
Advances in Intelligent Systems and Computing 245

Knowledge
and Systems
Engineering

Van-Nam Huynh · Thierry Denœux
Dang Hung Tran · Anh Cuong Le
Son Bao Pham Editors

Proceedings of the Fifth International
Conference KSE 2013, Volume 2

Advances in Intelligent Systems and Computing

Volume 245

Series Editor

Janusz Kacprzyk, Warsaw, Poland

For further volumes:

http://www.springer.com/series/11156

Van-Nam Huynh · Thierry Denœux
Dang Hung Tran · Anh Cuong Le
Son Bao Pham
Editors

Knowledge and Systems
Engineering

Proceedings of the Fifth International
Conference KSE 2013, Volume 2

ABC

Editors
Van-Nam Huynh
School of Knowledge Science
Japan Advanced Institute of Science

and Technology
Ishikawa
Japan

Thierry Denœux
Universite de Technologie de Compiegne
Compiegne Cedex
France

Dang Hung Tran
Faculty of Information Technology
Hanoi National University of Education
Hanoi
Vietnam

Anh Cuong Le
Faculty of Information Technology
University of Engineering and

Technology - VNU Hanoi
Hanoi
Vietnam

Son Bao Pham
Faculty of Information Technology
University of Engineering and

Technology - VNU Hanoi
Hanoi
Vietnam

ISSN 2194-5357 ISSN 2194-5365 (electronic)
ISBN 978-3-319-02820-0 ISBN 978-3-319-02821-7 (eBook)
DOI 10.1007/978-3-319-02821-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013950935

c© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains papers presented at the Fifth International Conference on
Knowledge and Systems Engineering (KSE 2013), which was held in Hanoi, Viet-
nam, during 17–19 October, 2013. The conference was jointly organized by Hanoi
National University of Education and the University of Engineering and Technol-
ogy, Vietnam National University. The principal aim of KSE Conference is to bring
together researchers, academics, practitioners and students in order to not only share
research results and practical applications but also to foster collaboration in research
and education in Knowledge and Systems Engineering.

This year we received a total of 124 submissions. Each of which was peer re-
viewed by at least two members of the Program Committee. Finally, 68 papers
were chosen for presentation at KSE 2013 and publication in the proceedings. Be-
sides the main track, the conference featured six special sessions focusing on spe-
cific topics of interest as well as included one workshop, two tutorials and three
invited speeches. The kind cooperation of Yasuo Kudo, Tetsuya Murai, Yasunori
Endo, Sadaaki Miyamoto, Akira Shimazu, Minh L. Nguyen, Tzung-Pei Hong, Bay
Vo, Bac H. Le, Benjamin Quost, Sébastien Destercke, Marie-Hélène Abel, Claude
Moulin, Marie-Christine Ho Ba Tho, Sabine Bensamoun, Tien-Tuan Dao, Lam Thu
Bui and Tran Dinh Khang in organizing these special sessions and workshop is
highly appreciated.

As a follow-up of the Conference, two special issues of the Journal of Data &
Knowledge Engineering and International Journal of Approximate Reasoning will
be organized to publish a small number of extended papers selected from the Con-
ference as well as other relevant contributions received in response to subsequent
calls. These journal submissions will go through a fresh round of reviews in accor-
dance with the journals’ guidelines.

We would like to express our appreciation to all the members of the Program
Committee for their support and cooperation in this publication. We would also
like to thank Janusz Kacprzyk (Series Editor) and Thomas Ditzinger (Senior Editor,
Engineering/Applied Sciences) for their support and cooperation in this publication.

VI Preface

Last, but not the least, we wish to thank all the authors and participants for their
contributions and fruitful discussions that made this conference a success.

Hanoi, Vietnam Van-Nam Huynh
October 2013 Thierry Denœux

Dang Hung Tran
Anh Cuong Le
Son Bao Pham

Organization

Honorary Chairs

Van Minh Nguyen – Hanoi National University of Education, Vietnam
Ngoc Binh Nguyen – VNU University of Engineering and Technology, Vietnam

General Chairs

Cam Ha Ho – Hanoi National University of Education, Vietnam
Anh Cuong Le – VNU University of Engineering and Technology, Vietnam

Program Chairs

Van-Nam Huynh – Japan Advanced Institute of Science and Technology, Japan
Thierry Denœux – Université de Technologie de Compiègne, France
Dang Hung Tran – Hanoi National University of Education, Vietnam

Program Committee

Akira Shimazu, Japan
Azeddine Beghdadi, France
Son Bao Pham, Vietnam
Benjamin Quost, France
Bernadette Bouchon-Meunier, France
Binh Thanh Huynh, Vietnam
Bay Vo, Vietnam
Cao H, Tru, Vietnam
Churn-Jung Liau, Taiwan
Dinh Dien, Vietnam
Claude Moulin, France

Cuong Nguyen, Vietnam
Dritan Nace, France
Duc Tran, USA
Duc Dung Nguyen, Vietnam
Enrique Herrera-Viedma, Spain
Gabriele Kern-Isberner, Germany
Hiromitsu Hattori, Japan
Hoang Truong, Vietnam
Hung V. Dang, Vietnam
Hung Son Nguyen, Poland
Jean Daniel Zucker, France

VIII Organization

Jérôme Lang, France
Jing Liu, China
Jiuyong Li, Australia
Jonathan Lawry, UK
Kenji Satou, Japan
Lam T. Bui, Vietnam
Bac H. Le, Vietnam
Loannis Parissis, France
Marie-Helene Abel, France
Martin Steffen, Norway
Masahiro Inuiguchi, Japan
Michel Riveill, France
Mina Ryoke, Japan
Minh-Dung Phan, Thailand
Mitsuru Ikeda, Japan
Minh L. Nguyen, Japan
Noboru Takagi, Japan
Peter Whigham, New Zealand
Phayung Meesad, Thailand
Quang-Huy Nguyen, France
Quang Uy Nguyen, Ireland
Sabine Bensamoun, France
Sadaaki Miyamoto, Japan

Serge Stinckwich, France
Sébastien Destercke, France
Si Quang Le, UK
Son Doan, USA
Tien-Tuan Dao, France
Tetsuya Murai, Japan
Thanh Binh Nguyen, Vietnam
Thanh Tri Nguyen, Vietnam
Thanh-Thuy Nguyen, Vietnam
The Duy Bui, Vietnam
The Loc Nguyen, Vietnam
Thomas Huynh, USA
Tho Hoan Pham, Vietnam
Thepchai Supnithi, Thailand
The Dung Luong, Vietnam
Tran Dinh Khang, Vietnam
Tsutomu Fujinami, Japan
Tzung-Pei Hong, Taiwan
Vladik Kreinovich, USA
Xiaoshan Li, Macau
Xuan Hoai Nguyen, Vietnam
Xuan-Hieu Phan, Vietnam
Yasuo Kudo, Japan

Contents

Part I: Workshop Invited Talks

The Place of Causal Analysis in the Analysis of Simulation Data 3
Ladislav Hluch

Evolutionary Computation in the Real World: Successes and
Challenges . 5
Graham Kendall

Part II: KSE 2013 Special Sessions and Workshop

A Method of Two-Stage Clustering with Constraints Using
Agglomerative Hierarchical Algorithm and One-Pass k-Means++ 9
Yusuke Tamura, Nobuhiro Obara, Sadaaki Miyamoto

An Algorithm Combining Spectral Clustering and DBSCAN for Core
Points . 21
So Miyahara, Yoshiyuki Komazaki, Sadaaki Miyamoto

Relational Fuzzy c-Means and Kernel Fuzzy c-Means Using
a Quadratic Programming-Based Object-Wise βββ -Spread
Transformation . 29
Yuchi Kanzawa

The Utilities of Imprecise Rules and Redundant Rules for Classifiers . . . 45
Masahiro Inuiguchi, Takuya Hamakawa

On Cluster Extraction from Relational Data Using Entropy Based
Relational Crisp Possibilistic Clustering . 57
Yukihiro Hamasuna, Yasunori Endo

EM-Based Clustering Algorithm for Uncertain Data 69
Naohiko Kinoshita, Yasunori Endo

X Contents

An Algorithm for Fuzzy Clustering Based on Conformal
Geometric Algebra . 83
Minh Tuan Pham, Kanta Tachibana

MOSS: A Formalism for Ontologies Including Multilingual Features . . . 95
Jean-Paul A. Barthès, Claude Moulin

Integrating Social Network Data for Empowering Collaborative
Systems . 109
Xuan Truong Vu, Marie-Hélène Abel, Pierre Morizet-Mahoudeaux

Recommendation of a Cloud Service Item Based on Service Utilization
Patterns in Jyaguchi . 121
Shree Krishna Shrestha, Yasuo Kudo, Bishnu Prasad Gautam, Dipesh
Shrestha

Heyting-Brouwer Rough Set Logic . 135
Seiki Akama, Tetsuya Murai, Yasuo Kudo

Bicluster-Network Method and Its Application to Movie
Recommendation . 147
Tatsuya Saito, Yoshifumi Okada

Item Recommendation by Query-Based Biclustering Method 155
Naoya Yokoyama, Yoshihumi Okada

A Cyber Swarm Algorithm for Constrained Program Module
Allocation Problem . 163
Peng-Yeng Yin, Pei-Pei Wang

A Ray Based Interactive Method for Direction Based Multi-objective
Evolutionary Algorithm . 173
Long Nguyen, Lam Thu Bui

Phishing Attacks Detection Using Genetic Programming 185
Tuan Anh Pham, Quang Uy Nguyen, Xuan Hoai Nguyen

Solving Fuzzy Job-Shop Scheduling Problems with a Multiobjective
Optimizer . 197
Thanh-Do Tran, Ramiro Varela, Inés González-Rodrı́guez,
El-Ghazali Talbi

A Multi-objective Approach for Vietnamese Spam Detection 211
Minh Tuan Vu, Quang Anh Tran, Quang Minh Ha, Lam Thu Bui

Risk Minimization of Disjunctive Temporal Problem
with Uncertainty . 223
Hoong Chuin Lau, Tuan Anh Hoang

Contents XI

Reference Resolution in Japanese Legal Texts at Passage Levels 237
Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu

Paragraph Alignment for English-Vietnamese Parallel E-Books 251
Quang-Hung Le, Duy-Cuong Nguyen, Duc-Hong Pham, Anh-Cuong Le,
Van-Nam Huynh

Part-of-Speech Induction for Vietnamese . 261
Phuong Le-Hong, Thi Minh Huyen Nguyen

Resolving Named Entity Unknown Word in Chinese-Vietnamese
Machine Translation . 273
Phuoc Tran, Dien Dinh, Linh Tran

Towards Vietnamese Entity Disambiguation . 285
Long M. Truong, Tru H. Cao, Dien Dinh

Maintenance of a Frequent-Itemset Lattice Based
on Pre-large Concept . 295
Bay Vo, Tuong Le, Tzung-Pei Hong, Bac Le

Mining Class-Association Rules with Constraints . 307
Dang Nguyen, Bay Vo

Privacy Preserving Frequency-Based Learning Algorithms in
Two-Part Partitioned Record Model . 319
The Dung Luong, Dang Hung Tran

Mining Jumping Emerging Patterns by Streaming Feature Selection . . . 337
Fatemeh Alavi, Sattar Hashemi

An Approach for Mining Association Rules Intersected with
Constraint Itemsets . 351
Anh Tran, Tin Truong, Bac Le

SE-Stream: Dimension Projection for Evolution-Based Clustering of
High Dimensional Data Streams . 365
Rattanapong Chairukwattana, Thanapat Kangkachit,
Thanawin Rakthanmanon, Kitsana Waiyamai

Mining Frequent Itemsets in Evidential Database 377
Ahmed Samet, Eric Lefèvre, Sadok Ben Yahia

Automatic Evaluation of the Elastic Modulus
of a Capsule Membrane . 389
Thi-Xuan Chu, Anne-Virginie Salsac, Eric Leclerc,
Dominique Barthès-Biesel

XII Contents

Recovering the Contralateral Arm Strength Loss Caused by an
Induced Jaw Imbalance . 399
Nguyen Van Hoa, Le Minh Hoa, Nguyen Thanh Hai, Vo Van Toi

Estimation of Patient Specific Lumbar Spine Muscle Forces Using
Multi-physical Musculoskeletal Model and Dynamic MRI 411
Tien Tuan Dao, Philippe Pouletaut, Fabrice Charleux, Áron Lazáry,
Peter Eltes, Peter Pal Varga, Marie Christine Ho Ba Tho

Subject Specific Modeling of the Muscle Activation: Application to
the Facial Mimics . 423
Marie Christine Ho Ba Tho, Tien Tuan Dao, Sabine Bensamoun,
Stéphanie Dakpe, Bernard Devauchelle, Mohamed Rachik

Ultrasound Wave Propagation in a Stochastic Cortical Bone Plate 435
Salah Naili, Vu-Hieu Nguyen, Mai-Ba Vu, Christophe Desceliers,
Christian Soize

Author Index . 445

Erratum

Privacy Preserving Frequency-Based Learning Algorithms in
Two-Part Partitioned Record Model . 1
The Dung Luong, Dang Hung Tran

E

Part I
Workshop Invited Talks

The Place of Causal Analysis in the Analysis of
Simulation Data

Ladislav Hluch

Abstract. This talk briefly reviews selected basic concepts and principles of
structural approach to causal analysis, and outlines how they could be harnessed for
analyzing and summarizing the data from simulations of complex dynamic systems,
and for exploratory analysis of simulation models through machine learning. We
illustrate the proposed method in the context of human behaviour modeling on
a sample scenario from the EDA project A-0938-RT-GC EUSAS. The method
revolves around the twin concepts of a causal partition of a variable of interest,
and a causal summary of a simulation run. We broadly define a causal summary
as a partition of the significant values of the analyzed variables (in our case the
simulated motives fear and anger of human beings) into separate contributions by
various causing factors, such as social influence or external events. We demonstrate
that such causal summaries can be processed by machine learning techniques
(e.g. clustering and classification) and facilitate meaningful interpretations of the
emergent behaviours of complex agent-based models.

Acknowledgement. This work was supported by the European Defence Agency project A-
0938-RT-GC EUSAS, by the Slovak Research and Development Agency under the contract
No. APVV-0233-10, and by the project VEGA No. 2/0054/12.

Ladislav Hluch
Institute of Informatics, Slovak Academy of Sciences

V.-N. Huynh et al. (eds.), Knowledge and Systems Engineering, Volume 2, 3
Advances in Intelligent Systems and Computing 245,
DOI: 10.1007/978-3-319-02821-7_1, © Springer International Publishing Switzerland 2014

Evolutionary Computation in the Real World:
Successes and Challenges

Graham Kendall

Abstract. Evolutionary Computation has the potential to address many problems
which may seem intractable to some of the methodologies that are available today.
After briefly describing what evolutionary computation is (and what it is not), I will
outline some of the success stories before moving onto the challenges we face in
having these algorithms adopted by the industrial community at large.Some of the
areas I will draw upon include Checkers and Chess, Scheduling and Timetabling,
Hyper-heuristics and Meta-heuristics, as well some other problems drawn from the
Operational Research literature.

Graham Kendall
The University of Nottingham Malaysia Campus,
Selangor Darul Ehsan, Malaysia

V.-N. Huynh et al. (eds.), Knowledge and Systems Engineering, Volume 2, 5
Advances in Intelligent Systems and Computing 245,
DOI: 10.1007/978-3-319-02821-7_2, © Springer International Publishing Switzerland 2014

Part II
KSE 2013 Special Sessions and Workshop

A Method of Two-Stage Clustering with
Constraints Using Agglomerative Hierarchical
Algorithm and One-Pass k-Means++

Yusuke Tamura, Nobuhiro Obara, and Sadaaki Miyamoto

Abstract. The aim of this paper is to propose a two-stage method of clustering
in which the first stage uses one-pass k-means++ and the second stage uses an ag-
glomerative hierarchical algorithm. This method outperforms a foregoing two-stage
algorithm by replacing the ordinary one-pass k-means by one-pass k-means++ in
the first stage. Pairwise constraints are also taken into consideration in order to im-
prove its performance. Effectiveness of the proposed method is shown by numerical
examples.

1 Introduction

Clustering techniques [7, 9] has recently been becoming more and more popular, as
huge data on the web should be handled. Such data are frequently unclassified in
contrast to those in traditional pattern classification problems where most data have
classification labels [5]. Not only methods of unsupervised classification but also
those of semi-supervised classification [6] and constrained clustering [2, 3] have
been developed to handle such data.

Clustering techniques in general can be divided into two categories of hierarchi-
cal clustering and non-hierarchical clustering. Best-known methods in the first cat-
egory are agglomerative hierarchical clustering, while that in the second category is
the method of k-means [8]. Most methods of semi-supervised classification and con-
strained clustering are non-hierarchical, but agglomerative hierarchical clustering is
at least as useful as non-hierarchical techniques in various applications. A drawback
in agglomerative hierarchical clustering is that larger computation is needed when
compared with simple non-hierarchical methods such as the k-means.

Yusuke Tamura · Nobuhiro Obara
Master’s Program in Risk Engineering, University of Tsukuba, Ibaraki 305-8573, Japan

Sadaaki Miyamoto
Department of Risk Engineering, University of Tsukuba, Ibaraki 305-8573, Japan
e-mail: miyamoto@risk.tsukuba.ac.jp

V.-N. Huynh et al. (eds.), Knowledge and Systems Engineering, Volume 2, 9
Advances in Intelligent Systems and Computing 245,
DOI: 10.1007/978-3-319-02821-7_3, © Springer International Publishing Switzerland 2014

10 Y. Tamura, N. Obara, and S. Miyamoto

Here is a question: how can we develop a method of agglomerative hierarchical
clustering that can handle large amount of data with semi-supervision or constraints?
We have partly answered this question by developing a method of agglomerative
hierarchical clustering in which pairwise constraints can be handled using penalties
in the agglomerative clustering algorithm [11]. Moreover a two-stage clustering has
been suggested in which the first-stage uses k-means and the second stage is a class
of agglomerative hierarchical clustering [10]. However, performance of the two-
stage algorithm should still be improved.

In this paper we introduce a variation of the algorithm presented in [10]. In
short, we use one-pass k-means++[1] in the first stage and show an improved two
stage clustering algorithm with pairwise constraints. Several numerical examples
are shown to observe the usefulness of the proposed method.

The rest of this paper is organized as follows. Section 2 provides preliminaries,
then Section 3 shows the two-stage algorithm herein. Section 4 shows effectiveness
and efficiency of the proposed algorithm using a number of numerical examples.
Finally, Section 5 concludes the paper.

2 Preliminary Consideration

We begin with notations. Let the set of objects be X = {x1, · · · ,xn}. Each object xk

is a point in the p-dimensional Euclidean space RRRp: xi = (xi1, · · · ,xip) ∈ RRRp

Clusters are denoted by G1,G2, · · · ,GC, and the collection of clusters is given by
G = {G1,G2, · · · ,GC}. Clusters are partition of X :

C⋃

i=1

Gi = X , Gi∩G j = /0 (i �= j) (1)

2.1 Agglomerative Hierarchical Clustering

Assume that d(G,G′) is a dissimilarity measure defined between two clusters; cal-
culation formula of d(G,G′) will be given after the following general algorithm of
agglomerative hierarchical clustering, abbreviated AHC in which AHC 1 and AHC
2 are the steps of this algorithm.

AHC1: Let initial clusters given by objects.
Gi = {xi},(i = 1, · · · ,n)
C = n, (C is the number of clusters and n is the number of objects)
Calculate d(G,G′) for all pairs G,G′ ∈ G = {G1,G2, · · · ,GC}.

AHC2: Merge the pair of clusters of minimum dissimilarity:

d(Gq,Gr) = arg min
G,G′∈G

d(G,G′) (2)

A Method of Two-Stage Clustering with Constraints 11

Add Ĝ = Gq∪Gr to G and remove Gq,Gr from G .
C =C− 1 .
If C = 1, then output the process of merge of clusters as a dendrogram and stop.

AHC3: Calculate d(Ĝ,G′) for Ĝ and all other G′ ∈ G . go to AHC2.

We assume that the dissimilarity between two objects is given by the squared
Euclidean distance:

d(xk,xl) = ‖xk− xl‖2 =
p

∑
j=1

(xk j− xl j)
2.

Moreover the centroid method is used here, which calculate d(Ĝ,G′) as follows.

Centroid method:

Let M(G) be the centroid (the center of gravity) of G:

M(G) = (M1(G), · · · ,Mp(G))T ,

where

Mj(G) =
1
|G| ∑xk∈G

xk j, (j = 1, · · · , p) (3)

and let

d(G,G′) = ‖M(G)−M(G′)‖2 (4)

2.2 k-Means and k-Means++

The method of k-means repeats the calculation of centroids of clusters and nearest
centroid allocation of each object until convergence [4]. It has been known that the
result is strongly dependent on the choice of initial values.

The method of k-means++ [1] improves such dependence on initial clusters by
using probabilistic selection of initial centers. To describe k-means++, let vi be the
i-th cluster center and D(x) be the Euclidean distance between object x and the
already selected centers nearest to x. The algorithm is as follows [1].

1a: Let the first cluster center v1 be a randomly selected object from X .

1b: Let a new center vi be selected from X with probability D(x)2

∑x∈X D(x)2 .

1c: Repeat 1b until k cluster centers are selected.
2: Carry out the ordinary k-means algorithm.

Step 1b is called “D2 weighting”, whereby a new cluster center that have larger
distance from already selected centers will have larger probability to be selected.

12 Y. Tamura, N. Obara, and S. Miyamoto

2.3 Pairwise Constraints

Two sets ML and CL of constraints are used in constrained clustering [2, 3]. A set
ML = {(xi,x j)} ⊂ X ×X consists of must-link pairs so that xi and x j should be in
a same cluster, while another set CL = {(xk,xl)} ⊂ X ×X consists of cannot-link
pairs so that xi and x j should be in different clusters. ML and SL are assumed to be
symmetric in the sense that if (xi,x j) ∈ML then (x j,xi) ∈ML, and if (xk,xl) ∈CL
then (xl ,xk) ∈CL.

Note that ML is regarded as an undirected graph in which nodes are objects ap-
peared in ML, and an undirected edge is (xi,x j) ∈ML.

Introduction of the pairwise constraints to k-means has been done by Wagstaff et
al. [12]. The developed algorithm is called COP k-means.

3 A Two-Stage Algorithm

A two-stage algorithm of clustering for large-scale data is proposed, in which the
first stage uses one-pass k-means++ to have a medium number of cluster centers
and the second stage uses the centroid method. Pairwise constraints are taken into
account in both stages.

3.1 One-Pass COP k-Means++

One pass k-means implies that the algorithm does not iterate the calculation of the
centroid and the nearest center allocation: it first generates initial cluster centers,
then each object is allocated to the cluster of the nearest center. After the allocation,
new cluster centers are calculated as the centroids (3). Then the algorithm stops
without further iteration.

Pairwise Constraints in the First Stage

Moreover the one-pass algorithm must take pairwise constraints into account. ML
(must-link) is handled as the initial set of objects, as ML defines a connected com-
ponents of a graph. Then the centroid of the connected components is used instead
of the objects in the components. On the other hand, CL (cannot-link) is handled in
the algorithm.

Thus the algorithm in the first stage is called one-pass COP k-means++, which is
as follows.

One-Pass COP k-means++ in the first stage
1: Let initial clusters be generated by using the D2 weighting.
2: Each object x ∈ X is allocated to the cluster of the nearest center that does not

break the given pairwise constraints CL. If x cannot be allocated to any cluster
due to the constraints, stop with flag FAILURE.

3: Cluster centers are updated as the centroids (3).

A Method of Two-Stage Clustering with Constraints 13

4: Stop. (Note that this step is replaced by ‘repeat steps 2 and 3 until convergence’
if the one-pass condition is removed.)

End of One-Pass COP k-means++.

3.2 Agglomerative Algorithm in the Second Stage

Information of the centroids M(Gi) and the number of elements |Gi| in cluster Gi

(i= 1,2, . . . ,c) is passed to the second stage. Note that information concerning every
object x ∈ X is not required to generate clusters by AHC.

Different sets of M(Gi) are obtained from the first stage. To have better clusters
in the second stage, a number of different trials of the first stage are made and those
centroids with the minimum value of

J =
C

∑
i=1
∑

x∈Gi

‖x−M(Gi)‖2 (5)

is taken for the second stage.

Pairwise Constraints in the Second Stage

Although must-link constraints is already handled in the first stage, cannot-link con-
straints still exist in the second stage. Hence CL is handled by a penalty term in the
following algorithm.

Penalized Agglomerative Hierarchical Clustering Algorithm (P-AHC)

P-AHC1: For initial clusters derived from the first stage, calculate d(G,G′) for
all G,G′ ∈ G .

P-AHC2:

d(Gq,Gr) = arg min
G,G′∈G

{d(G,G′)+ ∑
xk∈G,xl∈G′

ωkl}

using the penalty term with ωkl :
if (xk,xl) ∈CL, ωkl > 0; if (xk,xl) /∈CL, ωkl = 0.
Let Ḡ = Gq∪Gr.
Add Ḡ to G and delete Gq,Gr from G .
C =C− 1. If C = 1, stop.

P-AHC3: Calculate d(Ḡ,G′) for all other G′ ∈ G . Go to P-AHC2.

Note that ω is taken to be sufficient large, i.e., we assume hard constraints.

14 Y. Tamura, N. Obara, and S. Miyamoto

4 Numerical Examples

Two data sets were used for evaluating the present method with other methods al-
ready proposed elsewhere. One is an artificial data set on the plane, while the second
is a real data set from a data repository [1].

As for the methods, the following abbreviated symbols are used:

• PAHC: penalized AHC algorithm;
• COPKPP: one-pass COP k-means++ ;
• COPK: ordinary one-pass COP k-means ;
• COPKPP(n): one-pass COP k-means++ with n different initial values;
• COPK(n): one-pass COP k-means with n different initial values.

The computation environment is as follows.

CPU: Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz - 3.60GHz
Memory: 8.00 GB
OS: Windows 7 Professional 64bit
Programming Language: C

Two Circles

First data is shown In Fig. 1. The objective is to separate the outer circle having
700 points and the inner circle with 9,300 points. Note that the two clusters are
‘unbalanced’ in the sense that the numbers of objects are very different.

Fig. 1 Data of ‘two circles’

A Method of Two-Stage Clustering with Constraints 15

Shuttle Data Set

The Shuttle data set downloaded from [1] has 9 dimensions that can be divided into
seven classes. About 80% of points belong to Class 1. We divide this data set into
two clusters: one cluster is Class 1 and another cluster should be other six classes,
since to detect small six clusters in 20% of points and one large cluster of 80% of
points directly is generally a difficult task.

Evaluation Criteria

The evaluation has been done using three criteria: objective function values, the
Rand index, and the run time.

Note that CL alone is used and ML is not used here, since ML was found to be
not useful when compared with CL by preliminary tests on these data sets.

Pairs of objects in CL were randomly selected from the data set: one object from
a cluster and another object from another cluster. For artificial data set the number
in CL varies from 0 to 50; for the Shuttle data the number in CL varies from 0 to
500. The number of trials n = 100 (the number of trials in the first stage is 100) or
n = 10 were used.

4.1 Evaluation by Objective Function Value

The averages of objective function values J are plotted in Figs. 2 and 3, respectively
for the artificial data and the Shuttle data.

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 10 20 30 40 50

Ob
jec

tiv
e

Fu
nc

tion

Number of Constraints

Fig. 2 Objective function values with CL for artificial data. Red circles are for COPK(100)-
PAHC. Green× are for COPKPP(100)-PAHC. Blue triangles are for COPK(10)-PAHC. Pink
squares are for COPKPP(10)-PAHC.

From these figures it is clear that COPKPP-PAHC has less values of the objective
function than COPK-PAHC.

16 Y. Tamura, N. Obara, and S. Miyamoto

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 100 200 300 400 500

O
bj

ec
tiv

e
Fu

nc
tion

Number of Constraints

Fig. 3 Objective function values with CL for the Shuttle data. Red circles are for COPK(100)-
PAHC. Green× are for COPKPP(100)-PAHC. Blue triangles are for COPK(10)-PAHC. Pink
squares are for COPKPP(10)-PAHC.

4.2 Evaluation by RandIndex

The Rand index has been used as a standard index to measure precision of classifi-
cation [12]:

Rand(P1,P2) =
|Ca|+ |Cb|

nC2
(6)

where P1 and P2 means the precise classification and the actually obtained classifi-
cation. |Ca| is the number of pairs of objects in Ca such that a pair in Ca is in the
same precise class and at the same time in the same cluster obtained by the ex-
periment; |Cb| is the number of pairs of objects in Cb such that a pair in Ca is in
different precise classes and at the same time in different clusters obtained by the

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50

Ra
nd

 In
de

x

Number of Constraints

Fig. 4 Rand index values with CL for artificial data. Red circles are for COPK(100)-PAHC.
Green× are for COPKPP(100)-PAHC. Blue triangles are for COPK(10)-PAHC. Pink squares
are for COPKPP(10)-PAHC.

A Method of Two-Stage Clustering with Constraints 17

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 100 200 300 400 500

Ra
nd

 In
de

x

Number of Constraints

Fig. 5 Rand index values with CL for the Shuttle data. Red circles are for COPK(100)-PAHC.
Green× are for COPKPP(100)-PAHC. Blue triangles are for COPK(10)-PAHC. Pink squares
are for COPKPP(10)-PAHC.

experiment. If the resulting clusters precisely coincide with the precise classes, then
Rand(P1,P2) = 1, and vice versa.

The Rand index with n = 100 has been calculated and the results are shown in
Figs. 4 and 5, respectively for the artificial data and the Shuttle data. The former
figure shows advantage of COPKPP, while the effect of K-means++ is not clear in
the second example.

100

101

102

103

104

105

106

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

Ti
m

e[
m

s]

Number of Instances

Fig. 6 Relation between the number of objects in artificial data and the CPU time. Red circles
are for COPK(100)-PAHC. Green × are for COPKPP(100)-PAHC. Blue triangles are for
COPKPP(10)-PAHC. Pink squares are for PAHC.

18 Y. Tamura, N. Obara, and S. Miyamoto

4.3 Evaluation by CPU Time

How total CPU time varies by using one-pass COP k-means++ or one-
pass COP k-means was investigated. The used methods were COPK(100)-
PAHCCCOPKPP(100)-PAHCCCOPKPP(10)-PAHCC and PAHC (without the first
stage). Ten trials with n objects and their average CPU time was measured with
n = 1,000 – 20,000. In the first stage the number of objects was reduced to 1% and
the second stage AHC was carried out. The result is shown in Fig. 6.

Fig. 6 shows that CPU time was reduced to 0.1% by introducing the two-stage
method. When COPK(100)-PAHC and COPKPP(100)-PAHC are comparted, the
latter needs more time, but the difference is not notable.

5 Conclusion

This paper proposed a two-stage algorithm in which the first stage uses one-pass
k-means++ and the second stage uses the centroid method of agglomerative hierar-
chical clustering. Pairwise constraints were moreover introduced in the algorithm. It
has been shown by numerical examples that one-pass k-means++ is effective when
compared with one-pass k-means in the first stage. Thus the dependence on initial
values was greatly improved. Moreover the use of cannot-links was effective in the
numerical examples. This inclination is in accordance with other studies, e.g., [11].

The two-stage procedure could handle relatively large-scale data sets. However,
more tests on larger real data should be done as a future work in order to show the
usefulness of the proposed method in a variety of applications.

Acknowledgment. The authors greatly appreciate anonymous reviewers for their useful
comments. This study has partially been supported by the Grant-in-Aid for Scientific Re-
search, JSPS, Japan, No.23500269.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: The Advantages of Careful Seeding. In: Proc.
of SODA 2007, pp. 1027–1035 (2007)

2. Basu, S., Bilenko, M., Mooney, R.J.: A Probabilistic Framework for Semi-Supervised
Clustering. In: Proc. of the Tenth ACM SIGKDD (KDD 2004), pp. 59–68 (2004)

3. Basu, S., Davidson, I., Wagstaff, K.L. (eds.): Constrained Clustering. CRC Press (2009)
4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum,

New York (1981)
5. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
6. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press

(2006)
7. Everitt, B.S.: Cluster Analysis, 3rd edn., Arnold (1993)
8. MacQueen, J.B.: Some methods of classification and analysis of multivariate observa-

tions. In: Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., pp. 281–297 (1967)
9. Miyamoto, S.: Introduction to Cluster Analysis. Morikita-shuppan (1999) (in Japanese)

A Method of Two-Stage Clustering with Constraints 19

10. Obara, N., Miyamoto, C.S.: A Method of Two-Stage Clustering with Constraints Using
Agglomerative Hierarchical Algorithm and One-Pass K-Means. In: Proc. of SCIS-ISIS
2012, pp. 1540–1544 (2012)

11. Terami, A., Miyamoto, S.: Constrained Agglomerative Hierarchical Clustering Algo-
rithms with Penalties. In: Proc. of FUZZ-IEEE 2011, pp. 422–427 (2011)

12. Wagstaff, N., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means Clustering with
Background Knowledge. In: Proc. of ICML 2001, pp. 577–584 (2001)

13. http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

An Algorithm Combining Spectral Clustering
and DBSCAN for Core Points

So Miyahara, Yoshiyuki Komazaki, and Sadaaki Miyamoto

Abstract. The method of spectral clustering is based on the graph Laplacian, and
outputs good results for well-separated groups of points even when they have non-
linear boundaries. However, it is generally difficult to classify a large amount of
data by this technique because computational complexity is large. We propose an
algorithm using the concept of core points in DBSCAN. This algorithm first applies
DBSCAN for core points and performs spectral clustering for each cluster obtained
from the first step. Simulation examples are used to show performance of the pro-
posed algorithm.

1 Introduction

Many researchers are now working on analysis of huge data on the web. In accor-
dance with this, many methods of data analysis have been developed. Data clus-
tering is not exceptional: nowadays a variety of new algorithms of clustering is
being applied to large-scale data sets. Special attention has been paid to spectral
clustering [4, 2, 3] which is based on a weighted graph model and uses the graph
Laplacian. It has been known that this method works well even when clusters have
strongly nonlinear boundaries between clusters, as far as they are well-separated.

In spite of its usefulness, the spectral clustering has a drawback: it has a relatively
large computation when compared with a simple algorithm of the K-means [4, 5].
The latter can be applied to huge data, since the algorithm is very simple, but the
former uses eigenvalues and eigenvectors which needs much more computation.

This paper proposes a method combining the spectral clustering and the idea in
a simple graph-theoretical method based on DBSCAN [6]. The both methods are

So Miyahara · Yoshiyuki Komazaki
Master’s Program in Risk Engineering, University of Tsukuba, Ibaraki 305-8573, Japan

Sadaaki Miyamoto
Department of Risk Engineering, University of Tsukuba, Ibaraki 305-8573, Japan
e-mail: miyamoto@risk.tsukuba.ac.jp

V.-N. Huynh et al. (eds.), Knowledge and Systems Engineering, Volume 2, 21
Advances in Intelligent Systems and Computing 245,
DOI: 10.1007/978-3-319-02821-7_4, © Springer International Publishing Switzerland 2014

22 S. Miyahara, Y. Komazaki, and S. Miyamoto

well-known, but their combination with a simple modification leads a new algo-
rithm. A related study has been done by Yan et al. [7] in which K-means is first
used and the centers from K-means are clustered using the spectral clustering. The
present study is different from [7], since the original objects are made into clusters
by the spectral clustering by the method herein, whereas the K-means centers are
clustered in [7]. A key point is that only core-points are used for clustering, and
other ‘noise points’ are allocated to clusters using a simple technique of supervised
classification. Moreover, these two methods of the spectral clustering and DBSCAN
has a common theoretical feature that is useful for reducing computation, and hence
the combination proposed here has a theoretical basis, as we will see later. Such a
feature cannot be found between K-means and the spectral clustering.

The rest of this paper is organized as follows. Section 2 gives preliminaries, and
then Section 3 proposes a new algorithm using the spectral clustering and DBSCAN
for core points. Section 4 shows illustrative examples and a real example. Finally,
Section 5 concludes the paper.

2 Preliminary Consideration

This section discusses the well-known methods of the spectral clustering and DB-
SCAN.

2.1 Spectral Clustering

The spectral clustering, written as SC here, uses a partition of a graph of objects
D = {1,2, . . . ,n} for clustering. The optimality of the partition is discussed in [3]
but omitted here.

Assume that the number of clusters is fixed and given by c. A similarity matrix
S = (si j) is generated using a dissimilarity d(i, j) between i and j. We assume that
d(i, j) is the Euclidean distance in this paper, although many other dissimilarity can
also be used for the same purpose.

S = [si j] , si j = exp

(
−d(i, j)
(2σ2)

)

where σ is a positive constant. When the ε-neighborhood graph should be used,
then those si j with d(i, j) > ε should be set to zero. We then calculate

D = diag(d1, · · ·,dn), di =
n

∑
j=1

si j

and the graph Laplacian L:

L = D−
1
2 (D− S)D−

1
2

An Algorithm Combining Spectral Clustering 23

Minimum c eigenvalues are taken and the corresponding eigenvectors are as-
sumed to be u1, · · ·,uc. A matrix

U = (u1, · · ·,uc)

is then defined. Each component of the eigenvalues has correspondence to an ob-
ject. Then K-means clustering of each rows with c clusters will give the results
of clustering by SC [3]. Concretely, suppose row vectors of U are uuu	1 , . . . ,uuu

	
n :

U = (uuu1, . . . ,uuun)
	, then K-means algorithm is applied to objects uuu1, . . . ,uuun, where

uuuj (j = 1, . . . ,n) is a c-vector [3].

2.2 DBSCAN-CORE

DBSCAN proposed by Ester et al. [6] generates clustering based on density of ob-
jects using two parameters Eps and MinPts. For given Eps and MinPts, the Eps-
neighborhood of p ∈ D is given by

NEps(p) = {q ∈D | d(p,q)≤ Eps}

When an object p satisfies |NEps(p)| ≥MinPts, then p is called a core-point (note:
|NEps(p)| is the number of elements in NEps(p)).

If the next two conditions are satisfied, then p is called directly density-reachable
from q:

1. p ∈ NEps(q), and
2. |NEps(q)| ≥MinPts (q is a core-point).

A variation of the DBSCAN algorithm used here starts from a core-point called
seed, and then collects all core points that are directly density-reachable from the
seed. Then they form a cluster. Then the algorithm repeats the same procedure until
no more cluster is obtained. The remaining objects are left unclassified. In other
words, this algorithm searches the connected components of the graph generated
from core points with the edges of direct reachability, and defines clusters as the
connected components.

This algorithm is simpler than the original DBSCAN in that only core-points are
made into clusters, while non-core points are included in clusters by the original
DBSCAN. Therefore the present algorithm is called DBSCAN-CORE in this paper.
Specifically, The set D is first divided into C of core points and N of non-core points:

D =C∪N, C∩N = /0.

Clusters C1, . . . ,Cl generated by DBSCAN-CORE is a partition of C:

l⋃

i=1

Ci =C, Ci∩Cj = /0 (i �= j).

How to decide appropriate values of the parameters is given in [6], but omitted
here.

24 S. Miyahara, Y. Komazaki, and S. Miyamoto

3 Combining DBSCAN-CORE and Spectral Clustering

A method proposed here first generates clusters of core-points using DBSCAN-
CORE and then each clusters are subdivided by the spectral clustering. We assume
that Eps-neighborhood graph is used for the both method, i.e., the same value of
Eps is applied: si j = 0 iff d(i, j) ≥ E ps in the spectral clustering and NEps is used
for DBSCAN-CORE.

We then have the next proposition.

Proposition 1. Let G1, . . . ,GK be clusters of set C of core-points generated by the
spectral clustering. Then, for arbitrary Gi, there exists Cj such that Gi ⊆Cj.

The proof is based on the fact that no cluster by the spectral clustering connects
different connected components of graph C [3].

Note that DBSCAN-CORE has a fast algorithm similar to generation of spanning
trees. Thus the complexity is O(n), which is less than the complexity of the spectral
clustering. We hence have the following simple algorithm combining DBSCAN-
CORE and the spectral clustering.

Algorithm DBSCAN-CORE-SC:

1. Define core points and carry out DBSCAN-CORE. Let C1, . . . ,Cl be clusters of
C.

2. Generate subclusters of Ci for all i = 1,2, . . . , l by the spectral clustering.

3.1 Clusters of Data Set D

The above procedure generates clusters of C, the set of core points, but the non-core
points will remain as noises. When we wish to classify noises to one of the clusters
of C, a simple supervised classification algorithm can be used. A typical algorithm
is the k nearest neighbor method (kNN) [4]: Let x ∈ N should be allocated to some
cluster. Suppose y1, . . . ,yk ∈C be k nearest neighbors of x in C. Then the class h is
determined by the following:

h = arg max
1≤ j≤l

|{y1, . . . ,yk}∩Cj|.

When k = 1, the above is reduced to the nearest neighbor allocation:

h = arg min
1≤ j≤l

d(x,Cj),

where d(x,Cj) = min
y∈Cj

d(x,y). The nearest neighbor allocation is used for numerical

examples below.
We thus have an algorithm to generate clusters of D by first generating clusters

of C using DBSCAN-CORE-SC and then allocate other points. We moreover use a
particular option that only those points in NEps(q) for some core point q should be
allocated using kNN, but those points p′ /∈ NEps(q′) for all q′ ∈C should be left as
noise points. This algorithm is called DBSCAN-CORE-SC-kNN in this paper.

An Algorithm Combining Spectral Clustering 25

3.2 Other Related Algorithms

Although we propose DBSCAN-CORE-SC and DBSCAN-CORE-SC-kNN here,
there are other algorithms that should be compared with the proposed algorithms.

Algorithm SC-CORE

Step 1. Select core points by the same procedure as the DBSCAN-CORE.
Step 2. Generate clusters by the spectral clustering for the core points without

using DBSCAN-CORE.

End of SC-CORE

Thus SC-CORE generates clusters of C. Accordingly, we can define SC-CORE-
kNN by using the kNN after applying SC-CORE.

4 Numerical Examples

Algorithms of DBSCANCSCCSC-CORE-kNNCDBSCAN-CORE-SC-kNN, and
SC-CORE-kNN have been done by using the following computational environment.

– Hardware: Deginnos Series
– OS: Ubuntu 12.10 i64 bit OSj
– CPU: Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz
– Memory: 16.00 GB
– Language: Python 2.7
– Eigenvalue solver: linalg.eig in Numpy library

In order to reduce the effect of initial values in the K-means used in the spectral
clustering, 50 trials with different random initial values were used and the clusters
with minimum objective function values were selected.

The used parameters were the same values for all methods: The nearest neighbor
allocation: k = 1 and the neighborhood graph with σ = 1.0 were used. Eps were
determined by using the sorted 4-dist graph given in [6]. Thus MinPts= 4. The value
of Eps is thus different according to the examples. First example uses Eps= 0.0015,
Eps = 0.0006 for the second, and Eps = 0.18 for the third.

Noise points in the following figures are shown by black +×, while clusters are
shown by + and© with different colors.

4.1 Results for Artificial Data Sets

Two artificial data sets on the plane were used. First data shown in Fig. 1 called test
data 1 has 2,650 objects with 100 noise points. Second data shown in Fig. 2 called
test data 2 has 5,030 objects with 50 noise points. Figures 3 and 4 show the results
from SC-CORE-kNN and DBSCAN-CORE-SC-kNN for test data 1, respectively;
Figures 5 and 6 show the results from SC-CORE-kNN and DBSCAN-CORE-SC-
kNN for test data 2, respectively.

26 S. Miyahara, Y. Komazaki, and S. Miyamoto

In the both examples DBSCAN-CORE divided the set of core points into two
clusters: upper cluster and lower cluster in test data 1 and inner cluster and outer
cluster in test data 2.

CPU times for SC, SC-CORE-kNN, and DBSCAN-CORE-SC-kNN are com-
pared in Table 1 (Note that the time for preprocessing to calculate similarity values
is not included in Table 1 and Table 3). The four figures show that good and same
clusters are obtained by the two methods, and Table shows that run time is effec-
tively reduced by the proposed method.

Fig. 1 Test data 1 Fig. 2 Test data 2

Table 1 CPU time for artificial data with different methods

Time(s)
Method test data1 test data2
SC 85.99019 510.94347
SC-CORE-kNN 84.04765 495.55304
DBSCAN-CORE-
SC-kNN

29.05077 179.54790

4.2 The Iris Data Set

The well-known iris data has been handled by the different methods. As shown in
Table 2, the same classification results were obtained from the different methods of
SC-CORE-kNN and DBSCAN-CORE-SC-kNN. DBSCAN-CORE generated two
well-separated clusters in iris. Then SC generated two subclusters from the larger
cluster by DBSCAN-CORE.

The CPU time is again reduced by using DBSCAN-CORE-SC-kNN, as shown
in Table 3.

An Algorithm Combining Spectral Clustering 27

Fig. 3 Clusters generated by SC-CORE-
kNN for test data 1

Fig. 4 Clusters generated by DBSCAN-
CORE-SC-kNN for test data 1

Fig. 5 Clusters generated by SC-CORE-
kNN for test data 2

Fig. 6 Clusters generated by DBSCAN-
CORE-SC-kNN for test data 2

Table 2 The results for iris data from different methods, where the Rand index is used

Method Rand Index
HCM 0.87374
SC (complete graph) 0.87373
SC (ε-neighborhood graph) 0.85682
SC-CORE-kNN 0.85682
DBSCAN-CORE-SC-kNN 0.85682

28 S. Miyahara, Y. Komazaki, and S. Miyamoto

Table 3 CPU time for iris data with different methods

Method Time[s]
SC 0.36957
SC-CORE-kNN 0.35769
DBSCAN-CORE-SC-kNN 0.20951

5 Conclusion

The combination of DBSCAN with core points alone and the spectral clustering has
been discussed. This combination is not an ad hoc technique, but has a methodolog-
ical consistency shown in Proposition 1. The numerical results show effectiveness
and efficiency of the proposed method. In the numerical examples, the values of the
parameters greatly affects the results, and hence how good values of the parameters
can be found should be an important subject of future study.

A fundamental problem is that no definite method to determine the number of
clusters beforehand in DBSCAN-CORE-SC proposed here, which needs further re-
search. More experiments for huge amount of real data and evaluation of the results
should also be done.

Acknowledgment. The authors greatly appreciate anonymous reviewers for their useful
comments. This study has partially been supported by the Grant-in-Aid for Scientific Re-
search, JSPS, Japan, No.23500269.

References

1. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(8), 888–905 (2000)

2. Ng, A.Y., Jordan, M.I., Weiss, Y.: On Spectral Clustering: Analysis and an Algorithm. In:
Advances in Neural Information Processing System, pp. 849–856 (2001)

3. von Luxburg, U.: A Tutorial on Spectral Clustering. Statistics and Computing 17(4), 395–
416 (2007)

4. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Chichester
(1973)

5. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer, Berlin
(2008)

6. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discover-
ing Clusters in Large Spatial Databases with Noise. In: Proceedings of 2nd International
Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

7. Yan, D., Huang, L., Jordan, M.I.: Fast Approximate Spectral Clustering. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 907–916 (2009)

Relational Fuzzy c-Means and
Kernel Fuzzy c-Means
Using a Quadratic Programming-Based
Object-Wise βββ -Spread Transformation

Yuchi Kanzawa

Abstract. Clustering methods of relational data are often based on the assumption
that a given set of relational data is Euclidean, and kernelized clustering methods
are often based on the assumption that a given kernel is positive semidefinite. In
practice, non-Euclidean relational data and an indefinite kernel may arise, and a β -
spread transformation was proposed for such cases, which modified a given set of
relational data or a given a kernel Gram matrix such that the modified β value is
common to all objects.

In this paper, we propose a quadratic programming-based object-wise β -spread
transformation for use in both relational and kernelized fuzzy c-means clustering.
The proposed system retains the given data better than conventional methods, and
numerical examples show that our method is efficient for both relational and kernel
fuzzy c-means.

1 Introduction

Fuzzy c-means (FCM) [2] is a well-known clustering method for vectorial data.
In contrast, relational fuzzy c-means (RFCM) [2] clusters relational data. However,
RFCM is not always able to cluster non-Euclidean relational data, because the mem-
bership cannot always be calculated. To overcome this limitation, a non-Euclidean
RFCM (NERFCM) has been proposed [3]. NERFCM modifies the given data so
that the memberships can be calculated, and this modification is called a β -spread
transformation.

In order to cluster data with nonlinear borders, an algorithm that converts the
original pattern space to a higher-dimensional feature space has been proposed [4].
This algorithm, known as kernel FCM (K-FCM), uses a nonlinear transformation
defined by kernel functions in the support vector machine (SVM) [5]. In kernel

Yuchi Kanzawa
Shibaura Institute of Technology, Koto 135-8548 Tokyo, Japan
e-mail: kanzawa@sic.shibaura-it.ac.jp

V.-N. Huynh et al. (eds.), Knowledge and Systems Engineering, Volume 2, 29
Advances in Intelligent Systems and Computing 245,
DOI: 10.1007/978-3-319-02821-7_5, © Springer International Publishing Switzerland 2014

30 Y. Kanzawa

data analysis, it is not necessary to know the explicit mapping of the feature space;
however, its inner product must be known. Despite this, an explicit mapping has
been reported and this was used to describe the appearance of clusters in a high-
dimensional space [6], [7].

K-FCM fails for indefinite kernel matrices when the magnitude of the nega-
tive eigenvalues is extremely large, because the memberships cannot be calculated
if the dissimilarity between a datum and a cluster center is updated to become a
negative value. Although indefinite kernel matrices can be transformed to positive-
definite ones by subtracting the minimal eigenvalue from their diagonal compo-
nents, or by replacing negative eigenvalues with 0, these procedures result in
over-transformation of the matrix. Although the clustering can still be executed,
the risk is that the memberships can become extremely fuzzy and worsen the clus-
tering result. Therefore, an indefinite-kernel FCM (IK-FCM) method has been de-
veloped [8]; this adopts a β -spread transformation and is similar to the derivation of
NERFCM from RFCM.

In the conventional β -spread transformation for NERFCM or IK-FCM, the mod-
ified β value is common to all objects in the given relational data matrix or kernel
Gram matrix. In this paper, we propose that a different value is added to each object
in the given matrices. We refer to this as an object-wise β -spread transformation,
and it allows clustering to be performed while retaining the original relational data
matrix or kernel Gram matrix to the maximum possible extent. Because β is vector
valued, we cannot determine its minimal value such that the dissimilarities between
elements in the data set and cluster centers would be non-negative. Hence, we con-
sider determining this vector for the case where the dissimilarities are non-negative,
minimizing the squared Frobenius norms of the difference between the original ma-
trix and the object-wise β -spread transformed matrix, which can be achieved by
solving a quadratic programming problem. The proposed methods retain the given
data better than previous methods, and so we expect them to produce better cluster-
ing results. Numerical examples show that this is the case.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce some conventional FCM methods. In Section 3, we propose two cluster-
ing algorithms: RFCM using a quadratic programming-based object-wise β -spread
transformation (qO-NERFCM) and K-FCM using a quadratic programming-based
object-wise β -spread transformation (qO-IK-FCM). In Section 4, we present some
numerical examples, and conclude this paper in Section 5.

2 Preliminaries

In this section, we introduce RFCM, NERFCM, K-FCM, and IK-FCM. RFCM and
K-FCM provide the basic methodology for NERFCM and IK-FCM, which apply a
β -spread transformation to non-Euclidean relational data and indefinite kernel Gram
matrices, respectively.

RFCM and K-FCM Using QP-Based Object-Wise β -Spread Transformation 31

2.1 RFCM and NERFCM

For a given data set X = {xk | k ∈ {1, . . . ,N}}, the dissimilarity Rk, j between xk and
x j is given. Here, R is a matrix whose (k, j)-th element is Rk, j. Let C denote the
cluster number. The goal of RFCM and NERFCM is obtaining the membership by
which the datum xk belongs to the i-th cluster, denoted by ui,k, from R. u ∈ R

C×N is
referred to as the partition matrix.

RFCM is obtained by solving the optimization problem

minimizeu

C

∑
i=1

∑N
k=1∑

N
j=1 um

i,kum
j,kRk, j

2∑N
t=1 um

i,t

, (1)

subject to
C

∑
i=1

ui,k = 1, (2)

where m > 1 is a fuzzifier parameter. The RFCM procedure is as follows.

1
STEP 1. Fix m > 1 and assume an initial partition matrix u.
STEP 2. Update vi ∈ R

N as

vi =
(
um

i,1, · · · ,um
i,N

)T
/

N

∑
k=1

um
i,k. (3)

STEP 3. Update di,k as

di,k = (Rvi)k− vTi Rvi/2. (4)
STEP 4. Update the membership as

ui,k = 1/
C

∑
j=1

(
di,k/d j,k

)1/(m−1)
. (5)

STEP 5. If the stopping criterion is satisfied, terminate this algorithm.
Otherwise, return to STEP 2.

We say that a matrix R ∈ R
N×N is Euclidean if there exists a set of points

{y1, · · · ,yN} ∈ R
N−1 such that Rk, j = ‖yk − y j‖2

2, and non-Euclidean if no such
set of points exists. R is Euclidean if and only if HRH is negative semi-definite
for H = E − 11T/N, where E is the N-dimensional unit matrix, and 1 is an N-
dimensional vector whose elements are all 1. For a non-Euclidean R, RFCM only
works when the positive eigenvalues of HRH are not particularly large. However,
RFCM fails for a non-Euclidean R when the positive eigenvalues of HRH are ex-
tremely large because the membership cannot be calculated after the value of di,k is
updated to a negative value.

In order to overcome this limitation, the following modification of R, called the
β -spread transformation, has been developed [3]:

Rβ = R+β (11T−E), (6)

where β is a positive scalar value. With this β -spread transformation, NERFCM is
given by the following algorithm.

32 Y. Kanzawa

1
STEP 1. Fix m > 1 and assume an initial partition matrix u. Set β = 0.
STEP 2. Execute STEP 2 of Algorithm 1.
STEP 3. Update di,k as

di,k =
(
Rβ vi

)
k
− vTi Rβ vi/2. (7)

STEP 4. If di,k < 0, update Δβ ,di,k, and β as

Δβ =max{−2di,k/‖ek− vi‖2}, (8)
di,k← di,k +Δβ/2‖ek− vi‖2, (9)
β ← β +Δβ . (10)

STEP 5. Execute STEP 4 of Algorithm 1.
STEP 6. If the stopping criterion is satisfied, terminate this algorithm.

Otherwise, return to STEP 2.

Another option for tackling non-Euclidean relational data is to apply RFCM to a
set of Euclidean relational data R′, that has been modified from R in the following
ways. The first R′ is obtained by:

R′k, j = K′k,k− 2K′k, j +K′j, j, (11)

where K′ is the positive semi-definite matrix obtained from K = −(1/2)HRH by
subtracting the scaled identity matrix with its minimal eigenvalue if it is negative,
that is,

K′ = K−λminE (λmin < 0), (12)

where λmin is the minimal eigenvalue of K. In this paper, we refer to this revision
as “diagonal shift” (DS), and its application to RFCM as RFCM-DS. The second R′
is obtained by Eq. (11), when K′ is the positive semi-definite matrix formed from
K = −(1/2)HRH by setting all the negative eigenvalues to zero. We refer to this
modification as “nearest positive semi-definite” (nPSD), and thus, its application to
RFCM is denoted as RFCM-nPSD.

In the NERFCM algorithm, β is adaptively determined at STEP 4; hence, the
modification from R to Rβ is suppressed to a minimum such that the algorithm
execution can continue, whereas DS and nPSD may cause an over-transformation,
only allowing the execution of RFCM. Indeed, it has been reported that RFCM-DS
causes the memberships to become extremely fuzzy [3].

2.2 K-FCM and IK-FCM

For a given data set X = {xk | k ∈ {1, . . . ,N}}, K-FCM assumes that the kernel
matrix K ∈ R

N×N is given. Let H be a higher-dimensional feature space, Φ : X →
H be a map from the data set X to the feature space H, and W = {Wi ∈ H | i ∈
{1, · · · ,C}} be a set of cluster centers in the feature space.

RFCM and K-FCM Using QP-Based Object-Wise β -Spread Transformation 33

K-FCM is obtained by solving the following optimization problem:

minimizeu,W

C

∑
i=1

N

∑
k=1

um
i,k‖Φ(xk)−Wi‖2

H
(13)

subject to Eq. (2). Generally, Φ cannot be given explicitly, so the K-FCM algorithm
assumes that a kernel function K : x× x→ R is given. This function describes the
inner product value of the pairs of elements in the data set of the feature space as
K (xk,x j) = 〈Φ(xk),Φ(x j)〉. However, it can be interpreted that Φ is given explic-
itly by allowing H = R

N , Φ(xk) = ek, where ek is the N-dimensional unit vector
whose �-th element is the Kronecker delta δk,�, and by introducing K ∈ R

N×N such
that

Kk, j = 〈Φ(xk),Φ(x j)〉. (14)

According to this discussion, K-FCM is given as follows.

1

STEP 1. Fix m > 1. Assume a kernel matrix K ∈ R
N×N and an initial

partition matrix u.
STEP 2. Update cluster centers as

Wi =
(
um

i,1, · · · ,um
i,N

)T
/

N

∑
k=1

um
i,k. (15)

STEP 3. Update the dissimilarity between each element in the data set
and the cluster center as

di,k = (ek−Wi)
TK(ek−Wi). (16)

STEP 4. Update the membership as

ui,k = 1/
C

∑
j=1

(
di,k/d j,k

)1/(m−1)
(17)

STEP 5. If (u,d,W) converge, terminate this algorithm. Otherwise,
return to STEP 2.

K-FCM is constructed based on Eq. (14), i.e., K is positive semi-definite. Even
so, K is sometimes introduced without the existence of Φ being guaranteed. In this
case, K is not always positive semi-definite. Similar to RFCM, K-FCM works for
an indefinite K when the magnitude of negative eigenvalues is not particularly large.
However, K-FCM fails for indefinite K when the magnitude of negative eigenvalues
is extremely large, because the memberships cannot be calculated after the dissimi-
larity between a datum and a cluster center is updated as a negative value. In order
to overcome this limitation, the following β -spread transformation of K has been
developed [8]:

Kβ = K +βE. (18)

With this β -spread transformation, IK-FCM is given by the following algorithm.

34 Y. Kanzawa

1

STEP 1. Fix m > 1 for K-FCM. Assume a kernel matrix K ∈ R
N×N and

an initial partition matrix u. Set β = 0 and K0 = K.
STEP 2. Execute STEP 2 of Algorithm 1.
STEP 3. Update di,k as

di,k = (ek−Wi)
TKβ (ek−Wi). (19)

STEP 4. If di,k < 0, update Δβ ,di,k, β , and Kβ as:

Δβ =max{−di,k/‖ek−Wi‖2
2}, (20)

di,k← di,k +Δβ‖ek−Wi‖2, (21)
β ← β +Δβ , (22)

Kβ ← Kβ +ΔβE. (23)
STEP 5. Execute STEP 4 of Algorithm 1.
STEP 6. If the stopping criterion is satisfied, terminate this algorithm.

Otherwise, return to STEP 2.

Another option for handling indefinite kernel data is to apply K-FCM to a positive
semi-definite matrix K′, which is modified from K in the following two ways. The
first K′ is obtained from K by adding the scaled identity matrix with its minimal
eigenvalue if it is negative, that is,

K′ = K +λminE (λmin < 0), (24)

where λmin is the minimal eigenvalue of K. As for RFCM, we refer to this revision
as “diagonal shift” (DS), and its application to K-FCM is thus K-FCM-DS. The
second K′ is obtained from K by setting all the negative eigenvalues to zero, and
thus K-FCM becomes K-FCM-nPSD.

In the IK-FCM algorithm, β is adaptively determined at STEP 4; hence, the mod-
ification from K to Kβ is suppressed to a minimum such that the algorithm execution
can continue, whereas DS and nPSD may cause an over-transformation, only allow-
ing the execution of K-FCM.

3 Quadratic Programming-Based Object-Wise βββ -Spread Fuzzy
Clustering

3.1 Concept of the Proposed Algorithms

In the conventional β -spread transformation given by Eq. (6) for NERFCM or
Eq. (18) for IK-FCM, the modified β value is common to all objects in the given
relational data matrix or kernel Gram matrix. In this paper, we propose that a dif-
ferent value is added to each object in the given matrices. We refer to this as an
object-wise β -spread transformation, and it allows clustering to be performed while
retaining the original relational data matrix or kernel Gram matrix to the maximum
possible extent. The object-wise β -spread transformation for RFCM is

RFCM and K-FCM Using QP-Based Object-Wise β -Spread Transformation 35

Rβ = R+
1
2
βββ1T+

1
2

1βββT− diag(βββ), (25)

and that for K-FCM is

Kβ = K + diag(βββ), (26)

where βββ ∈R
N
+. If all the elements of βββ are the same, then the object-wise β -spread

transformation is identical to that in NERFCM and IK-FCM.
Because βββ is vector valued, we cannot determine its minimal value such that

the dissimilarities between elements in the data set and cluster centers would be
non-negative. Therefore, we consider determining βββ for the case where the dissim-
ilarities are non-negative, minimizing the squared Frobenius norms ‖Rβ −R‖2

F and
‖Kβ −K‖2

F, which can be achieved by solving a quadratic programming problem.

3.2 RFCM Using a Quadratic Programming-Based Object-Wise
βββ -Spread Transformation

Using RFCM with an object-wise β -spread transformation, the following condition
must be satisfied in order for the dissimilarities between the elements in the data set
and cluster centers to be non-negative:

− 1
2
(ek− vi)

TRβ (ek− vi)≥ 0 (27)

⇔− 1
2
(ek− vi)

TR0(ek− vi)− 1
4
(ek− vi)

Tβββ1T(ek− vi)

− 1
4
(ek− vi)

T1βββT(ek− vi)

+
1
2
(ek− vi)

Tdiag(βββ)(ek− vi)≥ 0 (28)

⇔di,k +
1
2

N

∑
�=1

(e(�)k − v(�)i)2βββ � ≥ 0, (29)

where e(�)k and v(�)i are the �-th element of ek and vi, respectively. Under this con-
dition, the value of βββ that minimizes ‖Rβ −R‖2

F can be obtained by solving the
following quadratic programming problem:

minimizeβββ
1
2
βββTAβββ (30)

subject to di,k +
1
2

N

∑
�=1

(e(�)k − v(�)i)2βββ � ≥ 0 (k ∈ {1, · · · ,N}, i ∈ {1, · · · ,C}), (31)

where

Ak, j =

{
N− 1 (k = j),

1 (k �= j).
(32)

Using the obtained value of βββ , we can describe the dissimilarity between the datum
xk and the cluster center vi as

36 Y. Kanzawa

di,k(βββ) = di,k(0)+
1
2

N

∑
�=1

(e(�)k − v(�)i)2βββ �. (33)

If we set a tentative value of βββ , and obtain the modified value of βββ +Δβββ satisfy-
ing the above constraint, we need only solve the following quadratic programming
problem for Δβββ .

minimizeΔβββ
1
2
ΔβββTAΔβββ (34)

subject to di,k(βββ)+
1
2

N

∑
�=1

(e(�)k − v(�)i)2Δβββ � ≥ 0

(k ∈ {1, · · · ,N}, i ∈ {1, · · · ,C}). (35)

Hence, we set βββ to 0 at the beginning of the algorithm and then modify βββ by
the value of Δβββ obtained from the above programming problem, provided that at
least one of dissimilarities between a datum and a cluster center is non-negative
while the algorithm execution continues. On the basis of the above, we modify the
NERFCM algorithm to the following quadratic programming-based object-wise β -
spread NERFCM (qO-NERFCM).

1
STEP 1. Fix m > 1 and assume an initial partition matrix u. Set

βββ = Δβββ = 0.
STEP 2. Update the cluster center vi ∈ R

N as

vi =
(
um

i,1, · · · ,um
i,N

)T
/

N

∑
k=1

um
i,k. (36)

STEP 3. Update the dissimilarity between data and cluster centers di,k as

di,k =
(
Rβ vi

)
k
− vTi Rβ vi/2. (37)

STEP 4. If di,k < 0, solve the quadratic programming problem for Δβββ

minimizeβββ
1
2
ΔβββTAΔβββ (38)

subject to di,k(βββ)− 1
2

N

∑
�=1

(e(�)k − v(�)i)2Δβββ � ≥ 0

(k ∈ {1, · · · ,N}, i ∈ {1, · · · ,C}) (39)
and update di,k and βββ as

di,k← di,k +
1
2
‖ek− vi‖2

βββ , (40)

βββ ← βββ +Δβββ . (41)
STEP 5. Update the membership ui,k as

ui,k = 1/
C

∑
j=1

(di,k/d j,k)
1/(m−1). (42)

STEP 6. If the stopping criterion is satisfied, terminate this algorithm.
Otherwise, return to STEP 2.

RFCM and K-FCM Using QP-Based Object-Wise β -Spread Transformation 37

Determining Δβββ in conventional NERFCM is identical to solving the quadratic
programming problem given by Eqs. (38) and (39) with the additional constraint
βββ k = βββ j (k �= j), because the objective function βββTAβββ becomes 1

2 1TA1β 2, re-
sulting in the expression given in Eq. (8). The constraints for β in Eqs. (30), (31)
are more relaxed in qO-NERFCM than in conventional NERFCM, and hence qO-
NERFCM achieves a lower objective function value than conventional NERFCM.

3.3 K-FCM Using Quadratic Programming-Based Object-Wise
β -Spread

Using a quadratic programming-based object-wise β -spread transformation in K-
FCM, the following condition must be satisfied in order for the dissimilarities be-
tween data and cluster centers to be non-negative:

(ek− vi)
TKβββ (ek− vi)≥ 0 (43)

⇔(ek− vi)
TK0(ek− vi)+ (ek− vi)

Tdiag(βββ)(ek− vi)≥ 0 (44)

⇔di,k +
N

∑
�=1

(e(�)k − v(�)i)2βββ � ≥ 0. (45)

Under this condition, the value of βββ that minimizes ‖Kβ −K‖2
F can be obtained by

solving the following quadratic programming problem.

minimizeββββββ
Tβββ (46)

subject to di,k +
N

∑
�=1

(e(�)k − v(�)i)2βββ � ≥ 0 (k ∈ {1, · · · ,N}, i ∈ {1, · · · ,C}) (47)

Using the obtained value of βββ , we can describe the dissimilarity between the datum
xk and the cluster center vi as

di,k(βββ) = di,k(0)+
N

∑
�=1

(e(�)k − v(�)i)2βββ � (48)

If we set a tentative value of βββ , and obtain the modified value of βββ +Δβββ satisfy-
ing the above constraint, we need only solve the following quadratic programming
problem for Δβββ .

minimizeΔβββΔβββ
TΔβββ (49)

subject to di,k(βββ)+
1
2

N

∑
�=1

(e(�)k − v(�)i)2Δβββ � ≥ 0

(k ∈ {1, · · · ,N}, i ∈ {1, · · · ,C}) (50)

Hence, we set βββ to 0 at the beginning of the algorithm and then modify βββ using the
value of Δβββ obtained from the above programming problem, provided that at least

