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PREFACE 

It has been recognized for several decades that uncertainty and ab­
sence of determinism play an important role in engineering sciences; 
to-date, three basic techniques have been developed to deal with vari­
ous uncertainties, namely in variation and scatter in uncertain sys­
tem parameters such as mechanical properties, geometric parameters, 
boundary conditions, in model uncertainties induced by modeling er­
rors as well as actions such as the impact of earthquakes, wind loads, 
imperfect road profiles, or turbulence experienced by aircraft. These 
methodologies are (a) probabilistic or stochastic modeling; (b) fuzzy 
sets based analysis, and (c) anti-optimization of structures. 

Spectacular advances have been recorded in stochastic mechanics 
based in the construction of stochastic models of uncertainties as soon 
as the probability theory can be used; likewise industrial applications 
have been developed worldwide in using fuzzy sets and logic for devis­
ing reliable machines and components, and a relatively recent new­
old field has emerged, referred to as anti-optimization (also known 
as convex modeling of uncertainty, ellipsoidal modeling, guaranteed 
approach, maxmin, and worst case analysis)-that identifies uncer­
tainty with boundedness. Interval analysis is the specific and simplest 
form of dealing with the best and worst scenarios under uncertainty. 
Imprecise probabilities combine both set and stochastic uncertainties, 
to obtain bounds of probabilities or expectations of variables. 

However, the question which analysis is preferable for researchers 
and engineers is short of a consensus, as one can anticipate. 

The aim of this book is to present the current state of the art of 
nondeterministic mechanics in its various forms. The topics range 
from stochastic problems to fuzzy sets; from linear to nonlinear prob­
lems; from specific methodologies to combinations of various tech­
niques; from theoretical considerations to practical applications. 

It is specially designed to illuminate the various aspects of above 
three techniques and deepen the discussion of their pros and cons. 

The book is divided in three parts. Part 1 is devoted to stochastic 
analysis; it contains papers by Umberto Alibrandi and Giuseppe Ric­
ciardi; Christian Soize; Isaac Elishakoff and Lova Andriamasy. Part 
2 is devoted to nonstochastic analysis with papers by Thomas Haag 
and Michael Hanss; and by Alberto Bernardini and Fulvio Tonon. 



Part 3 consists of one paper by Michael Oberguggenberger, dealing 
with combined methods. 

If this volume stimulates further mutual and useful dialogue be­
tween proponents of differing methodologies, with demarcation of the 
area in which an approach ought to be preferred-our effort will be 
amply rewarded. 

Isaac Elishakoff and Christian Soize, editors 
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Part 1 
Stochastic Models 



Stochastic Methods in Nonlinear Structural 
Dynamics 

Umberto Alibrandi* and Giuseppe Ricciardi* 

* Department of Civil Engineering, University of Messina, Italy 

Abstract The uncertainties are inherent in any structural problem. 
Here attention is focused only on the uncertain nature of the dy­
namic actions and its consequences on the structural response. In 
the framework of stochastic dynamics, only three methods are the 
most used: the Moment Equation Method (MEM), the Stochastic 
Linearization (SL) and the Monte Carlo Simulation (MCS). The 
MEM in conjuction with a closure method (CM) allows to obtain 
the response statistical moments, but it increases in complexity as 
the problem dimension increases. The SL is easily applied to a large 
variety of engineering problems. Providing information limited to 
the first two moments of the system response, unfortunately it suf­
fers of accuracy in the case of strongly nonlinear behavior. MCS is 
able to give additional information on the structural response, yield­
ing estimates for the probability density function of the nonlinear 
response, but it is computationally expensive. In this paper some 
improvements of these three methods are presented, which allow to 
overcome the aforementioned drawbacks. 

1 Introduction 

In many cases of engineering interest, the structural systems are subject to 
dynamic excitations characterized by complex random fluctuations, that can 
not be adequately represented by deterministic models. Stochastic meth­
ods are able to represent adequately these type of excitations as stochastic 
processes, giving a characterization of the structural response in terms of 
statistical moments or in terms of the probability density function (pdf). 
This is a very complicated task to be accomplished, and in literature much 
research has been devoted to this topic in the last several decades, giv­
ing rise to methods based on: (i) the numerical solution of Fokker-Planck 
equation, such as path integration (Naess and Johnsen, 1993; Wehner and 
Wolfer, 1983), cell mapping (Hsu, 1987) and finite element method (Spencer 
and Bergman, 1993), (ii) the Moment Equation Method (MEM), (iii) the 
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Stochastic Linearization (SL), (iv) the Monte Carlo Simulation (MCS). The 
latter ones (MEM, SL and MCS) have gained wide popularity by their appli­
cability to general nonlinear systems with many degrees of freedom (MDOF) 
and they will be described in detail in the following subsections. 

1.1 Moment Equation Method 

In the MEM approach the response statistical characterization is given 
by the response moments or by other quantities related to the former such 
as cumulants or quasi-moments (Stratonovich, 1967; Ibrahim, 1985). This 
method consists in writing differential equations for the response statistical 
moments of any order, taking advantage from the Fokker-Planck equation 
or from the Itlloce differential rule. 

When dealing with nonlinear systems a serious problem arises in the 
MEM approach, which stems from the need of knowing the response pdf 
to close the hierarchy of the resulting equations. In order to overcome this 
difficulty, the so called closure methods (CM) are used. The key idea is to 
approximate the response pdf in a series form, truncating it at a certain 
term. The coefficients of the above mentioned series can be written as 
functions of the response moments or of the response cumulants or of the 
response quasi-moments. Thus, neglecting the terms beyond a given order 
is equivalent to make moments or cumulants or quasi-moments zero, which 
makes the moment equations solvable. In this way the moments of higher 
order are expressed in terms of moments of lower order by means of nonlinear 
relationships. 

Cumulant neglect closure method has been independently developed by 
Wu and Lin (1984) and Ibrahim et al. (1985), which is certainly the most 
popular among the closure methods. Central moment and cumulant closure 
methods have been proposed by Bellman and Richardson (1968) and San­
cho (1970a), (1970b) in a mathematical context. Bover (1978) and Sperling 
(1979) independently presented the quasi-moments closure method. Cran­
dall (1980) presented the Hermite moment closure method. All these closure 
methods lead to a set of differential moment equations which are nonlinear. 
This nonlinearity is a major drawback in the case of systems with many de­
grees of freedom. This shortcoming has been overcome by Grigoriu (1999), 
which closed the moment equations taking advantage from MCS in order to 
estimate lower order moments, obtaining so a set of linear equations whose 
unknowns are the higher-order moments. 
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1.2 Stochastic Linearization 

The SL method is the most versatile method for the analysis of general 
nonlinear structures under random excitations. In almost 60 years since 
its virtually simultaneous presentations by Booton (1953), Kazakov (1956) 
and Caughey (1959), SL has been widely applied in the study of various 
nonlinear structures. For example, the monographs by Roberts and Spanos 
(1991) and Socha (2008) and many review papers (Socha and Soong, 1991; 
Elishakoff, 2000; Falsone and Ricciardi, 2003) written in these last years 
confirm its success. 

The basic idea of SL is to replace the original nonlinear system by an 
equivalent linear one, whose determination is performed by minimizing the 
difference between the two systems in some statistical sense. The SL exhibits 
different forms based on the adopted pdf for the evaluation of the coefficients 
that appear in the linearized system (Kozin, 1988). 

The Gaussian Stochastic Linearization (GSL) is based on the hypothe­
sis of Gaussianity of the response process and it allows approximating the 
second order moments of the response. In this way, the probabilistic charac­
terization of the equivalent linear system response reduces to the evaluation 
of its Gaussian properties. Against relatively little numerical efforts, un­
fortunately the GSL method gives accurate results for weakly nonlinear 
systems only. This drawback is due to the inadequacy of the Gaussian as­
sumption to represent the non-Gaussian characteristic of the response for 
systems that exhibit strong nonlinear behaviour. 

Kozin (1988) introduced the concept of "true" linearization. He showed 
that, if the averages appearing in the expressions of the equivalent coef­
ficients are evaluated by the exact probability density function of the re­
sponse, the "true" stochastic linearization leads to the exact results in terms 
of response covariances. Starting from these observations, alternative ap­
proaches have been developed based on a more realistic representation of 
the non Gaussian probability density function of the response process. Bea­
man and Hedrick (1981) improved the accuracy of the GSL method by 
using the classical Gram-Charlier series expansion of the unknown proba­
bility density function of the response, which includes up to fourth order 
terms. The coefficients of the series expansion are approximately evaluated 
by solving the non-linear system of the moment equations up to fourth order. 
Pradlwarter (1991) proposed a numerical method based on non-Gaussian 
stochastic linearization and on the Fokker-Planck equation, requiring non­
linear transformations in order to consider the non-Gaussian properties of 
the stochastic response. In the non-Gaussian linearization method proposed 
by Chang (1992), the non-Gaussian density is built as the weighted sum of 
undetermined Gaussian densities. The undetermined Gaussian parameters 
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are then derived through solving a set of non-linear algebraic moment re­
lations. Lee (1995) improved the stochastic linearization results for the 
Duffing oscillator by performing a non-Gaussian closure scheme, based on 
the abridged Edgeworth series expansion of the probability density of the 
response. Hurtado and Barbat (1996) proposed an improved non-Gaussian 
stochastic linearization for the Bouc-Wen-Baber hysteretic model by us­
ing mixed discrete-continuous Gaussian distributions. Recently, Crandall 
(2004) proposed the use of non-Gaussian distributions for the stochastic 
linearization of the power law and the double-well Duffing oscillators. 

1.3 Monte Carlo Simulation 

Whereas only biased estimates for the first two statistical moments of 
the response are obtainable by the SL method, MCS yields unbiased esti­
mates for the probability density function of the nonlinear response. The 
first applications in structural dynamics are due to Shinozuka (1972) and 
Shinozuka and Wen (1972) and later extended by other authors (Grigoriu, 
1993; Grigoriu, 1998; Spanos and Zeldin, 1998; Schueller and Spanos, 2000). 

MCS is very robust and relatively easy to apply. A sample size of few 
hundred independent realizations is generally sufficient to obtain a suitable 
estimate for the first lower order moments and to provide information on the 
shape of the distribution. MCS becomes an increasingly attractive method 
as the problem dimension increases. Hence MCS is often the only feasible 
solution for real engineering problems with large dimensions. Besides be­
ing more efficient than analytical-based approaches, it has the advantages 
that the tools of deterministic analysis can be fully exploited. Against its 
efficiency, the computational costs required are often very high. Clearly, 
the computational efforts increase with the dimension and the complexity 
of the nonlinear structural models. Hence, efficient techniques have been 
proposed in order to reduce the computational burden, such as variance 
reduction procedures (Roberts, 1986), importance sampling (Tanaka, 1998; 
Au and Beck, 2001), controlled MCS (Harnpornchai et al., 1999). 

1.4 Outline 

The MEM is difficult to apply in the case of complex structures, increas­
ing dramatically the number of nonlinear equations to be solved. The SL is 
less accurate in the case of structures with high nonlinearity. The MCS is in 
general time consuming, when higher order statistics or the probability den­
sities are of interest. In this paper, the aforementioned methods are called 
in their classical form first. Then, some improved versions are proposed for 
overcoming these problems. 
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2 Stochastic Structural dynamics 

2.1 Motion equations of the structural system 

Linear structure. A general form of the equations of motion of an 'n 
d.oJ. linear system is as follows: 

Mii(t) + Cu(t) + Ku(t) = GeFe(t) (1) 

where u(t) is the 'ns-vector of generalized displacement, M, C and K are the 
mass, damping and stiffness matrices, of order 'n s X 'nSl G e is an influence 
matrix, of order 'ns X 'ne, and Fe (t) is the 'ne-vector of external generalized 
forces. 

Nonlinear structure. The response u(t) of a general dynamical system 
with nonlinear behavior subjected to an external force vector Fe(t) satisfies 
the following nonlinear differential equations: 

Mii(t) + h[u(t), u(t)] = GeFe(t) (2) 

where h[u(t), u(t)] is the 'ns-vector of non-linear restoring forces, which 
depends on the displacements and velocities. 

External and parametric excitation. A more general form of a system 
of differential equations of motion can be given as: 

Mii(t) + h[u(t), u(t)] = GeF e(t)+Gp [u(t), u(t)]F p(t) (3) 

where F p(t) is the 'np-vector of parametric excitations, modulated by the 
matrix Gp[u(t), u(t)], of order 'n s X 'np, which depends on the system re­
sponse. 

The state vector approach. By introducing the vector of state vari­
ables Z(t) = [uT(t) uT(t) ]T, of order 2'ns, eq.(3) can be written in the 
following first order form: 

Z(t) = a[Z(t)] + V[Z(t)]F(t) (4) 

where F(t) = [Fr(t) F~(t)]T is the vector of external and parametric 
excitations, of order 'nf = 'ne+'np, while a[Z(t)] and V[Z(t)] are a 2'ns -vector 
and a 2'ns x 'nf matrix, respectively, given as: 

a[Z(t)] = [ -M-lh[~(t), u(t)] ] , (5) 
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o 
M-1Gp[u(t), u(t)] 

that are functions of the response vector of state variables Z(t). 

2.2 Filtered excitations 

(6) 

The vector of random excitations is frequently assumed as a station­
ary Gaussian stochastic process, characterized by a Power Spectral Density 
(PSD) matrix SFF (w) (or by its inverse Fourier transform, the correlation 
matrix RFF (T)). It can be considered as the response of a system of linear 
filter differential equations excited by m Gaussian white noises: 

(7) 

The matrices Aj and Vj are constant. The random excitations W(t) = 

[Wl(t) W2(t) Wm(t) ]T are zero-mean Gaussian white noise pro­
cesses, fully characterized by the second order cross-correlation functions 
E[Wk(tl)WZ(t2)] = QW5(tl - t2), E[ ·]being stochastic averaging, 0(') the 
Dirac's delta function, Qkl = 21fSkZ the constant strengths of the white 
noise processes, Ski the cross-power spectral density of Wdt) and Wz(t) . 

In general, the vector of random excitations can be considered as the 
response of a system of nonlinear filter differential equations excited by m 
white noises: 

F(t) = af [F(t)] + V f [F(t)]W(t) (8) 

where the vector af[F(t)] and the matrix V f[F(t)] depend on the excitation 
vector F(t). 

An example: the earthquake excitation. As an example, the earth­
quake excitation on a structure is given as: 

where ug(t) is the ground acceleration and T is an influence vector. 
In the model of the earthquake excitation given by Kanai-Tajimi (KT) 

(Kanai, 1957; Tajimi, 1960), the ground acceleration ug(t) is characterized 
by the following PSD: 

(10) 
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where Wg is the soil natural frequency, that determines the dominant range 
of input frequencies, while ~-g is the ground damping ratio, that indicates 
the sharpness of the power spectral density shape. The KT seismic model 
can be considered as a white noise excitation at bedrock level, with constant 
power spectrum Sw, filtered through the overlaying soil deposits. The seis­
mic excitation ug(t) is a stationary stochastic filtered white noise process 
obtained as solution of the following set of linear filter equations: 

{ 
Ug(t) = w~qg(t) + 2r:;gwgqg(t) 

ijg(t) + 2r:;gwgqg(t) + w~qg(t) = w(t) 
(11) 

The well known drawback of the KT model is that its PSD function 
approaches Sw when the frequency tends to zero, which is not consistent 
with the power spectrum of the real earthquake records. 

The Clough-Penzien (CP) model overcomes this drawback (Clough and 
Penzien, 1975), by introducing a further filter with two additional parame­
ters wp and r:;p ; the CP-PSD is given by: 

W4 
SCP(w;wp, r:;p)= 2 2 2 2 2 2 (13) (w - W ) + 4r:;' W W p P p 

The linear filter equations of the CP model are: 

{ 
Ug(t) = w~qg(t) + 2~gwgqg(t) - w~qp(t) - 2~pwpqp(t) 

ijp(t) + 2r:;pwpqp(t) + w~qp(t) = w~qg(t) + 2r:;gwgqg(t) 

ijg(t) + 2r:;gwgqg(t) + w~qg(t) = w(t) 

2.3 Dynamic equation of the whole system 

(14) 

The differential equations of the structure and of the filter, eqs.(4) and 
(8), can be cast in the following general form: 

X(t) = f[X(t)] + G[X(t)]W(t) (15) 

where X(t) = [ZT(t) FT(t) jT is the vector of order n = 2ns +nf collect­
ing the displacements and velocities of the structure and the components of 
the filtered external and parametric excitations, while f[X(t)] and G[X(t)] 
are an n-vector and an n x Tn matrix, respectively, given as: 
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f[X(t)] = [ a[Z(t)] + V[Z(t)]F(t) ] 
af[F(t)] 

G[X(t)] = [ V f[~(t)] ] 

(16) 

(17) 

that, in general, are functions of the vector X(t). Note that in the case 
of linear filter equations, G[X(t)] == G = cost, then the whole system is 
subjected to white noises external excitations only. 

2.4 IfiLCE stochastic differential equations 

Let us consider a non-linear system whose dynamic behavior, described 
by the time evolution of the n-vector of state variables X = X( t), is governed 
by the system (15) of n first-order differential equations (in scalar form): 

d m 
dt Xi(t) = J;[X(t)] + L Gik[X(t)]Wk(t) (18) 

k=l 

where Xi(t) (with 'i = 1,2, ... , n) are the components of the response state 
vector X(t), while Wk(t) (with k = 1,2, ... , m) are m random excitations. 
Functions J;[X(t)] and Gik[X(t)] of the state vector X(t) are generally non­
linear. If Gik[X(t)] are constant, i.e. Gik[X(t)]=Gik , then the system is 
said to be excited by additive excitations only; on the contrary, if the func­
tions GidX(t)] depend on the response process X(t) the system is said to 
be excited by multiplicative excitations. 

The white noise processes Wdt) are not mean square Riemann integrable 
and, consequently, eq.(18) has no traditional mathematical meaning. The 
latter can be considered to be formally equivalent to the following !thee-type 
stochastic differential equations (Lin, 1967; Ibrahim, 1985): 

m 

dXi(t) = m;[X(t)]dt + L Gik[X(t)]d~dt) (19) 
k=l 

where ~k(t) (with k = 1,2, ... , 'In) are m Wiener processes whose incre­
ments are characterized by cross-correlation functions E[d~k(tdd6(t2)] = 
Q k1 5(tl - t2)dtldt2, while mdX(t)] are the drift coefficients related to the 
coefficients of the equations of motion (18) by the following expression: 

m;[X(t)] = J;[X(t)] + z;[X(t)] (20) 

In particular, the second terms on the right-hand side of eq.(20), given by 
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are the well-known Wong-Zakai (or Stratonovich) correction terms (Wong 
and Zakai, 1965; Stratonovich, 1967). From eq.(21) it is easy to note that the 
Wong-Zakai correction terms zdX(t)] vanish in the case of purely additive 
excitations only. 

By introducing the standard Wiener processes B j (t) (with j = 1,2, ... ,n), 
whose increments dBj(t) are characterized by the cross-correlation functions 
E[dBj (tddBI(t2)] = b(h -t2)dt1dt2, eq.(19) can be rewritten in the follow­
ing equivalent Iti"l.ee form: 

n 

dXi(t) = mdX(t)]dt + L O"ij[X(t)]dBj(t) 
j=l 

(22) 

where O"ij [X( t)] are the diffusion coefficients related to the coefficients of the 
equations of motion (18) by the following expressions: 

m m 

O";j[X(t)] = L L QkIGik[X(t)]GjdX(t)] (23) 
k=ll=l 

3 Moment equation method (MEM) 

3.1 The moment equations of the response 

Exact solutions for non-linear systems subjected to additive or both 
additive and multiplicative random excitations are difficult to obtain. In 
many cases, therefore, it is necessary to adopt approximate solutions. In the 
case in which the response of the system can be represented by a Markov 
process, a frequently used approximate solution is given by the moment 
equation method (MEM). This approach is based on the use of the Ithee 
differential rule (Lin, 1967), given by: 

+~ ~ ~ [0"; [X(t)] a2cp[X(t)] dt] 
2~~ J ax ax 

i=l j=l 2 J 

(24) 
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where cp[X(t)] is a differentiable function of the response vector process 
X(t). By applying the stochastic average to both members of eq.(24) and 
dividing by dt, the following differential equation governing the evolution of 
the average of the function cp(X) = cp[X(t)] is obtained: 

Setting cp(X) = X~" X;2 ... X~n , the differential equation (25) rule all 
the moments of order k = kl + k2 + ... + kn of the response state vec­
tor X( t). For linear systems, the moment equations can be easily solved. 
Unfortunately, for non-linear systems, these equations constitute an infinite 
hierarchy; in fact the moment differential equations up to a given order con­
tain moments of higher order and, consequently, this system is not solvable. 

Two simple examples: the linear oscillator and the nonlinear Duff­
ing oscillator. Let us consider the following linear oscillator subjected to 
a white noise: 

U(t) + (3U(t) + kU(t) = yl2J3W(t) (26) 

where (3 and k are constants and W(t) is a Gaussian white noise with 
intensity q = 27f Sw, Sw being the constant power spectral density. In 
terms of the state variables we have: 

X(t) = DX(t) + GW(t) (27) 

where 

X(t) = [ X1(t) ] = [ ,-!(t)] D = [ 0 
X2 (t) U(t) , -k 

The stationary response is Gaussian and the complete probabilistic char­
acterization is given by the second order moment of displacement and ve­
locity. By applying eq.(25), the following second order moment equations 
result: 

(29) 

(30) 
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(31) 

Eqs.(29)-(31) constitute a closed set of equations whose unknowns are 
the second order moments E[Xfl, E[XIX2l and E[X~l. It can be solved by 
a numerical scheme in order to obtain the time evolution of the response 
moments. The stationary solution can be easily determined by solving the 
set of algebraic equations resulting from eqs. (29)-(31) where the left-hand 
sides are set to zero. The stationary second order moment are: 

E[Xrl =~, E[X1X2l = 0, E[X5l = q (32) 

Let us consider now the following nonlinear Duffing oscillator: 

U(t) + f3U(t) + kU(t) + EkU3 (t) = ~W(t) (33) 

where E > 0 is a nonlinear parameter. In this case the response is not 
Gaussian and, in principle, all the moments of every order are needed in 
order to characterize the response. Operating in a similar way, by using the 
Ithee differential rule the moment equations of every order can be written. 
For example, the second order moment differential equations are: 

d 2 4 2 dt E[XIX2l = -kE[Xll - EkE[Xll + E[X2l - f3 E [XIX2l (35) 

dd E[X5l = -2f3E[X5l - 2kE[XIX2l - 2EkE[X13 X 2l + 2f3q (36) 
t 

These equations cannot be solved, because moments of fourth order ap­
pear. This circumstance is also evident in the moment equations of every 
order r, where the moments of order r + 2 appear. Then the moment 
differential equations constitute an infinite hierarchy of equations, whose 
solution requires the use of a closure scheme in order to express the higher 
order moments in terms of the lower order ones. 

3.2 Closure schemes 

The moment equation method applied to nonlinear systems requires the 
use of a closure scheme in order to become solvable the hierarchy of the 
equations, by expressing in an approximate way the higher order moments 
in terms of lower order ones. This goal can be obtained by introducing a 
suitable approximation of the pdf of the response. 
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The Gaussian Closure (GC). The simplest closure method is given by 
the Gaussian approximation and the resulting scheme is called Gaussian 
Closure (GC). The Gaussian probability density function is given as: 

c 1 [1 T 1 ] Px(x) = exp --(x - /LX) ~x (x -{LX) 
J(27f)n Det(~x) 2 

(37) 

where /Lx = E[Xl is the mean vector and ~x = E[(X - /Lx)(X - /Lx)Tl 
is the covariance matrix of the response. In this way, the moment of order 
grather than two can be expressed in term of the moment up to second 
order by means of nonlinear relationships. The moment equation method 
in conjuction with the GC consider the second order moment equations only. 

An example: the Gaussian Closure applied to the nonlinear Duff­
ing oscillator. As an illustration, the Duffing oscillator is considered. In 
the second order moment equations (34)-(36) the fourth order moments 
E[xtl and E[Xl X2l appear. From the Gaussian hyphothesis, they can be 
expressed in an approximate way in terms of the second order moments as 
follows: 

E[xtl ;:::; Ec[xtl = 3(E[Xt])2 (38) 

(39) 

In the stationary state, the algebraic second order moment equations 
reduce to the following set of nonlinear equations: 

whose solution is: 

that constitutes an approximation of the second order moments of the re­
sponse. 
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Non Gaussian Closure (NGC) methods. For strongly nonlinear sys­
tems, non Gaussian Closure (NGC) methods are necessary to obtain an 
adequate approximation of the response. They are based on different rep­
resentation of the non Gaussian characteristics of the response. Among all, 
the most used schemes are the cumulant closure (CC) method and the quasi­
moment closure (QMC) method. The first closure method is based on the 
truncation of the series expansion of the log-characteristic function of the 
response process, whose coefficients are the cumulants; the second is based 
on the truncation of the A-type Gram-Charlier series expansion of the non­
Gaussian probability density function of the response, whose coefficients are 
the quasi-moments (or, alternatively, the Hermite moments) of the response 
process. For both methods, the resulting equations are nonlinear. 

3.3 The modified Quasi-Moment Closure (QMC) method 

Recently (Muscolino et al., 2003), a modified version of the quasi-moment 
closure method has been proposed. The method takes advantage of the 
great accuracy of the Monte Carlo Simulation (MCS) in evaluating the first 
two moments of the response process by considering just few samples. The 
quasi-moment neglect closure is used to close the infinite hierarchy of the 
moment differential equations of the response process. Moreover, in or­
der to determine the higher order statistical moments of the response, the 
second-order probabilistic information given by MCS in conjunction with 
the quasi-moment neglect closure leads to a set of linear differential equa­
tions. The method has been developed for a more general case of external 
non Gaussian Poisson white noise excitations (DiPaola and Falsone, 1993). 
The case of the Gaussian white noise input can be considered as a partic­
ularization of the non Gaussian case. As an illustration, the scalar case 
is proposed, the extension to MDOF systems being available in Muscolino 
et al. (2003), taking advantage from the kronecker algebra. 

Poisson white noise excitation. Let us consider the differential equa­
tion describing a one-dimensional system subjected to a purely external 
Poisson white noise process, given by: 

d 
-X(t) = f[X(t)] + Gl(t) 
dt 

(44) 

where l(t) is a scalar Poisson white noise process (Grigoriu, 1987; Ricciardi, 
1994), that is a sequence of impulses with random amplitude and arriving 
at random times, given by 
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N(t) 

I(t) = L Yk5(t - tk) (45) 
k=l 

the amplitudes {Yk } being a family of random variables, mutually indepen­
dent and independent of the time instants tk , with prescribed distribution 
py(y), 5(t) the Dirac's delta function, tk the random time arrivals. In 
eq.(45), N(t) is a counting Poisson process with parameter A. The proba­
bilistic characterization of the Poisson white noise process I (t) can be given 
in terms of its correlation functions (Stratonovich, 1963): 

It follows that I(t) is a non-normal delta-correlated process, with inten­
sity coefficients related to the probabilistic characterization of the random 
variables {Yd and of the counting Poisson process N(t). The Poisson white 
noise process I(t) is not mean square Riemann integrable and, consequently, 
eq.( 44) has no traditional mathematical meaning. The latter can be con­
sidered to be formally equivalent to the following generalized 1t1u:e-type 
stochastic differential equation: 

dX(t) = j[X(t)]dt + Gd,(t) ( 47) 

where d,(t) is an increment of the compound Poisson process ,(t), defined 
by 

N(t) 

,(t) = L YkU(t - tk) ( 48) 
k=l 

U(t) being the unit step function. 

Moment equations. The 1t11.ce differential rule generalized to the case of 
non Gaussian delta correlated input process leads to the following moment 
differential equations (DiPaola and Falsone, 1993): 

r 

rnr[X(t)] = rE[Xr- 1 f(X)] + L Lr,krnr_k[X(t)]Gk AE[yk] (49) 
k=l 

where mr[X(t)] = E[xr(t)] is the moment of order rand Lr,k = r!/[k!(r­
k)!]. Note that in the case of zero-mean Gaussian white noise input, the sum 
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in eq.(49) needs to be performed only for k = 2. In this case q = AE[y2] is 
usually defined as the strength of the white process. 

For simplicity's sake, let us assume that the deterministic nonlinear func­
tion f[X(t)] is a polynomial of p-th order: 

p 

J[X(t)] = L ajXj (50) 
j=l 

By means of this equation, we can rewrite eq.(49) as follows: 

p r 

mr[X(t)] = r Lajmr+j-1[X(t)] + LLr,kmr_k[X(t)]CkAE[yk] (51) 
j=l k=l 

As a consequence of the nonlinearity of the system, in the first summa­
tion of the right member of eq.(51) moments until the (r + p-1)-th order 
appear. It follows that the differential equation governing the evolution of 
statistics of order r will now include statistics of higher order than r. As 
an example, if cubic non-linearity is considered, the differential eq.(51) con­
tains moments of (r + 2)-th order. The numerical solution of eq.(51) can be 
obtained only if a Gaussian or NGC is performed (Muscolino, 1993). The 
most used closure techniques, such as the cumulant and the quasi-moment 
neglect closure, lead to a set of nonlinear equations. This fact represents 
the major drawback in the numerical applications, since the uniqueness of 
the solution is not guaranteed, as emphasized by Wojtkiewicz et al. (1996). 

Non Gaussian Closure. In Muscolino et al. (2003), a new closure tech­
nique is proposed, based on the modification of the well-known quasi-moment 
neglect closure and taking advantage on the great accuracy of the MCS in 
the evaluation of the second-order statistics of the response. The new closure 
technique leads to a set of linear equations for the evaluation of higher order 
statistical moments. Indeed, the relationships between quasi-moments and 
statistical moments can be written as follows (Muscolino, 1993) (for 8 > 2): 

s-2 
bs[X] = ms[X] + (_1)8 L 

i = 0,2 ... (8 = even) 
i = 3,5 ... (8 = odd) 
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L Bs,iU~-i {i) -1)" 'e i~ )' mi-r[X]/Lx} r. 1, r. 
i=0,2 ... (s=even) r=l 

i = 3, 5 ... (s = odd) 
(52) 

in which bs [X] are the quasi-moments of the response process and 

B s,s=(-l)S, Bs,i = (1 + i)Bs- 1,i+1 - Bs-1,i-l. (53) 

If the mean /Lx and the standard deviation Ux of the response process 
are approximated by MCS, that is {LX = ml ~ fix and Ux = jm2 - mi ~ 
ax, and if a quasi-moments closure of order R is adopted, the statistical 
moments of order higher than R can be evaluated from eq.(52) assuming 
the quasi-moments of order higher than R equal to zero (b s [X] = 0, s > R) 
and obtaining linear relationships. Then, we obtain a set of R-2 linear 
differential equations, whose unknowns are the statistical moments of the 
response process of order greater than two, up to order R. The unique 
solution of the set of linear differential equations can then be obtained by 
traditional numerical procedures. Moreover, since the number of realization 
required to approximate accurately the first two statistical moments of the 
response is relatively small, the method is very competitive to find additional 
probabilistic information in terms of moments of higher order than two. 

An example: the nonlinear half-oscillator. As an example, let us 
consider as an application the following nonlinear half-oscillator (Muscolino 
et al., 2003): 

d 
-d X(t) = -vX(t) - fX3(t) + I(t) 

t 
(54) 

where v and f are positive constant and I(t) is a Poisson white process, with 
the impulse occurrence defined by the parameter A. The impulse amplitude 
is assumed as a standardized Gaussian random variable Y. Then, the 
moments of odd order are zero and the moments of even order are E[y2k] = 

(2k - I)!!. Taking into account that f[X(t)] = -vX(t) - fX3(t) is an 
odd function, the moments of odd order of the response process are zero 
and only the moments of even order must be evaluated. The stationary 
problem was solved for the following parameter set: v = f = 1, A = 30. 
The approximate variance ai = 2.289 of the response process has been 
evaluated by MCS with 100 samples only and exploiting the ergodicity of 
the response process. The obtained value is a very good approximation 
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Figure 1. Comparison of the proposed method with the non-stationary 
MCS results for different order ofNGC: fourth-order moment of the response 
process. 

of the assumed exact value determined by MCS with 109 samples. The 
algebraic stationary moment equations of order r = 4,6, ... ,R have been 
considered and the closure method has been performed, by setting to zero 
the quasi-moment of order (R+2) and approximating the moment of (R+2)­
th order. The resulting linear algebraic moment equations have been solved 
and the stationary values of the approximate moments have been compared 
with non-stationary MCS results with 10,000 samples. 

In Figs. 1 and 2 the fourth-order and the sixth-order approximate sta­
tionary moments are plotted for different values of R, revealing the good 
approximation of results compared with non-stationary solutions by simula­
tion (with zero initial condition). In Table 1, the stationary moments of the 
response process up to 10 - th order evaluated by the proposed method for 
different closure orders are compared with MCS results with 109 samples, 
assumed as exact solutions. This comparison reveals the good performances 
of the method and the accuracy increases as the closure order increases. 

4 The Stochastic Linearization (SL) 

The stochastic linearization (SL) is the most used approximate method 
for the analysis of nonlinear structural systems under random excitations 
(Roberts and Spanos, 1991; Socha and Soong, 1991; Elishakoff, 2000; Fal-
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Figure 2. Comparison of the proposed method with the non-stationary 
MC8 results for different order of NGC: sixth-order moment of the response 
process. 

sone and Ricciardi, 2003). This success is due to the wide applicability 
of the 8L method in solving real stochastic structural dynamic problems, 
often characterized by a large number of degrees of freedom and by com­
plex mathematical models to represent adequately the non-linear structural 
behavior. 

Booton Booton (1953), Kazakov (1956) and Caughey (1959) have inde­
pendently introduced the method around to the half of the past century. 
The basic idea is to replace the original non-linear system by an equivalent 
linear one, whose determination is performed by minimizing the difference 
between the two systems in some statistical sense. The 8L method exhibits 
different forms based on the adopted probability density function for the 
evaluation of the coefficients that appear in the linearized system (Kozin, 
1988). 

4.1 The Gaussian Stochastic Linearization (GSL) 

In this section the basic concepts of the G8L method for the stochastic 
structural dynamics are given. Let us consider a nonlinear structural system 
excited by external excitations whose dynamic behavior is governed by the 
following system of first-order differential equations: 

X(t) = f[X(t)] + GW(t) (55) 
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Table 1. Stationary moments of the response evaluated by the proposed 
method for different order of NGC compared with assumed exact values by 
MCS (109 samples) 

m4[X] m6[X] ms[X] mlo[X] 

R=4 13.74 176.1 
e(%) (8.96) (58.50) 

R= 6 13.08 112.4 715 
e(%) (3.73) (1.17) (48.34) 

R=8 12.85 112.7 1441 30,591 
e(%) (1.90) (1.44) ( 4.12) (31.52) 

R = 10 12.76 112.7 1435 24,460 
e(%) (1.19) (1.44) (3.68) (5.16) 

R= 12 12.73 112.8 1432 24,440 
e(%) (0.95) (1.53) (3.47) (5.07) 

Exact 
12.61 111.1 1384 23,260 

(MCS) 

where W(t) = [Wl(t) W2 (t) ... Wm(t)]T are zero-mean Gaussian 
white noise processes, with E[W(tdWT(t2)] = Qb(h - t2)' Q being the 
(m x 'rn)-matrix collecting the strengths of the white noise processes. 

Following the basic idea of stochastic linearization, it is necessary to 
approximate the original nonlinear system by an appropriate linear one. By 
assuming that the nonlinearity is odd and the response is with zero mean, 
eq.(55) is replaced by the following linearized one: 

X(t) = AeqX(t) + GW(t) (56) 

where the matrix Aeq must be chosen in such a way that the difference 
between the systems given in eq.(55) and (56) is minimum in some statistical 
sense. By following the classical approach of SL, the difference is measured 
on the motion equation and the quantity to be minimised is the mean square 
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error, that is: 

e = f[X(t)] - AeqX(t), E[eTe] = min (57) 

The minimization conditions impose that: 

(58) 

where \7 Acq is a n x n differential operator whose (i, j)-component is the 
partial derivative made with respect to the (i, j)-component of the matrix 
Aeq. By replacing the first of eqs.(57) into eq. (58), after some algebra we 
obtained: 

(59) 

that constitutes the expression of the equivalent matrix Aeq given by the 
8L method. The latter exhibits different forms based on the adopted prob­
ability density function for the approximation of the averages appearing in 
eq.(59). 

In the classical G8L method the averages appearing in eq.(59) are eval­
uated taking into account the Gaussianity of the response process. In this 
way, as the response has been assumed to be Gaussian and with zero mean, 
the averages are approximated as: 

E[ .] ~ E[ ']G = k" ( . )pfc(x)dx (60) 

where the Gaussian probability density function is given by eq.(37) with 
/Lx = 0 . Then, the expression (59) of the equivalent matrix becomes: 

(61) 

In this way, the equivalent matrix Aeq is expressed in terms of the statis­
tical moments until the second order of the response only. These moments 
can be evaluated as solution of the following non-linear Lyapunov-type dif­
ferential equation: 

(62) 

It is worth noticing that eq.(62) is nonlinear, because the matrix depends 
on the second order moments, that, in turn, depend on the probability 
density function adopted. Hence a numerical procedure for solving the 
nonlinear equations must be applied. 
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4.2 The Non Gaussian Stochastic Linearization (NGSL) 

Against relatively little numerical efforts, unfortunately the GSL method 
gives accurate results for weakly non-linear systems only and, as recently 
highlighted, it suffers of unacceptable errors in the case of large structures 
(Micaletti et al., 1998). An improved approximation can be obtained if 
the relaxation of the Gaussian response assumption is introduced. In this 
way, the averages in eq.(59) are determined by adopting a better approxi­
mation of the probability density function of the response. The procedure 
proposed by Ricciardi (2007) uses as a probability density function a mod­
ified A-type Gram-Charlier series expansion, where the covariance matrix 
is not unknown, but it is assumed equal to the covariance matrix derived 
by the GSL method. In order to present the aforementioned method, a 
standardization procedure is needed. 

Standardization. The following coordinate transformation is adopted: 

X(t) = rG yet), (63) 

where the full matrix wG and the diagonal matrix AG are evaluated by 
solving the following eigenproblem related to the covariance matrix ~~: 

(64) 

with the normality condition w2;wG = In. In eq.(64), the covariance matrix 
~~ is supposed known, as solution of the GSL method. 

It can be easily shown that the vector process yet) has approximated 
covariance matrix ~~ = In, derived by the GSL. Moreover, by adopting 
the coordinate transformation eq.(63), eq.(55) can be rewritten as follows: 

Yet) = r[Y(t)] + UW(t) (65) 

where 

(66) 

By following the classical approach of the SL method, eq.(65) is replaced 
by the following linearized one: 

yet) = Beq yet) + UW(t) (67) 

and by minimizing the mean square error, we find the following form of the 
equivalent matrix Beq: 

(68) 
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If GSL method is adopted, in order to evaluate the averages appearing 
in eq.(6S), E[yyT] ~ EC[yyT] = In; then, the following expression of the 
equivalent matrix is obtained: 

(69) 

It is emphasized that, by introducing the coordinate transformation, the 
problem is simplified, as the vector process Y(t) has uncorrelated compo­
nents with unit variances. 

Non Gaussian probability density function. In order to improve the 
GSL results, the NGSL method approximate the averages appearing in 
eq.(lS) by using the A-type Gram-Charlier series expansion of the non­
Gaussian probability density function, given as 

p(y) ~ PNC(y) = pc(y)x 

M 

x 1 + L 
)=2,4 ... 

(70) 
where !vI is the truncation order and pc(y) is the joint Gaussian probability 
density function of the uncorrelated random processes Ye(R = 1,2, ... , n ), 
defined as: 

n n 1 [2] 
Pc(y) = II PC(Y£) = II y'27T exp - Y; 

£=1 C=1 

(71) 

In eq.(70), Hk(yc) is the one-dimensional Hermite polynomial defined as 
follows: 

(72) 

and Ci1 ,i2, .. ,in is the modified Hermite moment, defined as: 

(73) 
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Improved equivalent matrix and covariance matrix. The NGSL 
method takes into account the non-Gaussian character of the response pro­
cess and concurs to estimate the expression of the equivalent matrix of the 
linearized system in a more accurate way. By adopting the non-Gaussian 
probability density function (70), Beq assumes the following form: 

NG T { T }-1 Beq = ENG[r(Y)Y ] ENG[YY ] (74) 

After some algebra, the equivalent matrix assumes the following form: 

B~G = RNG[In + S]-l 

where the matrices Sand R NG are given as: 

[ 
G2 ,0, ... 0 G1.1 .... o G1 ,0, ... 1 

S= G1 ,1, ... 0 GO.2 .... 0 GO,l, ... l 

G1,0, ... 1 GO,l, ... l Go,0, ... 2 

M 

L 
j=2,4 .. 

(75) 

1 
(76) 

(77) 

The matrix RG and the (j, £)-th element of the matrix R i" i2, ... ,i n can 
be easily evaluated by performing the following averages: 

(Ri" i2, ... ,i,JjR = EG [rj (Y)YeHdYdHi2 (Y2 ) .•. Hi n (Yn )] (79) 

where EG['] = fiRn ( . )PG(y)dy that involves simple one-dimensional inte­
grals, generally known in closed form. Note that if the non-linear term 
rj(Y) is a polynomial expression, the averages are a combination of double 
factorials, taking advantage of the particular structure of the Y-space. 

By using the coordinate transformation, we find the following expression 
of the equivalent matrix in the original space: 

A NG = r RNG[I + S]-lr- 1 
eq G n G (80) 

This expression represents a non-Gaussian improved version of the equiv­
alent matrix determined by means of the GSL method. A better approxi­
mation of the covariance matrix ~~G can be evaluated as follows: 
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(81) 

and the expression of the covariance matrix ~~G in the original space is: 

(82) 

This equation represents the NGSL solution for the covariance matrix, 
which requires the knowledge of the series coefficients Ci1 ,i2, ... ,in • As shown 
later, they can be simply approximated as solution of a system of linear 
equations. 

Approximation of the modified A-type Gram-Charlier series co­
efficients. The modified Hermite moments Ci1 ,i2, ... ,in are defined as the 
averages of products of one-dimensional Hermite polynomials. They can 
be evaluated by using the Ithee rule or, alternatively, they can be approx­
imated by taking advantage by the theory of Markov process. The proba­
bility density function py(y) of the vector process Y(t) is the solution of 
the Fokker-Planck-Kolmogorov (FPK) equation (Risken, 1989): 

8 
atPY(Y) = £py(y) (83) 

where 

8 1 82 
£( .) = - [Ti(Y)(' )] - -QRsUi/;Ujs --(-) 

8Yi 2 8Yi8Yj 
(84) 

is the FPK operator (where repeated indices mean summation convention). 
It can be easily shown that the differential equation governing the time 

evolution of the average of a function cp(Y) can be written as follows 

(85) 

where 

8 1 82 
£+(. ) = Ti(Y)-( .) + -QcsUi/;Ujs--(' ) 

8Yi 2 8yJJYj 
(86) 

is the adjoint Fokker-Planck-Kolmogorov (AFPK) differential operator. 
An approximation of the modified A-type Gram-Charlier coefficients can 

be obtained by choosing cp(Y) = Hjl (YI)Hj2 (Y2 ) ... Hjn (Yn ) , for j1 + 
j2 + ... + jn = 2,4, ... , lvI, with lv! 2 4. Then, the following differential 
equations of Cj1,h, ... ,jn = E[Hjl (YI)Hh (Y2 ) ... Hjn (Yn)] are obtained: 
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In the stationary state the average quantities are not time dependent and 
consequently Gj I,]2, ... ,jn = 0 . Therefore, the last equation can be simplified 
as follows: 

M 

L (88) 

)=2,4, ... 

where 

1 

and 

(90) 

In the last equations the repeated indices mean summation convention, 
with 'i,j = 1,2, ... ,n and £.,8 = 1,2, ... ,'rn. Note that eqs.(88) constitute 
a system of linear algebraic equations with unknowns ejl ,12, .. ,jn' whose 
solution is an approximation of these coefficients. 

The NGSL applied to the power-law nonlinear oscillator. Let us 
consider the following non-linear oscillator subjected to a Gaussian white 
noise input with intensity q: 

U(t) + {JU(t) + g, IU(t)I' 8gn[U(t)] = ~W(t) (91) 



28 

0.4 

U. Alibrandi and G. Ricciardi 

--- E.ncl 

NO L (Y!= ) 

G L (~1=6 ) 

GSL (M=4 ) 

•••••••• G L 

- -
-- ---

0.2 ~-~-----~--------~------~--~--~ 
I 2 3 4 5 6 7 8 9 r 10 

Figure 3. Displacement variance versus, for the hardening power-law 
oscillator . 

where g"( is a positive constant and, > 0 is a parameter related to the non­
linear restoring force. If 0 < , < lor, > 1 , the oscillator exhibits softening 
or hardening behavior, respectively. Roberts and Spanos (1991) considered 
such an oscillator by the Gaussian stochastic linearization method. The 
exact variance of the displacement is: 

~&.ex = ('; 1 ) -1~1 f (,! 1) f- 1 (,: 1) (92) 

where 'h = g"( / q and f( . ) is the Gamma function. The GSL method leads 
to the following approximation: 

2 1 [ ft ] 'Y~1 
~U,G ="2 'hf(l + (r /2)) 

(93) 

This value has been assumed as a first approximation for the NGSL method. 
In Fig. 3 and Fig. 4 the displacement variance and the relative error are 

plotted versus the non-linear parameter " in the case of hardening behavior 
of the oscillator (r > 1 ). In these figures the NGSL results, for different 
closure order (!vI = 4,6,8), are compared with the GSL results, revealing 
that the NGSL method leads to better results, also for low closure order 
(!vI = 4). Accurate results are obtained for higher order closures, with errors 
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Figure 4. Relative error of displacement variance versus I for hardening 
the power-law oscillator. 

lesser then 1 % for 1 < I < 5 and !vI = 8. From these figures, it appears 
that the NGSL method seems to give results very close to the exact ones 
as !vI increases. This is due to the fact that the series approximation used 
by the NGSL method converges to the exact probability density function of 
the response, given as: 

(94) 

In Fig. 5 and Fig. 6 the displacement variance and the relative error 
are plotted, in the case of softening behavior of the oscillator (0 < I < 1). 
From these figures the lack of convergence of the series expansion used by the 
NGSL is evident. However, in the range 0.2 < I < 1, the NGSL method 
gives better results than the GSL, with errors lesser than 5% for all the 
closure orders considered (!vI = 4 6 8) In particular for !vI = 4 the error , , . , , 
is lesser than 5% in the entire range 0 < I < l. 

The NGSL applied to the double-well Duffing oscillator. Let us 
consider the following Duffing oscillator: 
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