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PREFACE

Periodic structural configurations are ubiquitous: many heterogeneous
structures and materials, both man-made and naturally occurring,
feature geometry, micro-structural and/or materials properties that
vary periodically in space. The classes of periodic materials and struc-
tures span a wide range of length scales, and a broad range of applica-
tions. Periodic trusses, periodically stiffened plates, shells and beam-
like assemblies can be found for example in many civil, aerospace,
mechanical and ship constructions. Their introduction is mostly mo-
tivated by structural strength and weight requirements, however recent
studies have shown how the periodicity can be exploited to attenuate,
isolate and localize vibrations. Such studies explore the unique ability
of periodic assemblies to impede the propagation of elastic waves over
specified frequency bands, within which strong attenuation of vibra-
tion and radiated noise can be achieved. The attenuation levels that
can be obtained through tailored structural periodicity far exceed the
performance of most energy dissipation and damping mechanisms.
For this reason, passive, active and hybrid periodic structural con-
figurations are being proposed for the reduction of vibration trans-
mission and structure-born as well as airborne noise. In addition,
the understanding of the dynamics of periodic structures is essential
for the analysis of bladed disc assemblies which are found in turbo
machinery and in turbines for energy generation where failure mech-
anisms due to localization phenomena may occur. At much smaller
scales, extensive research is being devoted to the analysis and design
of phononic metamaterials for a variety of applications. Phononic
metamaterials are essentially periodic structural configurations ob-
tained through composite designs featuring periodic modulations of
mass and stiffness properties, or elastic lattice structures. Gigahertz
communication devices, such as mobile phones, use phononic-based
systems for their low-power filtering characteristics. Many sensing
devices based on resonators, acoustic logic ports, and surface acous-
tic wave-based filters rely on the unique band gap characteristics of
periodic phononic materials. These properties are associated with
the destructive and constructive interference of acoustic waves orig-
inating at the periodic interfaces, which produce frequency band of
strong attenuation of acoustic waves (band gaps). Depending on the



inclusions, geometry, and elastic properties, one can design for spe-
cific band gaps. In photonic crystals, periodic modulations of the
dielectric properties of a medium allow guiding, focusing and steer-
ing of electromagnetic waves. Properties modulations and engineered
anisotropy in heterogeneous media can also produce negative refrac-
tive indexes, both in photonics as well as in phononic metamaterials,
which lead to super-lensing or super-focusing characteristics. Disper-
sion of waves in media with boundaries or built-in micro-structure
is a fundamental phenomenon, which occurs in problems of acous-
tics, models of water waves, simple systems involving onedimensional
harmonic oscillators, as well as complex elastic systems. Moreover,
enhanced transmission based on formation of defect modes within an
interface plays a crucial role in a wide range of practical applications
involving filtering and polarisation of waves of different physical ori-
gins. Other potential implications of the acoustic wave guiding tech-
nology include active sensing of structural integrity, smart sensing
of environment, dissipation of high frequency modes of vibration to
enhance vehicle performance or stealth, as well as applications to the
medical field for sensing or diagnostic applications. Complex dynam-
ical phenomena may be encountered in nonlinear periodic media such
as the existence of energy- depended nonlinear propagation regions.
Depending on substructure coupling, distinctly nonlinear dynamical
phenomena can arise, such as wave localization and solitary waves.
Potential applications of such phenomena are currently investigated
in the MEMS context, where arrays of coupled micro/nanoresonators
have been recently proposed. The CISM course ”Wave propagation
in linear and nonlinear periodic media: analysis and applications”
was an opportunity to combine the material issued from such a vari-
ety of applications aiming to present both the theoretical background
and an overview of the state-of-the art in wave propagation in lin-
ear and nonlinear periodic media in a consistent lecture format. The
course is intended for doctoral and postdoctoral researchers in civil
and mechanical engineering, applied mathematics and physics, aca-
demic and industrial researchers, which are interested in conducting
research in the topic. The opening chapter, by A.B. Movchan, M.
Brun and N.V. Movchan, gives an overview of some mathematical
models of wave propagation in structured media, with the emphasis on
dispersion and enhanced transmission through structured interfaces.



Chapter 2, by L. Airoldi, M. Senesi and M. Ruzzene, presents two
examples of internally resonating metamaterials whose behavior is
based on multi-field coupling. The first part of the chapter is devoted
to the analysis of a one-dimensional waveguide with a periodic array
of shunted piezoelectric patches. The second part presents the study of
piezoelectric superlattices as an additional example of an internally
resonant metamaterial. Topology optimization relevant to problems
in vibration and wave propagation is then addressed in Chapter 3 by
J. S. Jensen; in this chapter the steady-state optimization procedure
for dynamical systems is extended to a nonlinear wave propagation
problem and then the topology optimization procedure is applied to
transient dynamic simulations for which the optimized material dis-
tributions may vary in time. In Chapter 4, by F. Romeo, the dynamic
behaviour of continuous and discrete models of both linear and nonlin-
ear periodic mechanical systems are dealt with by means of maps. At
first, linear problems consisting of general multi-coupled periodic sys-
tems are presented and they are handled with linear maps, namely the
transfer matrices of single units. Afterwards, a perturbation method
is applied to the transfer matrix of a chain of continuous nonlinear
beams while nonlinear maps are considered to address chains of non-
linear oscillators. In the closing chapter, by A. Vakakis, analytical
methodologies for analyzing waves in weakly or strongly nonlinear pe-
riodic media are discussed. The generation of spatial chaos in ordered
granular media, which are a special class of spatially periodic, highly
discontinuous and strongly nonlinear media is eventually highlighted.
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Waves and defect modes in structured media

A.B. Movchana, M. Brunb, N.V. Movchana

a Department of Mathematical Sciences,

University of Liverpool, Liverpool L69 7ZL, U.K.

b Department of Structural Engineering,

University of Cagliari, Cagliari I-09123, Italy

Abstract. The paper gives an overview of some mathematical
models of wave propagation in structured media, with the emphasis
on dispersion and enhanced transmission through structured inter-
faces. We begin with conventional definitions and classical models
of dispersive waves, discuss lattice approximations and then show
the results of the recent work on modelling of waves interacting
with a structured stack acting as a polarizer of elastic waves. Spe-
cial attention is given to the resonance modes which may enhance
transmission across the structured stack. The analytical work is
accompanied by numerical simulations.

0.1 Introduction

Dispersion of waves in periodic inhomogeneous media is important in
many problems of physics, mechanics and engineering. A special mention
should be given to theoretical and experimental studies of photonic band gap
materials (see, for example, Yablonovitch (1987, 1993)). Scalar models for
Bloch waves in periodic lattices are discussed in Brillouin (1953), Maradudin
et al. (1963) and Kunin (1975). This theory naturally extends to vector
problems of elasticity. In particular, dispersion of elastic waves in lattice
systems of different types has been analysed in Martinsson and Movchan
(2003), Jensen (2003), Cai et al. (2005).

Dynamic lattice Green’s functions in the propagating frequency range
were analysed in Martin (2006), whereas the stop band Green’s functions
and exponentially localised “defect modes” were studied in Movchan &
Slepyan (2007).

In wave propagation problems for structured media, the classical ho-
mogenisation approaches have limitations when the wavelength is compara-
ble with the characteristic size of elements of the structure, such as a typical
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size of the elementary cell. In particular, this appears to be important in
the analysis of wave interaction with finite width structured interfaces. Sev-
eral classes of non-local structured interfaces were analysed in Bigoni and
Movchan (2002) in static and dynamic configurations, which also included
semi-discrete systems incorporating both continuous parts and a lattice.
Brun et al. (2010a) have addressed anomalies in transmission of slow waves
through dynamic structured interface of finite width. Brun et al. (2010b)
addressed the case of a shear-type structured interface excited by a plane
pressure wave at an oblique incidence, and this paper also shows that the
shear-type interface could serve as a polariser.

In the present paper we aim to discuss the dispersion, polarisation
and filtering of waves from a common perspective, with the emphasis on
the dynamics of structured interfaces and connections between discrete and
high-contrast continuous systems. The structure of the paper is as follows.
We begin with the discussion of the fundamental phenomena, such as wave
dispersion, and in Section 0.2 we show a very intuitive textbook example of
dispersive waves, derived in the framework of the linear water wave theory.
Section 0.3 includes the classical notion of Bloch-Floquet waves and an ex-
plicit analytical study of wave dispersion in one-dimensional lattice systems.
Furthermore, this section also introduces the high-contrast continuous sys-
tems, with the emphasis on the lattice approximations of the dispersion
equations in such systems. An example of the transmission problem for a
one-dimensional finite width structured interface is discussed in Section 0.5,
where it is shown that an irregularity within the structure of the interface
may lead to an enhanced transmission for waves of certain frequency. A
full vector problem of elasticity is described in Section 0.6 for plane elastic
waves interacting with a shear-type structured interface; the finite width in-
terface contains several parallel elastic bars, whose motion is preferential in
the direction along the interface. This creates an effect of polarization, and
we also describe an enhanced transmission for waves of certain frequencies.

0.2 Wave dispersion

This introductory section discusses some classical examples of disper-
sive waves, i.e. the waves whose speeds are different for different frequencies.
Here we refer to the linear water wave theory, which is very well known in
linearlised models of fluid flow (see, for example, Billingham & King (2001),
Ockendon et al. (2003)). The second example, included in Section 0.3, is
a one-dimensional lattice system, known from classical texts (see, for ex-
ample, Kittel (1996) and Brillouin (1953)). The dispersion relations are
written in an explicit form, and formation of a stop band is discussed for
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heterogeneous systems. An asymptotic model is given for a high-contrast
stratified structure in Section 0.3. Following Movchan et al. (2002a) we
show the lattice approximation of such a system, which is capable of repro-
ducing the dynamic response of the heterogeneous continuum system in the
low frequency range.

Formulation for linear water waves

One of the straightforward examples is based on the linear theory of waves
propagating along the surface of an incompressible inviscid fluid of the uni-
form density. For convenience, we call such a fluid ”water”. The continuity
equation and the equation of motion for the velocity u and pressure p have
the form

∇ · u = 0 , (1)

∂u

∂t
+ (u · ∇)u+

1

ρ
∇p = F , (2)

where F is the body force density, ρ is the mass density and t is time. In
particular, if the body force represents gravity we have F = −ge(3), and

F = ∇Ξ with Ξ = −gx3, (3)

where g is a positive constant (normalised gravitational acceleration).
Assuming that the fluid flow is irrotational and using the notation

φ for the velocity potential we have u = ∇φ. Hence according to (1) the
function φ is harmonic

∇2φ = 0. (4)

The non-linear term in (2) becomes

{(u · ∇)u}i =
∑
j

ujui,j =
∑
j

φ,jφ,ij =
1

2
|∇φ|2,i (5)

Thus, (2) may be written as

∇
(
∂φ

∂t
+

1

2
|∇φ|2 + p

ρ
+ gx3

)
= 0,

which leads to Bernoulli’s equation

∂φ

∂t
+

1

2
|∇φ|2 + p

ρ
+ gx3 = f(t), (6)
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where f(t) is a function of t only.
Next, we discuss the boundary conditions. The schematic diagram

and relevant notations are shown in Fig. 1. It is assumed that the bottom
surface S1 of the channel is fixed and hence the normal component of the
velocity equals zero, that is

u · n = 0 on S1. (7)

Water

Fixed bottom surface

Free surface p = p0 = const

S2

S1

Figure 1. Surface water waves in a flow of finite depth.

It is also assumed that the upper surface S2 is characterised by the equation

x3 = ζ(x1, x2, t),

and there is no variation in pressure on S2:

p = p0 = const on S2.

Hence, according to (6) on the free surface we have

∂φ

∂t
+

1

2
|∇φ|2 + p0

ρ
+ gζ(x1, x2, t) = f(t), as x3 = ζ(x1, x2, t). (8)
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This is accompanied by the identity

u3 =
dx3

dt
=

dζ

dt
=

∂ζ

∂t
+ u1

∂ζ

∂x1
+ u2

∂ζ

∂x2
on x3 = ζ(x1, x2, t). (9)

In the linear approximation, we simplify the problem by addressing the case
when |u| and the surface fluctuations are small.

In particular, if the unperturbed surface is x3 = h, then for the free
surface we can write

φ(x, t) = φ(x1, x2, ζ(x1, x2, t), t) =

= φ(x1, x2, h, t) + (ζ − h)φ,3(x1, x2, h, t) + . . .

To the leading order approximation, the relations (8), (9) are set on the
unperturbed surface x3 = h. The second-order term 1

2 |∇ · φ|2 is neglected,
and equation (8) becomes

∂φ

∂t
+

(
p0
ρ
− f(t) + gh

)
+ g(ζ − h) = 0.

Since the term
(

p0

ρ − f(t) + gh
)

is a function of t only, it does not give

any contribution to u, and may be ”absorbed” into ∂φ
∂t . Thus, the velocity

potential φ can be chosen in such a way that

∂φ

∂t
+ g(ζ − h) = 0 on x3 = h. (10)

By neglecting the second-order terms φ,1, ζ,1 and φ,2, ζ,2 in (9) , involving
the partial derivatives of ζ and φ, we deduce that to the leading order

∂φ

∂x3
=

∂ζ

∂t
on x3 = h, (11)

and therefore equations (10), (11) yield

∂2φ

∂t2
+ g

∂φ

∂x3
= 0 on x3 = h. (12)

Thus, in the “ocean” with the flat bottom surface x3 = 0 and the unper-
turbed upper surface x3 = h, the linearized formulation for the velocity
potential φ is comprised of Laplace’s equation (4) within the fluid layer
0 < x3 < h, the boundary condition n · ∇φ = 0 at the fixed bottom surface
x3 = 0, and the “free surface” boundary condition (12). Note that this for-
mulation involves the second-order time derivative of the velocity potential
on the upper free surface. In turn, after evaluation of φ, the “wave profile”
on the free upper surface is defined by (10).



6 A.B. Movchan, M. Brun, N.V. Movchan

Deep water waves versus waves in shallow water

Consider a surface water wave, with the straight front perpendicular to the
x1−axis. We seek solutions independent of x2 with the velocity potential

φ = φ(x1, x3, t). (13)

It is convenient to work with the complex potential Ψ of the form

Ψ = W (x3)e
−i(ωt−kx1),

and assume that φ = �eΨ. Considering a harmonic solution (i.e. ∇2Ψ = 0)
we obtain

W ′′ − k2W = 0,

which yields
W = C1 cosh(kx3) + C2 sinh(kx3).

The boundary condition at the bottom surface (x3 = 0) leads to W ′(0) = 0,
and hence C2 = 0 and

Ψ = C1 cosh(kx3)e
−i(ωt−kx1). (14)

In turn, the free surface condition(
∂2Ψ

∂t2
+ g

∂Ψ

∂x3

) ∣∣∣∣∣
x3=h

= 0 (15)

becomes

{−ω2C1 cosh(kh) + gkC1 sinh(kh)}e−i(ωt−kx1) = 0,

which simplifies to the form

gk tanh(kh) = ω2. (16)

Equation (16) relates the wave number k and the radian frequency ω, and
thus the wave speed c = ω

k is in general frequency dependent. This shows
that the water surface waves are dispersive. The relation (16) is called the
dispersion equation.
We would like to note two important particular cases, which are
(a) Deep water, when the non-dimensional quantity kh� 1 is large, and

hence tanh(kh) � 1. Thus to leading order the dispersion equation
(16) yields

ω2 = gk.
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In this case, the wave speed increases when the frequency decreases,
i.e. c = gω−1, which is fully consistent with the physical observation
that low frequency waves in the ocean propagate faster than the high
frequency ripples.

(b) Shallow water, when kh� 1, and hence tanh(kh) ∼ kh. In this case,
to leading order the dispersion equation (16) takes the form

ω2 = gk2h,

which implies c =
√
gh. In the framework of this approximation, the

wave speed in shallow water is frequency independent and hence the
shallow water waves can be treated as non-dispersive.

It is noted that the dispersion of surface water waves in the above illustrative
example is linked to the boundary condition (12), which involves the second-
order time derivative of the velocity potential.

The phenomenon of wave dispersion can also be observed in sim-
ple periodic structures. Conventionally, dispersion diagrams are used to
describe the change in frequency with the wave number, which will be illus-
trated in the next section.

b

MMM

μ

Figure 2. The one-dimensional spring-mass periodic structure.

0.3 Bloch-Floquet waves in periodic structures

A Bloch-Floquet wave in a periodic system is an object discussed in
the classical texts, such as Kittel (1996) and Brillouin (1953). We give an
outline of elementary examples incorporating a time-harmonic motion of a
one-dimensional periodic lattice, consisting of rigid particles connected by
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massless springs. The sketch of such a system is shown in Fig. 2. First, we
consider the case when all particles have the same mass M , which will be
followed by the comparative analysis of the inhomogeneous lattice involving
particles of different mass. The separation between neighbouring masses is
set to be unity, and the stiffness of springs is assumed to be μ.

Let un be the displacement of the n-th node within the chain, with
the unit interatomic spacing (b = 1). Then the equations of motion take
the form

Mün = μ(un+1 + un−1 − 2un) with n being integer. (17)

If the motion is time harmonic then un = Un exp(−iωt), and therefore

−Mω2Un = μ(Un+1 + Un−1 − 2Un). (18)

In the case of travelling waves, we have

Un = UeinK , with U = const, (19)

and the equation of motion becomes

−ω2MUn = 2μUn(cos(K)− 1).

The quantity K is said to be the Bloch parameter, and a solution un of
(17), which satisfies the condition

us+n = use
inK ,

is referred to as the Bloch-Floquet wave. A non-trivial solution Un of (18),
(19) exists, provided ω and K satisfy the following dispersion equation

ω2 − 2μ

M
(1− cos(K)) = 0,

whose non-negative roots are

ω = 2

√
μ

M
| sin(K/2)|. (20)

The corresponding dispersion curve, representing a periodic function of pe-
riod 2π, is shown in Fig. 3. When the separation between the neighbouring
particles equals b, the period for the dispersion curve becomes 2π/b. The
interval (−π/b, π/b) is known as the irreducible Brillouin zone. Conven-
tionally the dispersion diagrams are displayed for the values of K from the
irreducible Brillouin zone. In the case when the “interatomic spacing” in
the lattice equals b, the dispersion equation (20) is modified as follows:

ω = 2

√
μ

M

∣∣ sin (Kb

2

)∣∣. (21)
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Figure 3. Dispersion diagram for a uniform spring-mass structure

Standing waves and “long-wave” asymptotic estimates

It is convenient to refer to the general case of an arbitrary interatomic
separation b within the lattice. In particular, taking b→ 0 one obtains the
continuum limit. We note that

Un+1/Un = eiKb,

and within the irreducible Brillouin zone we have Kmax = π/b. In the
continuum limit, as b→ 0, we deduce Kmax →∞.

The transmission velocity of a wave packet is called the group velocity,
and it is given as

vg =
dω

dK
=

√
μ

M
b cos(Kb/2).

On the boundaries K = ±π/b of the Brillouin zone, we have vg = 0; the
solution Un represents a standing wave with zero net transmission velocity,
and Un = (−1)nU.

In many physical applications, it is useful to have asymptotic ap-
proximations corresponding to the long wave limit. In particular, this will
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give the slope of the curve ω = ω(K) as K → 0+, which is also referred
to as the effective group velocity veff often used in homogenization approxi-
mations of wave phenomena in structured media. When Kb � 1, we have
cos(Kb) � 1 − 1

2 (Kb)2, and hence ω2 � μ
M (Kb)2. Hence, veff = (μ/M)1/2b,

and thus veff is frequency-independent in this limit.

A bi-atomic chain and stop bands

As a classical example (see, for example, Kittel (1996) and Brillouin (1953)),
the one-dimensional periodic lattice consisting of two types of particles,
of different masses, gives a very good illustration of filtering properties of
structured media.

Compared to the previous section, the new periodic system has two
types of masses, M1 and M2, and springs of the normalized stiffness μ (see
Fig. 4).

2

121 MMM

μ

Figure 4. The one-dimensional “bi-atomic” periodic structure.

In this case the elementary cell of the periodic lattice includes two dif-
ferent particles, with displacements un and vn, and one needs two equations
of motion as follows

M1
d2un

dt2
= μ(vn + vn−1 − 2un), M2

d2vn
dt2

= μ(un+1 + un − 2vn), (22)

Let D be the size of the elementary cell, which is equal to the distance
between the nearest particles of the same mass. Travelling waves are defined
by

un = Uei(nKD−ωt), vs = V ei(nKD−iωt),
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where K is the wave number. On substitution into the equations of motion,
we have

ω2μ−1M1U +V (1+e−iKD)−2U = 0, ω2μ−1M2V +U(1+eiKD)−2V = 0.

This is a homogeneous system of linear algebraic equations with respect to
U and V , and it has a non-trivial solution if and only if

M1M2

μ2
ω4 − 2(M1 +M2)

μ
ω2 + 2(1− cos (KD)) = 0. (23)

This is the dispersion equation providing the relation between ω and K. For
the present simple system, this equation has the explicit solution

ω2 = μ
M1 +M2 ±

√
(M1 +M2)2 − 2M1M2(1 − cos (KD))

M1M2
. (24)

This formula suggests that the corresponding dispersion diagram, constructed
for equation (23) has two branches. They are referred to as the “acoustic
branch” (for the sign “-” in (24)) and the “optical branch” (for the sign “+”
in (24)), as shown in Fig. 5.

We note that for the non-homogeneous system, when M1 �= M2, there
is a non-zero separation between the dispersion curves, a stop band. The
width of the stop band can be computed by evaluating the frequencies at
the end points of the Brillouin zone. At the boundary of the Brillouin zone,
when K = ±π/a, the roots of the dispersion equation are defined by

ω2 =
μ

M1M2
{M1 +M2 ± |M1 −M2|}.

Assuming that M1 < M2, one can deduce that the width of the band gap is
equal to

√
2μ/M1 −

√
2μ/M2. If we fix M2 and let the contrast parameter

r = M2/M1 increase, then the width of the stop band will increase. No prop-
agating wave exists within the interval of frequencies (

√
2μ/M2,

√
2μ/M1).

By looking at the dispersion diagram in Fig. 5, we can also identify
the high frequency stop band defined as the interval (ω∗,+∞), where ω∗ =
2μ( 1

M1
+ 1

M2
) is the upper limit for frequencies corresponding the optical

branch of the dispersion diagram, obtained as K → 0.
For the bi-atomic lattice system, the Bloch-Floquet waves exist only

within the frequency intervals [0,
√

2μ/M2] and
[√

2μ/M1,
√
2μ( 1

M1
+ 1

M2
)
]
,

which are also called the pass-band intervals; one can control the size of the
pass-band intervals by changing the stiffness of springs and the masses of
particles.
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Figure 5. Dispersion curves for the “bi-atomic” spring-mass structure; in
this computation M1 = 1,M2 = 2, μ = 1.

0.4 Lattice approximation for continuous structured me-
dia

As we have demonstrated in the above section, the whole pass-band
set, incorporating all pass-band intervals for a discrete periodic lattice, is
bounded. In contrast, a continuum system would support propagation of
high-frequency waves. For high-contrast periodic structures it is sometimes
possible to construct a “lattice approximation”, which would describe ad-
equately the dispersion properties of Bloch-Floquet waves in the low fre-
quency range. An example of such a structure is discussed in this section,
which is based on the paper by Movchan et al. (2002b).

Instead of a discrete system of masses connected by weightless springs,
we consider here a one-dimensional periodic array of elastic rods of different
stiffnesses μj , j = 1, 2, and non-zero mass density, as shown in Fig. 6.
For convenience, it is assumed that the linear mass density ρ is the same
for all elements of this structure. Thus, the elementary cell contains two

types of elastic rods. We use the notations S
(n)
1 = (−b+ nD, nD), S

(n)
2 =

(nD, a + nD), where n is integer, and D = a + b is the total size of the
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elementary cell.
Assuming that the waves are time-harmonic, of the radian frequency

ω, we deduce that the amplitudes of the longitudinal displacements Uj(x), j =
1, 2, satisfy the equations

μjU
′′
j + ω2ρUj = 0, x ∈ S

(n)
j , j = 1, 2. (25)

The ideal contact conditions at the interface between two neighbouring rods
imply

U1 = U2, μ1U
′
1 = μ2U

′
2. (26)

The solution is sought in the class of Bloch-Floquet waves, for which
we can write

Uj(x+D) = eiKDUj(x), j = 1, 2, |K| < π/D, (27)

where K is the Bloch parameter.

The general solution of (25) is Uj = Aje
ikjx+Bje

−ikjx, x ∈ S
(n)
j , j =

1, 2, where Aj , Bj , j = 1, 2, are constant coefficients, and kj(ω) = ω
√

ρ/μj ,
j = 1, 2, are linear functions of ω. The interface conditions (26) and the
Bloch-Floquet’s condition (27), written for displacements within the ele-
mentary cell, lead to a homogeneous system of linear algebraic equations
with respect to Aj , Bj , j = 1, 2:

Q(K,ω)

⎛
⎜⎜⎝

A1

B1

A2

B2

⎞
⎟⎟⎠ = 0, (28)

where

Q(K,ω)

=

⎛
⎜⎜⎝

1 1 −1 −1
μ1k1 −μ1k1 −μ2k2 μ2k2

−ei(KD−k1b) −ei(KD+k1b) eik2a e−ik2a

k1e
i(KD−k1b) −k1ei(KD+k1b) −μ2

μ1
k2e

ik2a μ2

μ1
k2e

−ik2a

⎞
⎟⎟⎠ . (29)

This system has a non-trivial solution, provided

detQ(K,ω) = 0, (30)

which relates the radian frequency ω to the Bloch parameter K and hence
gives the dispersion equation for Bloch-Floquet waves propagating along the
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periodic structure. It is convenient to introduce the notation ε = μ1/μ2,
and in this case k2 = k1

√
ε. Then (30) leads to

(ε+1) sin(k1b) sin(k1a
√
ε)−2

√
ε(cos(k1b) cos(k1a

√
ε)−cos(KD)) = 0. (31)

The dispersion diagram, which shows ω versus K, is given in Fig. 7.
Let ε � 1 and k1b � 1, i.e. the structure has the high-contrast

in stiffness for different components, and the elastic rods of length b are
relatively “short”. Then the corresponding trigonometric parts in the left-
hand side of (31) can be expanded into power series, and after truncation
we obtain a polynomial expression in powers of ω.

Retaining the terms up to ω4, we obtain the approximate dispersion
equation

ω4P − ω2Q+ 2(1− cos(KD)) = 0, (32)

where the quantities P and Q are positive and have the form

P =
ρ2

12/μ2
1

(εa2 + 2εba+ b2)(εa2 + b2 + 2ba), Q =
ρ

μ1
(a+ b)(εa+ b).

Remarkably, equation (32) has the same structure as (23) derived for a
discrete system incorporating a one-dimensional array of masses M1,M2

connected by elastic springs of stiffness μ. This observation suggests that a
discrete lattice system can be used to approximate a high-contrast periodic
continuous systems to obtain its dynamic response within the low frequency
range.

This discrete model can be characterised by the two parametersM1/μ
and M2/μ, and the equations (32) and (23) become the same when

P = M1M2/μ
2, Q = 2(M1 +M2)/μ.

Of course, in this case the dispersion diagrams, within the range of frequen-
cies covering the acoustic and optical branches, also agree. In the dispersion
diagram of Fig. 7 we show the dependance of k1 versus K and note the
presence of stop bands, which occur for Bloch waves in the high-contrast
bi-material periodic system. For this computational example we used the
following numerical values of the geometrical and materials parameters:
D = 1, b = 0.5, ε = 0.1.

It is noted that an infinite number of dispersion curves corresponds to
the bi-material continuum system, whereas the lattice approximation covers
only first two dispersion curves adjacent to the origin.
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Figure 6. One-dimensional arrays of two layers (A) and the approximating
periodic lattice system of two types of particles connected by springs (B).

0.5 Transmission through a finite thickness interface

We can consider a one-dimensional “structured interface”, which in-
corporates a finite number of elastic rods aligned with the x−axis and joined
together sequentially. The rods themselves may have different lengths, den-
sities and elastic stiffness. A wave propagating in the positive direction of
the x−axis interacts with the interface, and some of the energy gets re-
flected whereas the remaining energy is transmitted through the interface.
The percentage of the reflected energy is frequency dependent. For the
case when there is a repeating pattern, and the size of such an interface
increases to infinity to form a periodic structure, it is appropriate to make a
connection with analysis of Bloch-Floquet waves and their dispersion prop-
erties in the periodic system, as explained in Lekner (1994) and Brun et al.
(2010a). However, when the thickness of the interface structure is not large,
the analysis follows a different pattern. The emphasis is on trapped modes,
which may exist within the structured interface and which may enhance its
transmittance properties. The transmission matrix technique, as in Lekner
(1994), is an efficient tool outlined below.

The displacement amplitude u for the time-harmonic motion of ra-
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Figure 7. Dispersion diagram for Bloch waves in the high-contrast bi-
material periodic system.

dian frequency ω satisfies the equation

∂2u(x)

∂x2
+

ρ

μ
ω2u(x) = 0, (33)

where ρ and μ are the mass density and the stiffness constants, respectively.
The wave form can be expressed in terms of complex amplitudes A and B

u(x) = A exp(ikx) +B exp(−ikx), (34)

with

k = ω c, c =

√
ρ

μ
.

Consider a one-phase interface located at x = x0 and x = x1 = x0+d.
Then displacements and tractions are related by⎡

⎢⎢⎣
u(x1)

μ
∂u

∂x
(x1)

⎤
⎥⎥⎦ =

⎡
⎣ m11 m12

m21 m22

⎤
⎦
⎡
⎢⎢⎣

u(x0)

μ
∂u

∂x
(x0)

⎤
⎥⎥⎦ , (35)
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where, according to (34), we have

M =

⎡
⎢⎣ cos δ

sin δ

Q

−Q sin δ cos δ

⎤
⎥⎦ , (36)

with Q = μ k and δ = k d being the phase increment. The matrix M in (36)
is said to be the transfer matrix and its eigenvalues are

cos δ ±
√
cos2 δ − 1 = exp(±iδ). (37)

Along the same lines, we now analyse a discrete interface consisting
of two springs of stiffness γ and and a mass m. The transfer matrix M(d)

of the discrete interface is defined in the form

M(d) =

⎡
⎢⎢⎢⎣

γ −mω2

γ

2γ −mω2

γ2

−mω2 γ −mω2

γ

⎤
⎥⎥⎥⎦ . (38)

The eigenvalues of the transfer matrix (38) are

1− m

γ
ω2 ±

√
m

γ
ω2

(
m

γ
ω2 − 2

)
, (39)

so that the dependence on ω is algebraic for the structured discrete interface,
in contrast with the continuum one-phase interface (see (37)). It is also
noted that the eigenvalues (39) are complex for sufficiently small ω and real
when ω is sufficiently large.

If several interface regions, continuous or discrete, are placed together
to form an interface stack then the transfer matrix is obtained by the ap-
propriate multiplication of the transfer matrices of individual layers within
the stack, as discussed in Brun et al. (2010a).

Reflected and transmitted energy

We consider an interface stack with the overall 2 × 2 transfer matrix M =
(mij) separating two elastic media (for the one dimensional case, we have
two semi-infinite elastic rods located along the intervals x < x0 and x > x1),
with the density ρ− and stiffness μ− on the left from the interface and the
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density ρ+ and stiffness μ+ on the right from the interface. The incident
and reflected waves on the left of the interface admit the representation

u(x) = AI exp(ik−x) +AR exp(−ik−x), (40)

where AI and AR are the incident and reflection amplitudes, while the
transmitted wave on the right of the interface is given by

u(x) =

√
μ−
μ+

AT exp(ik+x), (41)

with AT denoting the transmission amplitude, and k± standing for the cor-
responding wave numbers in the regions outside the interface.

According the definition of the transfer matrix outlined in the text
above, the coefficients AR, AT and AI satisfy the equation√

μ−
μ+

[
AT e

ik+x1

iQ+AT e
ik+x1

]
= M

[
AIe

ik−x0 +ARe
−ik−x0

iQ−(AIe
ik−x0 −ARe

−ik−x0)

]
, (42)

where Q± = μ±k±. In turn, the amplitudes AR and AT of the reflected
and transmitted waves can be written (see Brun et al. (2010a)) in the form

ĀR =
Q−Q+m12 +m21 + i(Q−m22 −Q+m11)

Q−Q+m12 −m21 + i(Q−m22 +Q+m11)
e2ik−x0 ,

ĀT =

√
μ+

μ−

2iQ−
Q−Q+m12 −m21 + i(Q−m22 +Q+m11)

ei(k−x0−k+x1),

(43)
where we have used the normalised quantities ĀR = AR/AI , ĀT = AT /AI .

According to the standard procedure, as in Lekner (1994) and Brun et
al. (2010a), the normalized reflected R and transmitted T = 1−R energies
are given by

R = |ĀR|2 =
(Q−Q+m12 +m21)

2 + (Q−m22 −Q+m11)
2

(Q−Q+m12 −m21)2 + (Q−m22 +Q+m11)2
,

T = |ĀT |2Q+

Q−
=

4Q−Q+

(Q−Q+m12 −m21)2 + (Q−m22 +Q+m11)2
,

(44)

so that the total transmission corresponds to the case of R = 0, T = 1, and
total reflection corresponds to R = 1, T = 0.

Defect modes and enhanced transmission

There is a connection between the transmission properties of a finite width
stack and dispersion properties of Bloch waves in infinite doubly periodic
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plane. In particular, if a full stop band is identified for Bloch waves, then
the the finite width stack built of the same material is expected to reflect
the bulk of the energy within the stop band frequency range. However, the
presence of defects in the stack may alter its transmission properties. This
is illustrated here for a simple one-dimensional example.

We consider the one-dimensional problem involving the spring-mass
interface, as described above. In the computational example below, the dis-
crete interface is composed of masses m = 387.3kg and M = 3m connected
be identical springs of stiffness γ = 3873N/m. The dispersion diagram,
which shows the wave number versus the radian frequency, for the two
mass lattice system is given in Fig. 8. As expected, this diagram includes
the band gap. If a finite sample mM −mM −mM −mM of this periodic
system is used as a structured interface, the bulk of the energy would be
reflected within the stop band frequency range.

1 2 X 4 3

5&3

Y&5

Y&3

Z&5

Z&3

X&5K

ω

Figure 8. Dispersion diagram for discrete system of masses m and M
connected by springs of stiffness γ.

The plot of the normalized reflected energy as a function of the fre-
quency are shown (in gray colour) in Fig. 9 where the bi-atomic lattice
interface mM −mM −mM −mM is inserted between two different infi-
nite continuous media. The continuous media on the left and on the right
from the interface have the elastic impedance

√
ρ−μ− = 100Pa/m and√

ρ+μ+ = 1500Pa/m, respectively.
On the same figure, we also show (black curve) the normalised re-

flected energy for the interface mM−Mm−mM−mM , where a defect has
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5 1 2 X 4 3
Ω

5&Z

5&4

5&[

5&V

Y&5
R

Figure 9. Normalised reflected energy for the stack consisting of 4 cells,
mM-Mm-mM-mM (black curve), versus the normalised reflected energy for
the stack mM-mM-mM-mM (gray curve).

been created by changing the order of masses M and m in the second cell
of the stack. This change leads to an enhanced transmission (i.e. a sharp
drop in the reflected energy), which is clearly visible on the diagram in Fig.
9. This effect is discussed in detail in the next section, where localisation,
associated with “defect modes” within a structured interface, is shown to
lead to an enhanced transmission.

0.6 Polarisation and enhanced transmission of elastic waves by
a shear-type structured interface

This section reviews the results of the paper by Brun et al. (2010b)
addressing a vector problem of two-dimensional elasticity incorporating
plane pressure and shear waves interacting with a finite width structured
interface of shear type. The emphasis is on the formation of the defect
modes within the interface, which lead to an enhanced transmission. For
this configuration, we also discuss the wave polarisation as a result of the
interaction with the structured interface
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Structured interface in an elastic medium

The structured interface is assumed to occupy a horizontal strip in the
(x, z)-plane:

ΠD = {(x, z) : x ∈ R,−D ≤ z ≤ 0} . (45)

We consider an example where the structure within the interface includes
three parallel elastic infinite bars connected by transverse elastic massless
links. In other words, within the interface we have an elastic frame, so
that the angle between the vertical links and the horizontal elastic bars is
maintained at π/2. The notations Ω± are used for the half-planes above
and below the structured interface. The sketch of the elastic system and
relevant notations are shown in Fig. 10.

incident pressure

P

�
P �

wave

�

S

S
�

�

P

wave
shear
transmitted wave

pressure
transmitted

wave
shear
reflected

wave
pressure
reflected

Ω+

Ω−

Figure 10. Structured shear-type interface, separating the elastic half-
planes Ω±.
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Each elastic bar lj , j = 1, 2, 3, is assumed to be of high flexural stiff-
ness and hence is approximated as as a one-dimensional elastic element,
which moves only in the horizontal direction (along the Ox-axis), with the
elastic displacement u(j) ∼ uj(x, t)e

(1). The equations of motion can be
written separately for the elastic bar inside the interface (j = 2), and for
the bars adjacent to Ω+ and Ω− (j = 1 and j = 3). The equation of motion
for the interior bar is

E(u2)xx − ρ(u2)tt − 2γu2 + γ(u3 − u1) = 0, (46)

where (uj)xx and (uj)tt stand for the second-order partial derivatives with
respect to x and t, respectively.

For the bars forming the boundary of the structured interface, the
equations of motion are

E(u1)xx − ρ(u1)tt + γ(u2 − u1) + τ+ = 0, (47)

E(u3)xx − ρ(u3)tt + γ(u2 − u3)− τ− = 0. (48)

Here τ+ and τ− are the shear stresses in the ambient elastic media above
and below the interface.

Elastic waves in the ambient medium

The upper half-plane Ω+ includes the incident plane pressure wave, together
with reflected pressure and shear waves. The transmitted pressure and shear
waves propagate in the lower half-palne Ω−. Taking the x−axis along the
interface, z−axis perpendicular to the interface and y−axis to be pointed
out of the plane of Fig. 10, we use the standard representation of the
displacement

u(x, z, t)e(1) + w(x, z, t)e(3)

in terms of the scalar and vector potentials ϕ(x, z, t) and ψ(x, z, t)e(2):

u =
∂ϕ

∂x
− ∂ψ

∂z
, w =

∂ϕ

∂z
+

∂ψ

∂x
. (49)

The notations {ϕ(I), ψ(I)}, {ϕ(R), ψ(R)}, {ϕ(T ), ψ(T )} correspond to the in-
cident, reflected and transmitted waves, respectively. Since the incident
wave is assumed to be of pressure type, we have ψ(I) ≡ 0.

Assume that the same elastic material occupies Ω+ and Ω−. If α,
β are the wave speeds of the pressure and shear waves then the pressure
and shear wave potentials φ and ψ in the elastic continuum satisfy the wave
equations

�ϕ− 1

α2

∂2

∂t2
ϕ = 0, �ψ − 1

β2

∂2

∂t2
ψ = 0, (50)
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where

α =

√
λ+ 2μ

ρ
, β =

√
μ

ρ
. (51)

Let c be an apparent velocity of the incident pressure wave along the
horizontal interface, and let χP ∈ [0, π/2] and χS ∈ [0, π/2] denote the angle
between the direction of the incident or transmitted pressure wave and the
horizontal interface and the angle between the direction of propagation of
the reflected or transmitted shear wave and the horizontal interface. Then

a := tanχP =

√
c2

α2
− 1 and b := tanχS =

√
c2

β2
− 1. (52)

For the pressure wave, the angle of reflection is equal to the angle of inci-
dence, and χS > χP (see Fig. 10).

Accordingly, the pressure and shear wave potentials are

ϕ+ = ϕ(I) + ϕ(R) = AI exp[ik(ct− x+ az)] +AR exp[ik(ct− x− az)],

ψ+ = ψ(R) = BR exp[ik(ct− x− bz)], (53)

in Ω+, and

ϕ− = ϕ(T ) = AT exp[ik(ct− x+ az)],

ψ− = ψ(T ) = BT exp[ik(ct− x+ bz)], (54)

in Ω−. Here

k =
2π

ΛP
cosχP =

2π

ΛS
cosχS , (55)

where ΛP and ΛS are the wave lengths of the pressure and shear waves in
the ambient elastic medium Ω+ ∪ Ω−, and ω = kc is the radian frequency.

It is assumed that the amplitude AI of the incident pressure wave
is given, whereas AR, BR, AT , BT are evaluated with the account of the
structured interface. In the text below, special attention is given to an
enhanced transmission corresponding to a class of trapped modes which
may occur within the interface structure.

The energy balance

Assuming that the motion is time-harmonic with the radian frequency ω,
we use the notations Uj and T± for the amplitudes of the displacements
of the bars lj , j = 1, 2, 3 and for the shear stresses above and below the
interface.
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Then the equations of motion of elastic bars within the shear-type
interface lead to the algebraic system

RU = T, (56)

where

U = (U1, U2, U3)
T , T = (−T+, 0, T−)T , (57)

and

R =

⎛
⎝−Γ γ 0

γ −Γ− γ γ
0 γ −Γ

⎞
⎠ , (58)

with Γ = k2E + γ − ρω2.
As described in Brun et al. (2010b), the standard procedure involves

the Betti formula applied to the displacement and its complex conjugate
above and below the interface. Furthermore, using the plane wave repre-
sentations (53) and (54) that include the pressure and shear wave potentials
we deduce the following energy balance relation

EI = ER + ET , (59)

where

EI = a|AI |2, ER = a|AR|2 + b|BR|2, ET = a|AT |2 + b|BT |2, (60)

EI , ER and ET represent the vertical energy fluxes of the incident, reflected
and transmitted fields, respectively.

The effect of the interface on the distribution of energy can be seen
by the evaluation of the coefficients AR, BR and AT , BT characterising the
reflected and transmitted fields.

Trapped modes within the structured interface

Trapped vibrations within the structured interface can significantly alter
its transmission properties. In the particular case involving the three-bar
interface we discuss several examples in this section.

For a non-resonant regime, when det R �= 0, the system (56) has a
solution ⎛

⎝ U1

U2

U3

⎞
⎠ = R−1

⎛
⎝ −T+

0
T−

⎞
⎠ , (61)
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where

R−1 =
1

(γ − Γ)(2γ + Γ)

⎛
⎜⎝ γ − γ2

Γ + Γ γ γ2

Γ
γ Γ γ
γ2

Γ γ γ − γ2

Γ + Γ

⎞
⎟⎠ . (62)

In particular, the effective transmission relations for the shear displacements
and shear stresses across the structured interface have the form:

U1 =
γ2

Γ (T+ + T−)− T+(γ + Γ)

(γ − Γ)(2γ + Γ)
,

U3 =
T−(γ + Γ)− γ2

Γ (T+ + T−)
(γ − Γ)(2γ + Γ)

. (63)

Solving the above system of algebraic equations with respect to BR, BT we
deduce that

BR = −2a

Ψ

[
Φ(Γ2 + γΓ− γ2)− γ2Γ(1 + ab)

]
AI ,

BT =
2ia2(1 + b2)

Ψ
kγ2μeibDkAI , (64)

where Ψ = Γ(1 + ab) + ikμa(1 + b2) and Φ = Ψ
[
(γ + Γ)Φ− 2γ2(1 + ab)

]
.

The conditions of zero transverse displacements at the interface lead to the
expressions for the coefficients AR, AT as follows

AR = AI − a−1BR, AT = a−1BT e
−ik(b−a)D, (65)

The full set {AR, BR, AT , BT } determines the reflected and transmitted
waves at the shear-type interface.

Furthermore, the system (56) can be written as follows

B

⎛
⎝ [[U ]]

[[V ]]
〈U〉

⎞
⎠ =

⎛
⎜⎝

T+ + T−
1
2 (T− − T+)
1
3 (T− − T+)

⎞
⎟⎠ , (66)

where [[U ]] = U3 − U1 represents the tangential displacement jump across
the interface, [[V ]] = 1

2 (U3 + U1)−U2 is the average jump representing the
difference between the average tangential displacement on the boundary and
the tangential displacement of the interior bar, 〈U〉 = 1

3 (U1+U2+U3) is the
average tangential displacement over the whole structured interface, and

B = diag
{−Ek2 + ρω2 − γ,−Ek2 + ρω2 − 3γ,−Ek2 + ρω2

}
. (67)
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The relation between ([[U ]], [[V ]]), 〈U〉)T and (U1, U2, U3)
T
has the form⎛

⎝ [[U ]]
[[V ]]
〈U〉

⎞
⎠ = Q

⎛
⎝ U1

U2

U3

⎞
⎠ , (68)

where

Q =

⎛
⎝ −1 0 1

1
2 −1 1

2
1
3

1
3

1
3

⎞
⎠ , (69)

and hence
B = QRQ−1. (70)

The rows of the matrix Q are the eigenvectors of R corresponding to
the eigenvalues, which coincide with the diagonal entries of the matrix B,
and

detB = detR. (71)

The relation
det R(ω, k) = 0 (72)

is the dispersion equation for the elastic waves propagating horizontally
along the structured interface, which is equivalent to

(−Ek2 + ρω2 − γ)(−Ek2 + ρω2 − 3γ)(−Ek2 + ρω2) = 0. (73)

The corresponding dispersion diagram has three branches shown in Fig. 11:

(1) Ek2 + 3γ − ρω2 = 0,

(2) Ek2 + γ − ρω2 = 0,

(3) Ek2 − ρω2 = 0. (74)

The lowest branch (3) gives a linear relation between k and ω, which corr-
esponds to a non-dispersive wave propagating along an elastic bar. For the
dispersive waves (branches (1) and (2)), there is a cut-off frequency

ω∗ =
√

γ

ρ
, (75)

and for ω < ω∗ no dispersive wave can propagate along the interface.
The resonance states correspond to the cases where the frequency ω

of the incident wave coincides with one of the solutions of the dispersion
equation (73). For the three-bar interface, such states can be classified as
follows:


