; (2) M-step: Now considering as though we have a complete sample on
the sufficient statistics, maximize the likelihood function to obtain an improved
estimate of the Markov chain parameters. The general theory of EM guarantees
convergence to (a local) maximum of the likelihood function.

3 Data Sets and Fitted Models

This paper deals with two data sets. The first is the well-known World Wide Web
file size traces collected by Crovella in 1995 commonly used by researchers to
model heavy-tailed data. We will demonstrate that LogPH provides a much better
fit for the entire data range as compared with previously used models, particularly
in its ability to predict network performance more accurately as evaluated in the
context of a bottleneck Internet link. Secondly, we will also use a very recent data
set of file sizes from the mobile Web. We show once again that LogPH provides a
good fit to the entire range of the mobile data set. Our interest in the second data
set is due to our current focus on wireless and mobile networks and the fact that the
Crovella data are now quite dated and predate some major new bandwidth-
intensive applications such as video and streaming audio that have become much
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