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Preface

High-Performance Computing (HPC) is one of the key enablers of scientific research
and of the development of Information Society in Europe. Enabling large-scale inno-
vative research to be conducted through collaboration of distributed teams of scien-
tists across the European Research Area paves the way towards a long-term vision of
a sustainable, transparent, ubiquitous electronic infrastructure open to a wide range
of scientific user communities. European Commission sees “strategic nature of High-
Performance Computing as a crucial asset for the EU’s innovation capacity, and calls on
Member States, industry and the scientific communities, in cooperation with the Com-
mission, to step up joint efforts to ensure European leadership in the supply and use
of HPC systems and services by 2020.” Pan-European PRACE infrastructure supports
this strategy and currently provides the core of High-Performance Computing power
for European research. In this context, the inclusion of less-developed regions of Eu-
rope, which suffer from the digital divide and brain-drain in all fields and especially
high-technology, into the wider European Research Area is an aim closely aligned to
this vision. HP-SEE project, co-funded by Framework Programme 7 of the European
Commission, is currently advancing the computing infrastructures in South-East Eu-
rope (SEE), activating new user communities and enabling collaborative research across
a number of fields, and thus contributes to closing the existing technological and scien-
tific gap, and following the wider European HPC strategy.

The HP-SEE User Forum took place in Belgrade on October 17-19, 2012, at premises
of National Library of Serbia and hosted by the Institutes of Physics Belgrade: this sci-
entific conference gathered 65 participants from 16 countries in the region and beyond,
with main focus on the fields of Computational Physics, Computational Chemistry, Life
Sciences, Scientific Computing and HPC Systems and Network Operations. Confer-
ence programme comprised of seven invited lectures, both from related e-Infrastructure
projects and HP-SEE scientific community, 26 contributed oral presentations and a
poster session featuring 11 poster presentations. This edition of papers from the User
Forum is comprised of 20 peer-reviewed papers: 7 from Computational Physics appli-
cations in HPC, 5 from Computational Chemistry, 3 from Life Sciences, and 5 from
Scientific computing and HPC operations. The project as well as the wider SEE com-
munity has benefited greatly from the exchange of experiences of leading scientists in
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the region in their use of High-Performance Computing technology to empower their
research.

In my role of HP-SEE project manager, I would like to thank the authors, reviewers,
editors, programme and organization committees and guest speakers for their contribu-
tions to this event.

April 2013 Dr. Ognjen Prnjat
HP-SEE Project Manager
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Aleksandar Belić IPB, Serbia
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Computational Chemistry

Conformational Analysis and HF ab initio Geometry Optimization of
Kyotorphine and Its Sulfo-Analogues Norsulfoarginine-Tyrosine and
Tyrosine-Norsulfoarginine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Nicolay I. Dodoff, Tatyana A. Dzimbova, Tamara I. Pajpanova



X Contents

Dynamics of Uninhibited and Covalently Inhibited Cysteine Protease on
Non-physiological pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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Simulation of Electron Transport Using HPC

Infrastructure in South-Eastern Europe

Emanouil Atanassov, Todor Gurov, and Aneta Karaivanova

Institute of Information and Communication Technologies, BAS
Acad. G. Bonchev St., Bl.25A, 1113 Sofia, Bulgaria

{emanouil,gurov,anet}@parallel.bas.bg

Abstract. In this work we present Monte Carlo simulation of ultra-
fast electron transport in semiconductors. We study the scalability of
the presented algorithms using high-performance computing resources in
South-Eastern Europe. Numerical results for parallel efficiency and com-
putational cost are also presented. In addition we discuss the coordinated
use of heterogeneous HPC resources for one and the same application in
order to achieve a good performance.

Keywords: Electron transport, Monte Carlo algorithms, scalability,
parallel efficiency, high-performance computations.

1 Introduction

The Monte Carlo Methods (MCMs) provide approximate solutions to a variety
of mathematical problems by performing statistical sampling experiments on a
computer [1–4]. They are based on the simulation of random variables whose
mathematical expectations are equal to a given functional of the solution of the
problem under consideration.

Many problems in a transport theory and related areas can be described
mathematically by a second kind integral equation:

f = IK(f) + φ, (1)

where IK is an integral operator. In general, the physical quantities of interest
are determined by functionals of the type:

Jg(f) ≡ (g, f) =

∫
G

g(x)f(x)dx, (2)

where the domain G ⊂ IRd and IRd is the d-dimensional Euclidean space. The
functions f(x) and g(x) belong to any Banach space X and to the adjoint space
X∗, respectively, and f(x) is the solution of (1).

The mathematical concept of the MC approach is based on the iterative ex-
pansion of the solution of (1):

fs = IK(fs−1) + φ, s = 1, 2, . . . , (3)

where s is the number of iterations. In fact (3) defines a Neumann series

M. Dulea et al. (eds.), High-Perf. Comp. Infrastr. for South East Europe’s 1
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2 E. Atanassov, T. Gurov, and A. Karaivanova

fs = φ+ IK(φ) + . . .+ IKs−1(φ) + IKs(f0), s > 1 ,

where IKs means the s-th iteration of IK. If the corresponding infinite series
converges then the sum is an element f from the space X which satisfies (1).

The replacement of f by the Neumann series in (2), gives rise to a sum of
consecutive terms which are evaluated by a MC method with the help of random
estimators.

We define a random variable ξ such that its mathematical expectation is equal
to J(f): Eξ = J(f).

Then we can define a MC method

ξ =
1

N

N∑
i=1

ξ(i)
P−→ Jg(f), (4)

where ξ(1), . . . , ξ(N) are independent values of ξ and
P−→ means stochastic con-

vergence as N −→ ∞. The rate of convergence is evaluated by the “law of the
three sigmas”, [1, 3]:

P

(
|ξ − Jg(f)| < 3

√
V ar(ξ)√
N

)
≈ 0.997.

Here V ar(ξ) = Eξ2−E2ξ is the variance of the MC estimator. Thus, a peculiarity
of any MC estimator is that the result is obtained with a statistical error [1, 3, 7].
As N increases, the statistical error decreases proportionally to N−1/2.

Thus, there are two types of errors – systematic (a truncation error) and
stochastic (a probability error) [7, 8]. The systematic error depends on the num-
ber of iterations of the used iterative method, while the stochastic error is related
to the the probabilistic nature of the MC method. From (1) and (3) one can get
the value of the truncation error. If f0 = φ then

fs − f = IKs(φ − f).

The relation (4) still does not determine the computational MC algorithm:
we must specify the modeling function (called sampling rule) for the random
variable ξ.

Θ = F (β1, β2, . . . , ), (5)

where β1, β2, . . . , are uniformly distributed random numbers in the interval
(0, 1). It is known that pseudorandom number generators are used to produce
such sequences of numbers. They are based on specific mathematical algorithms.
Now both relations (4) and (5) define a MC algorithm for estimating Jg(f). The
case when g = δ(x − x0) is of special interest, because it is used for calculating
the value of f at x0, where x0 ∈ G is a fixed point.

Every iterative algorithm uses a finite number of iterations s. In practice we
define a MC estimator ξs for computing the functional Jg(fs) with a statistical
error. On the other hand ξs is a biased estimator for the functional Jg(f) with
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stochastic and truncation errors [7, 8]. The number of iterations can be a ran-
dom variable when an ε-criterion is used to truncate the Neumann series or the
corresponding Markov chain in the MC algorithm.

In order to compute the physical quantities of interest, we simulate a large
number of trajectories, following the backward Monte Carlo algorithmic scheme.
The trajectory is abolished when the time step becomes sufficiently small. All
the physical quantities of interest are approximated as averages of random vari-
ables that are sampled in the Monte Carlo algorithm, so that one numerical
trajectory contributes to all the quantities of interest, for better efficiency. Since
the trajectories are independent, there is large amount of available parallelism
that is exploited via MPI and, if possible, CUDA. In order to achieve accu-
rate estimates, when the evolution time becomes large enough, we need billions
of sampled trajectories. This requirements together with the high number of
parallel processes or threads, puts a strain on the quality of the random num-
ber generator library. When quasi-random numbers are used, then one should
be careful how to distribute the computations so that the desired error rate is
attained.

The presented numerical results are obtained using HP-SEE computing in-
frastructure. The regional HPC infrastructure incorporates state of the art HPC
clusters and two supercomputers BlueGene/P. The HP-SEE resources are lo-
cated in 8 HPC resource centers in the countries: Bulgaria, Hungary, Romania,
FYROM and Serbia. The total peak performance of the HP-SEE computing
resources is about 120 Tflops in double precision. The GPU resources currently
achieve 12 Tflops in single precision. More information can be found at www.hp-
see.eu. In order to cope with the heterogeneity in the HP-SEE infrastructure
and the evolution of the mathematical algorithms the application is built using
a modular structure, containing several different modules/libraries. While we
use standard libraries for random number generation like SPRNG and CUDA
CURAND, we use our in-house libraries for scrambled quasi-random number
generators, [4–6]. The main computations are organized in a library too, where
we have different computational kernels for the case of CPU vs GPU computa-
tions. We also separate the parallelization part, based on MPI.

The paper is organized as follows. In Section 2 the quantum-kinetic equation
is derived from a physical model describing electron transport in quantum wires.
An integral form of the equation is obtained by reducing the dimensionality of
space and momentum coordinates. The MC approach and corresponding MC
algorithm are presented in Section 3. The numerical results using Bulgarian
HPC resources are discussed in Section 4. Summary and directions for future
work are given in Section 5.

2 The Quantum Kinetic Integral Equation

In the general case a Wigner equation for nanometer and femtosecond transport
regime is derived from a three equations set model based on the generalized
Wigner function [10]. The complete Wigner equation poses serious numerical
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challenges. Two limiting versions of the equation corresponding to simplified
physical conditions are considered in few works, namely, the Wigner-Boltzmann
equation [11] and the homogeneous Levinson (or Barker-Ferry) equation [12, 13].
These equations are analyzed with various MCMs using spherical and cylindrical
transformations to reduce the dimensions in the momentum space [14, 15]. The
computer power of the European Grid infrastructure (EGI) in some cases is used
to investigate above problems [16–18].

Here we consider a highly non-equilibrium electron distribution which
propagates in a quantum semiconductor wire [19]. The electrons, which can be
initially injected or optically generated in the wire, begin to interact with three-
dimensional phonons. This is third limiting case, where the electron-phonon
interaction is described on the quantum-kinetic level by the Levinson equation
[20, 21], but the evolution problem becomes inhomogeneous due to the spatial
dependence of the initial condition. The direction of the wire is chosen to be z,
the corresponding component of the wave vector is kz. The electrons are in the
ground state Ψ(r⊥) in the plane normal to the wire, which is an assumption con-
sistent at low temperatures. The initial carrier distribution is assumed Gaussian
both in energy and space coordinates, and an electric field can be applied along
the wire.

The integral representation of the quantum kinetic equation for the electron
Wigner function fw in this case has the form [22]:

fw(z, kz, t) = fw(z −
h̄kz
m

t+
h̄F

2m
t2, kz , 0) + (6)∫ t

0

dt′′
∫ t

t′′
dt′

∫
dq′

⊥

∫
dk′z [S(k

′
z , kz, t

′, t′′,q′
⊥)×

fw

(
z − h̄kz

m
(t− t′′) +

h̄F

2m
(t2 − t′′2) +

h̄q′z
2m

(t′ − t′′), k′z, t
′′
)
−

S(kz , k
′
z, t

′, t′′q′
⊥)fw

(
z − h̄kz

m
(t− t′′) +

h̄F

2m
(t2 − t′′2)− h̄q′z

2m
(t′ − t′′), kz, t

′′
)]

,

where
S(k′z, kz, t

′, t′′,q′
⊥) =

2V

(2π)3
|G(q′

⊥)F(q′
⊥, kz − k′z)|2 [(n(q′) + 1)×

cos

(
ε(kz)− ε(k′z) + h̄ωq′

h̄
(t′ − t′′) +

h̄

2m
Fq′z(t

′2 − t′′2)

)
+

n(q′) cos

(
ε(kz)− ε(k′z)− h̄ωq′

h̄
(t′ − t′′) +

h̄

2m
Fq′z(t

′2 − t′′2)

)]
.

Here, f(z, kz, t) is the Wigner function described in the 2D phase space of the
carrier wave vector kz and the position z, and t is the evolution time.

The electric force F depends on the electric field E as follows: F = eE/h̄,
where the electric field is along the direction of the wire, e being the electron
charge and h̄ - the Plank’s constant.
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nq′ = 1/(exp(h̄ωq′/KT )− 1) is the Bose function, where K is the Boltzmann
constant and T is the temperature of the crystal, corresponds to an equilibrium
distributed phonon bath.

h̄ωq′ is the phonon energy which generally depends on q′ = q′
⊥ + q′z = q′

⊥ +
(kz − k′z), and ε(kz) = (h̄2k2z)/2m is the electron energy.

F is obtained from the Fröhlich electron-phonon coupling by recalling the
factor ih̄ in the interaction Hamiltonian:

F(q′
⊥, kz − k′z) = −

[
2πe2ωq′

h̄V

(
1

ε∞
− 1

ε s

)
1

(q′)2

] 1
2

,

where (ε∞) and (εs) are the optical and static dielectric constants. The shape
of the wire affects the electron-phonon coupling through the factor

G(q′
⊥) =

∫
dr⊥e

iq′
⊥r⊥ |Ψ(r⊥)|2 ,

where Ψ is the ground state of the electron system in the plane normal to the
wire. If the cross-section of the wire is chosen to be a square with side a than
we obtain:

|G(q′
⊥)|2 = |G(q′x)G(q′y)|2 =

(
4π2

q′xa ((q
′
xa)

2 − 4π2)

)2

4 sin2(aq′x/2)×

(
4π2

q′ya
(
(q′ya)

2 − 4π2
)
)2

4 sin2(aq′y/2).

3 Monte Carlo Approach

The equation (6) can be rewritten in the form:

fw(z, kz, t) = fw(z − z(kz, t), kz, 0) + (7)∫ t

0

dt′′
∫ t

t′′
dt′

∫
G

d3k′K1(kz ,k
′, t′, t′′)× fw (z + h(kz , q

′
z, t, t

′, t′′, F ), k′z , t
′′)+

∫ t

0

dt′′
∫ t

t′′
dt′

∫
G

d3k′K2(kz ,k
′, t′, t′′)× fw (z + h(kz,−q′z, t, t

′, t′′, F ), kz , t
′′) ,

where

z(kz, t) =
h̄kz
m

t− h̄F

2m
t2 ,

h(kz , q
′
z, t, t

′, t′′, F ) = − h̄kz
m

(t− t′′) +
h̄F

2m
(t2 − t′′2) +

h̄q′z
2m

(t′ − t′′) ,

K1(kz ,k
′, t′, t′′) == S(k′z, kz , t

′, t′′,q′
⊥) = −K2(k

′, kz, t
′, t′′),

and ∫
G

d3k′ =

∫
dq′

⊥

∫ Q2

−Q2

dkz.



6 E. Atanassov, T. Gurov, and A. Karaivanova

The values of the physical quantities are expressed by the following general
functional of the solution of (7):

Jg(f) =

∫ T

0

∫
D

g(z, kz, t)fw(z, kz, t)dzdkzdt. (8)

Here we specify that the phase space point (z, kz) belongs to a rectangular
domain D = (−Q1, Q1)× (−Q2, Q2), and t ∈ (0, T ).

The function g(z, kz, t) depends on the quantity of interest. Here, we are
going to estimate by MC approach the Wigner function (6), the wave vector
(and respectively the energy) f(kz , t), and the density distribution n(z, t). The
last two functions are given by the integrals

f(kz , t) =

∫
dz

2π
fw(z, kz, t) and, n(z, t) =

∫
dkz
2π

fw(z, kz, t).

The MC estimator for evaluating the functional (8) using backward time evolu-
tion of the numerical trajectories can be constructed in the following way:

ξs[Jg(f)] =
g(z, kz, t)

pin(z, kz, t)
W0fw(., kz, 0) +

g(z, kz, t)

pin(z, kz, t)

s∑
j=1

Wα
j fw

(
., kαz,j , tj

)
. (9)

Here

fw
(
., kαz,j , tj

)
=

{
fw

(
z + h(kz,j−1, kz,j−1 − kz,j , tj−1, t

′
j , tj , F ), kz,j , tj

)
,

fw
(
z + h(kz,j−1, kz,j − kz,j−1, tj−1, t

′
j , tj , F ), kz,j−1, tj

)
where α = 1, in the first case, and α = 2 in the second one;

Wα
j =Wα

j−1

Kα(kzj−1,kj , t
′
j , tj)

pαptr(kj−1,kj , t′j , tj)
, where Wα

0 = W0 = 1, α = 1, 2, j = 1, . . . , s .

The probabilities pα, (α = 1, 2) are chosen to be proportional to the absolute
value of the kernels in (6). The initial density pin(z, kz, t) and the transition
density ptr(k,k

′, t′, t′′) are chosen to be tolerant1 to the function g(z, kz, t) and
the kernels, respectively. The first point (z, kz0, t0) in the Markov chain is chosen
using the initial density, where kz0 is the third coordinate of the wave vector k0.
Next points (kzj , t

′
j , tj) ∈ (−Q2, Q2)× (tj , tj−1)× (0, tj−1) of the Markov chain:

(kz0, t0) → (kz1, t
′
1, t1) → . . . → (kzj , t

′
j , tj) → . . . →,

where j = 1, 2, . . . , s do not depend on the position z of the electrons. They
are sampled using the transition density ptr(k,k

′, t′, t′′) as we take only the z-
coordinate of the wave vector k. Note the time t′j conditionally depends on the

1 r(x) is tolerant to g(x) if r(x) > 0 when g(x) �= 0 and r(x) ≥ 0 when g(x) = 0.
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selected time tj. The Markov chain terminates in time ts < ε1, where ε1 is a
fixed small positive number called a truncation parameter.

In order to evaluate the functional (8) by N independent samples of the
estimator (9), we define a Monte Carlo method

1

N

N∑
i=1

(ξs[Jg(f)])i
P−→ Jg(fs) ≈ Jg(f), (10)

where
P−→ means stochastic convergence as N → ∞; fs is the iterative solution

obtained by the Neumann series of (7), and s is the number of iterations.
The relation (10) still does not determine the computational algorithm. To

define a MC algorithm we have to specify the initial and transition densities, as
well the modeling function (or sampling rule). The modeling function describes
the rule needed to calculate the states of the Markov chain by using uniformly
distributed random numbers in the interval (0, 1). In our case we use SPRNG
library [9].

Here, the following transition density is chosen:

ptr(k,k
′, t′, t′′) = p(k′/k)p(t, t′, t′′),

where

p(t, t′, t′′) = p(t, t′′)p(t′/t′′) =
1

t

1

(t− t′′)

and
p(k′/k) = c1/(k

′ − k)2

(c1 is the normalized constant). Thus, if we know t, the next times t′′ and t′ are
computed by using the inverse-transformation rule.

The wave vectors k′ are sampled in the following algorithm:

1. Sample a random unit vector ω = (sin θ cosϕ, sin θ sinϕ, cos θ) as sin θ =
2
√
(β1 − β2

1), cos θ = 2β1 − 1, and ϕ = 2πβ2 where β1 and β2 are uniformly
distributed numbers in (0, 1);

2. Calculate l(ω) = −ω ·k+(Q2
2 +(ω ·k)2 −k2)

1
2 , where ω ·k denotes a scalar

product between two vectors;
3. Sample ρ = l(ω)β3, where β3 is an uniformly distributed number in (0, 1);
4. Calculate k′ = k+ ρω.

We note that we have to compute all three coordinates of the wave vector al-
though we need only the third one. The choice of pin(z, kz, t) depends on the
function g(z, kz, t). The cases when

(i) g(z, kz, t) = δ(z − z0)δ(kz − kz,0)δ(t− t0),

(ii) g(z, kz, t) =
1

2π
δ(kz − kz,0)δ(t− t0),

(iii) g(z, kz, t) =
1

2π
δ(z − z0)δ(t− t0),

are of special interest, because they estimate the values of the Wigner function,
wave vector and density distribution in fixed points.
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4 Parallel Implementation and Numerical Results

The stochastic error for the (homogeneous) Levinson or Barker-Ferry models has
order O(exp (c2t)N

−1/2), where t is the evolution time and c2 is a constant de-
pending on the kernels of the obtained quantum kinetic equation [14, 15]. Using
the same mathematical techniques as in [14], we can prove that the stochastic
error of the MC estimator under consideration has order O(exp

(
c3t

2
)
N−1/2).

The factor exp
(
c3t

2
)
contains the term t2 because there is a double integration

over the evolution time in the the quantum kinetic equation (6). The estimate
shows that when t is fixed and N → ∞ the error decreases, but for large t the
factor exp

(
c3t

2
)
looks ominous. Therefore, the MC algorithm described above

solves an NP -hard problem concerning the evolution time. The suggested im-
portance sampling technique, which overcomes the singularity in the kernels, is
not enough to solve the problem for long evolution time with small stochastic
error. In order to decrease the stochastic error we have to increase N - the num-
ber of Markov chain realizations. For this aim, a lot of CPU power is needed for
achieving acceptable accuracy at evolution times above 100 femtoseconds.

The suggested simulation was tested with new random number generators
using permutations. Optimizations of transition density using genetic algorithm
and acceptance-rejection methods were done. Initial scientific results for simula-
tion of electron transport on quantum wires and are obtained.

It is known that the MC algorithms are perceived as computationally intensive
and naturally parallel [23]. They can usually be implemented via the so-called
dynamic bag-of-work model [24]. In this model, a large MC task is split into
smaller independent subtasks, which are then executed separately. One process
or thread is designated as “master” and is responsible for the communications
with the “slave” processes or threads, which perform the actual computations.
Then, the partial results are collected and used to assemble an accumulated result
with smaller variance than that of a single copy. The inherent characteristics of
MC algorithms and the dynamic bag-of-work model make them a natural fit for
the parallel architectures.

Our numerical results are obtained using the following HPC platforms:
(i) The biggest HPC resource in Bulgaria is the supercomputer BlueGene/P

which is deployed at the Executive Agency ”Electronic Communications Net-
works and Information Systems”. It has two racks with 2048 PowerPC 450 pro-
cessors (32 bits, 850 MHz), 8192 processor cores and a total of 4 TB random
access memory. The theoretical peak performance is 27.85 Tflops.

(ii) The other HPC platform is the HPC cluster deployed at the institute
of information and communication technologies of the Bulgarian academy of
sciences. This cluster consists of two racks which contain HP Cluster Platform
Express 7000 enclosures with 36 blades BL 280c with dual Intel Xeon X5560
@ 2.8Ghz (total 576 cores), 24 GB RAM per blade. There are 8 storage and
management controlling nodes 8 HP DL 380 G6 with dual Intel X5560 @ 2.8
Ghz and 32 GB RAM. All these servers are interconnected via non-blocking DDR
Infiniband interconnect at 20Gbps line speed. The theoretical peak performance
is 3.23 Tflops. The HPC cluster was upgraded with an HP SL390s G7 4U Lft Half


