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PTCP Aim and Scope

Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material sciences, including
theoretical, mathematical and computational chemistry, physical chemistry and chemical
physics and biophysics.

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: the-
ory is used to interpret experimental results and may suggest new experiments; ex-
periment helps to test theoretical predictions and may lead to improved theories.
Theoretical Chemistry (including Physical Chemistry and Chemical Physics) pro-
vides the conceptual and technical background and apparatus for the rationalisation
of phenomena in the chemical sciences. It is, therefore, a wide ranging subject,
reflecting the diversity of molecular and related species and processes arising in
chemical systems. The book series Progress in Theoretical Chemistry and Physics
aims to report advances in methods and applications in this extended domain. It will
comprise monographs as well as collections of papers on particular themes, which
may arise from proceedings of symposia or invited papers on specific topics as well
as from initiatives from authors or translations.

The basic theories of physics—classical mechanics and electromagnetism, rela-
tivity theory, quantum mechanics, statistical mechanics, quantum electrodynamics—
support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the valence theories, which allow to interpret the structure of molecules, and for
the spectroscopic models, employed in the determination of structural information
from spectral patterns. Indeed, Quantum Chemistry often appears synonymous with
Theoretical Chemistry; it will, therefore, constitute a major part of this book se-
ries. However, the scope of the series will also include other areas of theoretical
chemistry, such as mathematical chemistry (which involves the use of algebra and
topology in the analysis of molecular structures and reactions); molecular mechan-
ics, molecular dynamics and chemical thermodynamics, which play an important
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vi PTCP Aim and Scope

role in rationalizing the geometric and electronic structures of molecular assem-
blies and polymers, clusters and crystals; surface, interface, solvent and solid state
effects; excited-state dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific re-
search, based on the exploitation of fast electronic digital computers. Computation
provides a method of investigation which transcends the traditional division between
theory and experiment. Computer-assisted simulation and design may afford a solu-
tion to complex problems which would otherwise be intractable to theoretical analy-
sis, and may also provide a viable alternative to difficult or costly laboratory experi-
ments. Though stemming from Theoretical Chemistry, Computational Chemistry is
a field of research in its own right, which can help to test theoretical predictions and
may also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions,
to the role of molecules in the biological sciences. Therefore, it involves the physi-
cal basis for geometric and electronic structure, states of aggregation, physical and
chemical transformations, thermodynamic and kinetic properties, as well as unusual
properties such as extreme flexibility or strong relativistic or quantum-field effects,
extreme conditions such as intense radiation fields or interaction with the contin-
uum, and the specificity of biochemical reactions.

Theoretical Chemistry has an applied branch (a part of molecular engineering),
which involves the investigation of structure-property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design or
genetic engineering. Relevant properties include conductivity (normal, semi- and
super-), magnetism (ferro- and ferri-), optoelectronic effects (involving nonlinear
response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, biological and pharmaceutical
activities, as well as properties favouring self-assembling mechanisms and combi-
nation properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular
or cluster physicist, and the biochemist or molecular biologist who wish to employ
techniques developed in theoretical, mathematical and computational chemistry in
their research programs. It is also intended to provide the graduate student with
a readily accessible documentation on various branches of theoretical chemistry,
physical chemistry and chemical physics.



Preface

This volume collects 20 selected papers from the scientific contributions presented
at the Seventeenth International Workshop on Quantum Systems in Chemistry and
Physics (and Biology), QSCP-XVII, which was organized by Prof. Matti Hotokka
at Åbo Akademi University, Turku, Finland, from August 19 to 25, 2012. Over 120
scientists from 27 countries attended this meeting. Participants of the QSCP-XVII
workshop discussed the state of the art, new trends, and future evolution of methods
in molecular quantum mechanics, as well as their applications to a wide variety of
problems in chemistry, physics, and biology.

The large attendance attained in this conference was particularly gratifying. It is
the renowned interdisciplinary character and friendly atmosphere of QSCP meetings
that makes them so successful discussion forums.

Turku is located in the southwestern part of Finland. It was the capital city of
the country as well as its religious and cultural center throughout the Swedish pe-
riod. Christina, Queen of Sweden, founded the Åbo Akademi University in Turku
in 1630. When Finland became a Grand Duchy under Alexander I, Czar of Rus-
sia, in 1809, the former University was transferred to the new capital, Helsinki, and
eventually became the University of Helsinki.

The present-day Åbo Akademi University was founded in 1918, shortly after
Finland became independent from Russia. Some of the buildings of the old Åbo
Akademi University, such as the Ceremonial Hall, are still used by the University.
Today, Turku is the seat of the Archbishop of Finland and an active cultural and
industrial city endowed with numerous museums, art galleries and historical sites,
as well as an important seaport.

Details of the Turku meeting, including the scientific program, can be found on
the web site: http://www.qscp17.fi. Altogether, there were 19 morning and afternoon
sessions, where 56 plenary talks were given, and one evening poster session, with
21 flash presentations for a total of 55 posters displayed. We are grateful to all
participants for making the QSCP-XVII workshop such a stimulating experience
and great success.

QSCP-XVII followed the traditions established at previous workshops:
QSCP-I, organized by Roy McWeeny in 1996 at San Miniato (Pisa, Italy);

vii
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viii Preface

QSCP-II, by Stephen Wilson in 1997 at Oxford (England);
QSCP-III, by Alfonso Hernandez-Laguna in 1998 at Granada (Spain);
QSCP-IV, by Jean Maruani in 1999 at Marly-le-Roi (Paris, France);
QSCP-V, by Erkki Brändas in 2000 at Uppsala (Sweden);
QSCP-VI, by Alia Tadjer in 2001 at Sofia (Bulgaria);
QSCP-VII, by Ivan Hubac in 2002 near Bratislava (Slovakia);
QSCP-VIII, by Aristides Mavridis in 2003 at Spetses (Athens, Greece);
QSCP-IX, by Jean-Pierre Julien in 2004 at Les Houches (Grenoble, France);
QSCP-X, by Souad Lahmar in 2005 at Carthage (Tunisia);
QSCP-XI, by Oleg Vasyutinskii in 2006 at Pushkin (St Petersburg, Russia);
QSCP-XII, by Stephen Wilson in 2007 near Windsor (London, England);
QSCP-XIII, by Piotr Piecuch in 2008 at East Lansing (Michigan, USA);
QSCP-XIV, by Gerardo Delgado-Barrio in 2009 at El Escorial (Madrid, Spain);
QSCP-XV, by Philip Hoggan in 2010 at Cambridge (England);
QSCP-XVI, by Kiyoshi Nishikawa in 2011 at Kanazawa (Japan).

The lectures presented at QSCP-XVII were grouped into nine areas in the field of
Quantum Systems in Chemistry, Physics, and Biology, ranging from Concepts and
Methods in Quantum Chemistry and Physics through Molecular Structure and Dy-
namics, Reactive Collisions, and Chemical Reactions, to Computational Chemistry,
Physics, and Biology.

The width and depth of the topics discussed at QSCP-XVII are reflected in the
contents of this volume of proceedings in the book series Progress in Theoretical
Chemistry and Physics, which includes four sections:

I. Fundamental Theory (4 papers);
II. Molecular Structure, Properties and Processes (5 papers);

III. Clusters and Condensed Matter (9 papers);
IV. Structure and Processes in Biosystems (2 papers).

In addition to the scientific program, the workshop had its usual share of cultural
events. There was an entertaining concert by a tuba orchestra on the premises. The
City of Turku hosted a reception on the museum sail ship Suomen Joutsen, and one
afternoon was devoted to a visit to the archipelago on board of the old-fashioned
steamship Ukkopekka. The award ceremony of the CMOA Prize and Medal took
place in the historical Ceremonial Hall of the old Åbo Akademi University.

The CMOA Prize was shared between two selected nominees: Marcus Lundberg
(Uppsala, Sweden) and Adam Wasserman (Purdue, USA). The CMOA Medal was
awarded to Pr. Martin Quack (ETH, Switzerland). Following an established custom
at QSCP meetings, the venue of the next (XVIIIth) workshop was disclosed at the
end of the banquet: Paraty (Rio de Janeiro), Brazil, in December 2013.

We are pleased to acknowledge the generous support given to the QSCP-XVII
conference by the Federation of Finnish Learned Societies, the Svenska Tekniska
Vetenskaps-Akademien i Finland, the City of Turku, the Åbo Akademi University,
the Walki company, and Turku Science Park. We are most grateful to the members
of the Local Organizing Committee (LOC) for their work and dedication, which
made the stay and work of the participants both pleasant and fruitful. Finally, we
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would like to thank the members of the International Scientific Committee (ISC)
and Honorary Committee (HC) for their invaluable expertise and advice.

We hope the readers will find as much interest in consulting these proceedings as
the participants in attending the meeting.

Matti Hotokka
Erkki J. Brändas

Jean Maruani
Gerardo Delgado-Barrio

Turku, Finland
Uppsala, Sweden
Paris, France
Madrid, Spain
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Part I
Fundamental Theory



Chapter 1
The Potential Energy Surface in Molecular
Quantum Mechanics

Brian Sutcliffe and R. Guy Woolley

Abstract The idea of a Potential Energy Surface (PES) forms the basis of al-
most all accounts of the mechanisms of chemical reactions, and much of theoret-
ical molecular spectroscopy. It is assumed that, in principle, the PES can be calcu-
lated by means of clamped-nuclei electronic structure calculations based upon the
Schrödinger Coulomb Hamiltonian. This article is devoted to a discussion of the
origin of the idea, its development in the context of the Old Quantum Theory, and
its present status in the quantum mechanics of molecules. It is argued that its present
status must be regarded as uncertain.

1.1 Introduction

The Coulombic Hamiltonian H′ does not provide much obvious information or guidance,
since there is [sic] no specific assignments of the electrons occurring in the systems to the
atomic nuclei involved—hence there are no atoms, isomers, conformations etc. In particular
one sees no molecular symmetry, and one may even wonder where it comes from. Still it is
evident that all of this information must be contained somehow in the Coulombic Hamilto-
nian H′ [1].

Per-Olov Löwdin, Pure. Appl. Chem. 61, 2071 (1989)

This paper addresses the question Löwdin wondered about in terms of what quan-
tum mechanics has to say about molecules. A conventional chemical description
of a stable molecule is a collection of atoms held in a semi-rigid arrangement by
chemical bonds, which is summarized as a molecular structure. Whatever ‘chemical
bonds’ might be physically, it is natural to interpret this statement in terms of bond-
ing forces which are conservative. Hence a stable molecule can be associated with
a potential energy function that has a minimum value below the energy of all the
clusters that the molecule can be decomposed into. Finding out about these forces,
or equivalently the associated potential energy, has been a major activity for the past
century. There is no a priori specification of atomic interactions from basic physical
laws so the approach has been necessarily indirect.

B. Sutcliffe (B)
Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, 1050 Bruxelles,
Belgium
e-mail: bsutclif@ulb.ac.be

M. Hotokka et al. (eds.), Advances in Quantum Methods and Applications in
Chemistry, Physics, and Biology, Progress in Theoretical Chemistry and Physics 27,
DOI 10.1007/978-3-319-01529-3_1,
© Springer International Publishing Switzerland 2013
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4 B. Sutcliffe and R.G. Woolley

After the discovery of the electron [2] and the triumph of the atomic, mechanistic
view of the constitution of matter, it became universally accepted that any specific
molecule consists of a certain number of electrons and nuclei in accordance with its
chemical formula. This can be translated into a microscopic model of point charged
particles interacting through Coulomb’s law with non-relativistic kinematics. These
assumptions fix the molecular Hamiltonian as precisely what Löwdin referred to as
the ‘Coulombic Hamiltonian’,

H=
n∑

i

p2
i

2mi
+

n∑

i<j

eiej

4πε0|qi − qj | (1.1)

where the n particles are described by empirical charge and mass parameters
{ei,mi, i = 1, . . . , n}, and Hamiltonian canonical variables {qi ,pi , i = 1, . . . , n},
which after quantization are regarded as non-commuting operators.

As is well-known classical dynamics based on (1.1) fails completely to account
for the stability of atoms and molecules, as evidenced through the facts of chem-
istry and spectroscopy. And so, starting about a century ago, there was a progressive
modification of dynamics as applied to the microscopic world from classical (‘ratio-
nal’) mechanics, through the years of the Old Quantum Theory until finally quan-
tum mechanics was defined. This slow evolution left its mark on the development of
molecular theory in as much that classical ideas survive in modern Quantum Chem-
istry. In the following sections we review some aspects of this progression; we also
emphasize that a direct approach to a quantum theory of a molecule can be based
on the quantized version of (1.1), simply as an extension of the highly successful
quantum theory of the atom.

It is of interest to compare this so-called ‘Isolated Molecule’ model with the
conventional account; after all, the sentiment of the quotation from Löwdin reflects
the widespread view that the model is the fundamental basis of Quantum Chemistry.
Even though there are no closed solutions for molecules, it is certainly possible to
characterize important qualitative features of the solutions for the model because
they are determined by the form of the defining equations [1, 3, 4]. One of the most
important ideas in molecular theory is the Potential Energy Surface for a molecule;
this is basic for theories of chemical reaction rates and for molecular spectroscopy.
In Sect. 1.2 we discuss some aspects of its classical origins. Then in Sect. 1.3 we
revisit the same topics from the standpoint of quantum mechanics, where we will
see that if we eschew the conventional classical input (classical fixed nuclei), there
are no Potential Energy Surfaces in the solutions derived from (1.1). It is not the
case that the conventional approach via the clamped-nuclei Hamiltonian is merely
a convenience that permits practical calculation (in modern terms, computation)
with results concordant with the underlying Isolated Molecule model that would
be obtained if only the computations could be done. On the contrary, a qualitative
modification of the formalism is imposed by hand. The paper concludes in Sect. 1.4
with a discussion of these results; some relevant mathematical results are illustrated
in the Appendix.
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We wish to emphasize that the paper is about a difficult technical problem; it is
not a contribution to the philosophy of science. In the traditional picture, (1.15) is
widely held to be exact in principle, so if the adiabatic approximation is found to be
inadequate we would expect to do ‘better’ by including coupling terms. Our analysis
implies that belief is not well founded because (1.15) is not well founded a priori
in quantum mechanics; it requires an extra ingredient put in by hand. It might work,
or it might not; in other words it is not a sure-fire route to a better account. While
we can’t offer a better alternative, that information is surely important for chemical
physics.

1.2 Classical Origins

The idea of a Potential Energy Surface can be glimpsed in the beginnings of chemi-
cal reaction rate theory that go beyond the purely thermodynamic considerations of
van ’t Hoff and Duhem more than a century ago, and in the first attempts to under-
stand molecular (‘band’) spectra in dynamical terms in the same period. Thereafter
progress was rapid as the newly emerging ideas of a ‘quantum theory’ were devel-
oped; by the time that quantum mechanics was finalized (1925/6) ideas about the
separability of electronic and nuclear motions in molecules were common currency,
and were carried forward into the new era. In this section we describe how this
development took place.

1.2.1 Rates of Chemical Reactions—René Marcelin

The idea of basing a theory of chemical reactions (chemical dynamics) on an energy
function that varies with the configurations of the participating molecules seems to
be due to Marcelin. In his last published work, his thesis, [5], Marcelin showed
how the Boltzmann distribution for a system in thermal equilibrium and statistical
mechanics can be used to describe the rate, v, of a chemical reaction. The same work
was republished in the Annales de Physique [6] shortly after his death.1 The main
conclusions of the thesis were summarized in two short notes published in Comptes
Rendus in early 1914 [7, 8]. His fundamental result can be expressed, in modern
terms, as

v =M(e−�G#+/RT − e−�G#−/RT
)

(1.2)

where R is the molar gas constant, T is the temperature in Kelvin, the subscripts
+,− refer to the forward and reverse reactions, and �G# is the change in the molar
Gibbs (free) energy in going from the initial (+) or final (−) state to the ‘activated

1René Marcelin was killed in action fighting for France in September 1914.
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state’. The pre-exponential factor M is obtained formally from statistical mechan-
ics. Marcelin gave several derivations of this result using both thermodynamic argu-
ments and also the statistical mechanics he had learnt from Gibbs’s famous mem-
oir [9]. It is perhaps worth remarking that Gibbs saw statistical mechanics as the
completion of Newtonian mechanics through its extension to conservative systems
with an arbitrarily large, though finite, number of degrees of freedom. The laws
of thermodynamics could easily be obtained from the principles of statistical me-
chanics, of which they were the incomplete expression, but Gibbs did not require
thermodynamic systems to be made up of molecules; he explicitly did not wish his
account of rational mechanics to be based on hypotheses concerning the constitution
of matter, which at the time were still controversial [10].

From our point of view the most interesting aspect of Marcelin’s account is the
suggestion that molecules can have more degrees of freedom than those of simple
point material particles. In this perspective, a molecule can be assigned a set of
Lagrangian coordinates q = q1, q2, . . . , qn, and their corresponding canonical mo-
menta p = p1,p2, . . . , pn. Then the instantaneous state of the molecule is associ-
ated with a ‘representative’ point in the canonical phase-space P of dimension 2n,
and so “as the position, speed or structure of the molecule changes, its representative
point traces a trajectory in the 2n-dimensional phase-space” [5].

In his phase-space representation of a chemical reaction the transformation of
reactant molecules into product molecules was viewed in terms of the passage of a
set of trajectories associated with the ‘active’ molecules through a ‘critical surface’
S in P that divides P into two parts, one part being associated with the reactants,
the other with the products. Such a [hyper]surface is defined by a relation

S(q,p)= 0.

According to Marcelin, for passage through this surface it is required2 [5]

[une molécule] il faudra [. . . ] qu’elle atteigne une certaine région de l’éspace sous une
obliquité convenable, que sa vitesse dépasse une certain limite, que sa structure interne
corresponde à une configuration instable, etc.; . . .

In modern notation, the volume of a cell in the 2n-dimensional phase-space is

d� = dqdp.

The number of points in d� is given by the Gibbs distribution function f

dν = f (q,p, t)d�. (1.3)

Marcelin chose the distribution function for the active molecules as

f (q,p, t)= e−G#+/RT e−H (q,p)/kBT (1.4)

2That a molecule must reach a certain region of space at a suitable angle, that its speed must exceed
a certain limit, that its internal structure must correspond to an unstable configuration etc.; . . .
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where kB is Boltzmann’s constant, H is the Hamiltonian function for the molecule,
andG#+ is the Gibb’s free energy of the active molecules relative to the mean energy
of the reactant molecules. It is independent of the canonical variables. There is an
analogous expression for the reverse reaction involving G#−. Marcelin quoted a for-
mula due to Gibbs [9] for the number of molecules dN crossing a surface element
ds in the critical surface in the neighbourhood of q,p, in time dt , which may be
written in shorthand as

dN = dtf (q,p, t)J (q̇, ṗ,q,p)
where ṗ, q̇ are regarded as functions of q,p by virtue of Hamilton’s equations of
motion. The total rate is

v =
∫
d�f (q,p)J δ

[
S(q,p)

]
(1.5)

where the delta function confines the integration to the critical surface S . Equa-
tion (1.2) results from taking the difference between this expression for the forward
and reverse reactions, and factoring out the terms in G#±; the remaining integration,
which Marcelin did not evaluate, defines the multiplying factor M .

1.2.2 Molecular Spectroscopy and the Old Quantum Theory

Although the discussion in the previous section looks familiar, it does so only be-
cause of the modern interpretation we put upon it.3 It is important to note that
nowhere did Marcelin elaborate on how the canonical variables were to be cho-
sen, nor even how n could be fixed in any given case. The words ‘atom’, ‘electron’,
‘nucleus’ do not appear anywhere in his thesis, in which respect he seems to have
followed the scientific philosophy of his countryman Duhem [11]. On other pages
in the thesis Marcelin referred to the ‘structure’ (also ‘architecture’) of a molecule
and to molecular ‘oscillations’ but never otherwise invoked the atomic structural
conception of a molecule due to e.g. van ’t Hoff, although he was very well aware
of van ’t Hoff’s Physical Chemistry.

Contemporary with Marcelin’s investigation of chemical reaction rates was the
introduction of a completely novel model of an atom due to Rutherford. However

3Nevertheless it seems proper to regard Marcelin’s introduction of phase-space variables and a
critical reaction surface into chemical dynamics as the beginning of a formulation of the Transition
State Theory that was developed by Wigner in the 1930’s [12–15]. The 2n phase-space variables
q,p were identified with the n nuclei specified in the chemical formula of the participating species,
and the Hamiltonian H was that for classical nuclear motion on a Potential Energy Surface; this
dynamics was assumed to give rise to a critical surface which was such that reaction trajectories
cross the surface precisely once. The classical nature of the formalism was quite clear because
the Uncertainty Principle precludes the precise specification of position on the critical surface
simultaneously with the momentum of the nuclei.
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it quickly became apparent that Rutherford’s solar system model of the atom (plan-
etary electrons moving about a central nucleus) cannot avoid eventual collapse if
classical electrodynamics applies to it. This is because of Earnshaw’s theorem which
states that it is impossible for a collection of charged particles to maintain a static
equilibrium purely through electrostatic forces [16]. This is the classical result that
Bohr alluded to in his 1922 Nobel lecture [17] to rule out an electrostatical explana-
tion for the stability of atoms and molecules.

The theorem may be proved by demonstrating a contradiction. Suppose the
charges are at rest and consider the motion of a particular charge en in the electric
field, E, generated by all of the other charged particles. Assume that this particular
charge has en > 0. The equilibrium position of this particle is the point x0

n where
E(x0

n)= 0, since the force on the charge is enE(xn) (the Lorentz force for this static
case). Obviously, x0

n cannot be the equilibrium position of any other particle. How-
ever, in order for x0

n to be a stable equilibrium point, the particle must experience
a restoring force when it is displaced from x0

n in any direction. For a positively
charged particle at x0

n, this requires that the electric field points radially towards x0
n

at all neighbouring points. But from Gauss’s law applied to a small sphere centred
on x0

n, this corresponds to a negative flux of E through the surface of the sphere, im-
plying the presence of a negative charge at x0

n, contrary to our original assumption.
Thus E cannot point radially towards x0

n at all neighbouring points, that is, there
must be some neighbouring points at which E is directed away from x0

n. Hence,
a positively charged particle placed at x0

n will always move towards such points.
There is therefore no static equilibrium configuration. According to classical elec-
trodynamics accelerated charges must radiate electromagnetic energy, and hence
lose kinetic energy, so even a dynamical model cannot be stable according to purely
classical theory.

Molecular models which can be represented in terms of the (phase-space) vari-
ables of classical dynamics had a far-reaching influence on the interpretation of
molecular spectra after the dissemination of Bohr’s quantum theory of atoms and
molecules based on transitions between stationary states [18]. An important feature
of his new theory was that classical electrodynamics should be deemed to be still
operative when transitions took place, but not when the system was in a stationary
state, by fiat. Bohr had originally used the fact that two particles with Coulombic
interaction lead to a Hamiltonian problem that is completely soluble by separation
of variables. With more particles and Coulombic interactions this is no longer true;
however by largely qualitative reasoning he was able to develop a quantum theory of
the atom and the Periodic Table (reviewed in [17]). Furthermore by the introduction
of Planck’s constant h through the angular momentum quantization condition, Bohr
solved another problem of the classical theory. In classical electrodynamics the only
characteristic length available is the classical radius ro for a charged particle. This is
obtained by equating the rest-mass energy for the charge to the electrostatic energy
of a charged sphere of radius ro

ro =
(

e2

4πε0mc2

)
.
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For an electron this yields ro ≈ 2.8 × 10−15 m and an even smaller value for any
nucleus. It was clear that this was far too small to be relevant to an atomic theory;
of course the Bohr radius ao ≈ 0.5× 10−10 m is of just the right dimension.

Bohr’s theory developed into the Old Quantum Theory which was based on a
phase-space description of an atomic-molecular system and theoretical techniques
originally developed in celestial mechanics. These came from the application of the
developing quantum theory to molecular band spectra by Schwarzschild [19] and
Heurlinger [20] who used it to describe the quantized vibrational and rotational en-
ergies of small molecules (diatomic and symmetric top structures). Schwarzschild,
an astrophysicist, was responsible for the introduction of action-angle methods as
a basis for quantization in atomic/molecular theory. Heurlinger assumed a quanti-
zation of the energy of the nuclear vibration analogous to that used by Planck for
his ideal linear oscillators, with the possibility of anharmonic behaviour. Thus a
force-law or potential energy depending on the separation of the nuclei, for a given
arrangement of the electrons, was required.

The basic calculational tool was a perturbation theory approach developed enthu-
siastically by Born [21] and Sommerfeld [22] with their research assistants. The so-
lution of the Hamiltonian equations of motion could be attempted via the Hamilton-
Jacobi method based on canonical transformations of the action-angle variables.
This leads to an expression for the energy that is a function of the action integrals
only. The action (or ‘phase’) integrals are constants of the motion, and are also adi-
abatic invariants [23], and as such are natural objects for quantization according to
the ‘quantum conditions’. Thus for a separable system with k degrees of freedom
and action integrals {Ji, i = 1, . . . , j ≤ k}, the quantum conditions according to
Sommerfeld are

Ji ≡
∮
pidqi = nih, i = 1, . . . , j (1.6)

where the ni are non-negative integers (j < k in case of degeneracy). Here it is
assumed that each pi is a periodic function of only its corresponding conjugate co-
ordinate qi , and the integration is taken over a period of qi . An important principle,
due to Bohr, was that slow, continuous (‘adiabatic’) deformations of an atomic sys-
tem kept the system in a stationary state [24, 25]. Thus the action integrals for a
Hamiltonian depending on parameters that vary slowly in time are conserved under
slow changes of the parameters.4 This could be applied to the problem of chemical
bonding by treating the nuclear positions as the slowly varying parameters in an
adiabatic transformation of the Hamiltonian for the electrons in the presence of the
nuclei.

We now know that systems of more than 2 particles with Coulomb interactions
may have very complicated dynamics; Newton famously struggled to account quan-
titatively for the orbit of the moon in the earth-moon-sun problem (n = 3). The
underlying reason for his difficulties is the existence of solutions carrying the sig-
nature of chaos [27] and this implies that there are classical trajectories to which

4This is strictly true only for integrable Hamiltonians [26].
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the quantum conditions simply cannot be applied5 because the integrals in (1.6) do
not exist [28]. We also know that the r−1 singularity in the classical potential en-
ergy can lead to pathological dynamics in which a particle is neither confined to a
bounded region, nor escapes to infinity for good. If the two-body interaction V (r)
has a Fourier transform v(k) the total potential energy can be expressed as

U =
n∑

i<j

eiejV
(|xi − xj |

)

= −n
2
V (0)+ 1

(2π)3

∫
d3kv(k)

∣∣∣∣
∑

i

eie
ik.xi

∣∣∣∣
2

.

In the case of the Coulomb interaction v(k)= 4π/k2 > 0 and so the potential energy
U is bounded from below by −nV (0)/2; unfortunately for point charges as r→ 0,
V (r)→±∞ and collapse may ensue [29].

Attempts were made by Born and his assistants to discuss the stationary state
energy levels of ‘simple’ non-trivial systems such as He, H+2 , H2, H2O. The molec-
ular species were tackled as problems in electronic structure, that is, as requiring the
calculation of the energy levels for the electron(s) in the field of fixed nuclei as a cal-
culation separate from the rotation-vibration of the molecule as a whole. Pauli gave
a lengthy qualitative discussion of the possible Bohr orbits for the single electron
moving in the field of two fixed protons in H+2 but could not obtain the correct sta-
tionary states [32]. Nordheim investigated the forces between two hydrogen atoms
as they approach each other adiabatically6 in various orientations consistent with
the quantum conditions. Before the atoms get close enough for the attractive and
repulsive forces to balance out, a sudden discontinuous change in the electron orbits
takes place and the electrons cease to revolve solely round their parent nuclei. Nord-
heim was unable to find an interatomic distance at which the energy of the combined
system was less than that of the separated atoms; this led to the conclusion that the
use of classical mechanics to discuss the stationary states of the molecular electrons
had broken down comprehensively [33, 34]. This negative result was true of all the
molecular calculations attempted within the Old Quantum Theory framework which
was simply incapable of accounting for covalent bonding [35].

The most ambitious application of the Old Quantum Theory to molecular theory
was made by Born and Heisenberg [36]. They started from the usual non-relativistic
Hamiltonian (1.1) for a system comprised of n electrons and N nuclei interacting
via Coulombic forces. They assumed there is an arrangement of the nuclei which is a
stable equilibrium, and use that (a molecular structure) as a reference configuration

5The difficulties for action-angle quantization posed by the existence of chaotic motions in non-
separable systems [30] were recognized by Einstein at the time the Old Quantum Theory was
developed [31].
6This is the earliest reference we know of where the idea of adiabatic separation of the electrons
and the nuclei is proposed explicitly.
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for the calculation. Formally the rotational motion of the system can be dealt with
by requiring the coordinates for the reference structure to satisfy7 what were later to
become known as ‘the Eckart conditions’ [37]. Then with a suitable set of internal
variables and

λ=
(
m

M

) 1
2

as the expansion parameter, the Hamiltonian was expressed as a series

H =Ho + λ2H2 + · · · (1.7)

to be treated by the action-angle perturbation theory Born had developed. The ‘un-
perturbed’ Hamiltonian Ho is the full Hamiltonian for the electrons with the nuclei
fixed at the equilibrium structure,H2 is quadratic in the nuclear variables (harmonic
oscillators) and also contains the rotational energy,8 while . . . stands for higher or-
der anharmonic vibrational terms. H1 may be dropped because of the equilibrium
condition. With considerable effort there follows the usual separation of molecu-
lar energies, although of course no concrete calculation was possible within the
Old Quantum Theory framework. It is noteworthy that their calculation gives the
electronic energies at a single configuration because the perturbation calculation re-
quires the introduction of the (assumed) equilibrium structure. This is different from
the adiabatic approach Nordheim tried (unsuccessfully) to get the electronic energy
at any separation of the nuclei [33].

1.3 Quantum Theory

With the completion of quantum mechanics in 1925–1926, the old problems in
atomic and molecular theory were reconsidered and considerable success was
achieved. The idea that the dynamics of the electrons and the nuclei should be
treated to some extent as separate problems was generally accepted. Thus the elec-
tronic structure calculations of London [39–41] can be seen as a successful reformu-
lation of the approach Nordheim had tried in terms of the older quantum theory, and
the idea of ‘adiabatic separation’ is often said to originate in this work. It is however
also implied in the closing section of Slater’s early He atom paper where he sketches
(but does not carry through) a perturbation method of approximate calculation for
molecules in which the nuclei are first held fixed, and the resulting electronic eigen-
value(s) then act as the potential energy for the nuclei [42]. A quantum mechanical

7This also deals with the uninteresting overall translation of the molecule.
8The rotational and vibrational energies occur together because of the choice of the parameter λ;
as is well-known, Born and Oppenheimer later showed that a better choice is to take the quarter
power of the mass ratio as this separates the vibrational and rotational energies in the orders of the
perturbation expansion [38].
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proof of Ehrenfest’s adiabatic theorem for time-dependent perturbations was given
by Born and Fock [43]. Most famously though, the quantum mechanical basis for
the idea of electronic Potential Energy Surfaces is commonly attributed to Born and
Oppenheimer, and it is to a consideration of their famous paper [38] that we now
turn.

1.3.1 Born and Oppenheimer’s Quantum Theory of Molecules

Much of the groundwork for Born and Oppenheimer’s treatment of the energy lev-
els of molecules was laid down in the earlier attempt by Born and Heisenberg [36].
The basic idea of both calculations is that the low-lying excitation spectrum of
a molecule can be obtained by regarding the nuclear kinetic energy as a ‘small’
perturbation of the energy of the electrons for stationary nuclei in an equilibrium
configuration. The physical basis for the idea is the large disparity between the
mass of the electron and the masses of the nuclei; classically the light electrons
undergo motions on a ‘fast’ timescale (τe ≈ 10−16 → 10−15 s), while the vibration-
rotation dynamics of the much heavier nuclei are characterized by ‘slow’ timescales
(τN ≈ 10−14 → 10−12 s).

Consider a system of electrons and nuclei and denote the properties of the for-
mer by lower-case letters (mass m, coordinates x, momenta p) and of the latter by
capital letters (mass M , coordinates X, momenta P ). The small parameter for the
perturbation expansion must clearly be some power of m/Mo, where Mo can be
taken as any one of the nuclear masses or their average. In contrast to the earlier
calculation they found the correct choice is

κ =
(
m

Mo

) 1
4

rather than Born and Heisenberg’s λ= κ2. In an obvious shorthand notation using a
coordinate representation the kinetic energy of the electrons is then9

Te = Te
(
∂

∂x

)

while the nuclear kinetic energy depends on κ

TN = κ4H1

(
∂

∂X

)
.

9The details can be found in the original paper [38], and in various English language presentations,
for example [44–46].
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The Coulomb energy is simply U(x,X). They then define the ‘unperturbed’ Hamil-
tonian

Te +U =Ho
(
x,
∂

∂x
,X

)
(1.8)

and express the total Hamiltonian as

H =Ho + κ4H1 (1.9)

with Schrödinger equation

(H −E)ψ(x,X)= 0. (1.10)

At this point in their argument they state

Setzt man in (12) [(1.10) above] κ = 0, so bekommt man eine Differentialgleichung für die
xk allein, in der die Xl als Parameter vorkommen:

{
Ho

(
x,
∂

∂x
;X
)
−W
}
ψ = 0.

Sie stellt offenbar die Bewegung der Elektronen bei festgehaltenen Kernen dar.10

This splitting of the Hamiltonian into an ‘unperturbed’ part (κ = 0) and a ‘per-
turbation’ is essentially the same as in the earlier Old Quantum Theory version [36].
The difference here is that the action-angle perturbation theory of the Old Quantum
Theory is replaced by Schrödinger’s quantum mechanical perturbation theory. In
the following it is understood that the overall translational motion of the molecule
has been separated off by a suitable coordinate transformation; this is always possi-
ble. The initial step in setting up the perturbation expansion involves rewriting the
Hamiltonian Ho as a series in increasing powers of κ . This is achieved by introduc-
ing new relative coordinates that depend on κ

X =Xo + κζ (1.11)

for some fixed Xo, and using the {ζ} as the nuclear variables, in an expansion of
Ho about Xo.

Then as usual the eigenfunction and eigenvalue of (1.10) are presented as series
in κ

ψ = ψ(0) + κψ(1) + κ2ψ(2) + · · · ,
E = E(0) + κE(1) + κ2E(2) + · · · ,

the expansions are substituted into the Schrödinger equation (1.10), and the terms
separated by powers of κ . This gives a set of equations to be solved sequentially.

10If one sets κ = 0. . . one obtains a differential equation in the xk alone, the Xl appearing as
parameters:. . . . Evidently, this represents the electronic motion for stationary nuclei.
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The crucial observation that makes the calculation successful is the choice of Xo;
the Schrödinger equation for the unperturbed Hamiltonian Ho can be solved for any
choice of the nuclear parameters X, and yields11 an unperturbed energy E(X) for
the configuration X. For the consistency of the whole scheme however it turns out
(cf. footnote 9) that Xo in (1.11) cannot be arbitrarily chosen, but must correspond
to a minimum of the electronic energy. That there is such a point is assumed to be
self-evident for the case of a stable molecule. The result of the calculation was a
triumph; the low-lying energy levels of a stable molecule can be written in the form

EMol =EElec + κ2EVib + κ4ERot + · · · (1.12)

in agreement with a considerable body of spectroscopic evidence. The eigenfunc-
tions that correspond to these energy levels are simple products of an electronic
wavefunction obtained for the equilibrium geometry and suitable vibration-rotation
wavefunctions for the nuclei.

The Born and Heisenberg calculation [36] had been performed while Heisenberg
was a student with Born; Kragh [35] quotes Heisenberg’s later view of it in the
following terms

As an exasperated Heisenberg wrote to Pauli, “The work on molecules I did with
Born. . . contains bracket symbols [Klammersymbole] with up to 8 indices and will probably
be read by no one.” Certainly, it was not read by the chemists.

Curiously that may have initially been the fate of Born and Oppenheimer’s paper. As
noted by one of us many years ago, a survey of the literature up to about 1935 shows
that the paper was hardly if ever mentioned, and when it was mentioned, its argu-
ments were used as a posteriori justification for what was being done anyway [47].
What was being done was the general use in molecular spectroscopy and chemical
reaction theory of the idea of Potential Energy Surfaces on which the nuclei moved.
As we have seen, that idea is not to be found in the approach taken by Born and
Oppenheimer which used (and had to use) a single privileged point in the nuclear
configuration space—the assumed equilibrium arrangement of the nuclei [38].

In 1935 a significant event was the publication of the famous textbook Introduc-
tion to Quantum Mechanics [48] which was probably the first textbook concerned
with quantum mechanics that addressed in detail problems of interest to chemists.
Generations of chemists and physicists took their first steps in quantum theory with
this book, which is still available in reprint form. Chapter X of the book is entitled
The Rotation and Vibration of Molecules; it starts by summarizing the empirical re-
sults of molecular spectroscopy which are consistent with (1.12). The authors then
turn to the wave equation for a general collection of electrons and nuclei and remark
that its Schrödinger wave equation may be solved approximately by a procedure
that they attribute to Born and Oppenheimer; first solve the wave equation for the
electrons alone, with the nuclei in a fixed configuration, and then solve the wave
equation for the nuclei alone, in which a characteristic energy value [eigenvalue] of

11W(X) in the notation of the above quotation.
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the electronic wave equation, regarded as a function of the internuclear distances,
occurs as a potential function. After some remarks about the coordinates they say

The first step in the treatment of a molecule is to solve this electronic wave equation for all
configurations of the nuclei. It is found that the characteristic values Un(ξ) of the electronic
energy are continuous functions of the nuclear coordinates ξ . For example, for a free di-
atomic molecule the electronic energy function for the most stable electronic state (n= 0)
is a function only of the distance r between the two nuclei, and it is a continuous function
of r , such as shown in Fig. 34-2.

Figure 34-2 referred to here is a Morse potential function. Later in the book where
they give a brief introduction to activation energies of chemical reactions they ex-
plicitly cite London [41] as the origin of the idea of adiabatic nuclear motion on
a Potential Energy Surface, though there is also a nod back towards Chap. X. Al-
though it is now almost universal practice to refer to treating the nuclei as clas-
sical particles that give rise to an electronic energy surface as ‘making the Born-
Oppenheimer approximation’ it is our opinion that the justification for such a strat-
egy is not to be found in The Quantum Theory of Molecules, [38]. Nor is it to be
found in the early papers of London [39–41] where it was simply assumed as a rea-
sonable thing to do. And it is certainly the case that Born and Oppenheimer did not
show the electronic energy to be a continuous function of the nuclear coordinates;
that was first demonstrated for a diatomic molecule forty years after Pauling and
Wilson’s book was published (see Sect. 1.3.4).

1.3.2 Born and the Elimination of Electronic Motion

Many years after his work with Heisenberg and Oppenheimer, Born returned to the
subject of molecular quantum theory and developed a different account of the sepa-
ration of electronic and nuclear motion [44, 49]. It is to this method that the expres-
sion ‘Born-Oppenheimer approximation’ usually refers in modern work. Consider
the unperturbed electronic Hamiltonian Ho(x,Xf ) at a fixed nuclear configuration
Xf that corresponds to some molecular structure (not necessarily an equilibrium
structure). The Schrödinger equation for Ho is

(
Ho(x,Xf )−Eo(Xf )m

)
ϕ(x,Xf )m = 0. (1.13)

This equation can have both bound-state and continuum eigenfunctions; the bound-
state eigenvalues considered as functions of the Xf are the molecular Potential
Energy Surfaces. Born proposed to solve the full molecular Schrödinger equation,
(1.10) by an expansion

ψ(x,X)=
∑

m

Φ(X)mϕ(x,X)m (1.14)

with coefficients {Φ(X)m} that play the role of nuclear wavefunctions. As in the
original calculation (Sect. 1.3.1) a crucial step is to assign the nuclear coordinates
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the role of parameters in the Schrödinger equation (1.13) for the electronic Hamil-
tonian; it differs from the earlier approach of Born and Oppenheimer because now
the values of Xf range over the whole nuclear configuration space. Substituting this
expansion into (1.10), multiplying the result by ϕ(x,X)∗n and integrating over the
electronic coordinates x leads to an infinite dimensional system of coupled equa-
tions for the nuclear functions {Φ},

(
TN +Eo(X)n −E

)
Φ(X)n +

∑

nn′
C(X,P )nn′Φ(X)n′ = 0 (1.15)

where the coupling coefficients {C(X,P )nn′} have a well-known form which we
need not record here [44].

In this formulation the adiabatic approximation consists of retaining only the
diagonal terms in the coupling matrix C(X,P ), for then a state function can be
written as

ψ(x,X)≈ψ(x,X)AD
n = ϕ(x,X)nΦ(X)n (1.16)

and a product wavefunction corresponds to additive electronic and nuclear energies.
The special character of the electronic wavefunctions {ϕ(x,X)m} is, by (1.13), that
they diagonalize the electronic Hamiltonian Ho; they are said to define an ‘adia-
batic’ basis (cf. the approximate form (1.16)) because the electronic state label n is
not altered as X varies. The Born approach does not really require the diagonaliza-
tion of Ho; it is perfectly possible to define other representations of the electronic
expansion functions through unitary transformations of the {ϕ}, with concomitant
modification of the coupling matrix C. This leads to so-called ‘diabatic’ bases; the
freedom to choose the representation is very important in practical applications to
spectroscopy and atomic/molecular collisions [50, 51].

1.3.3 Formal Quantum Theory of the Molecular Hamiltonian

We now start again and develop the quantum theory of the Hamiltonian for a col-
lection of n charged particles with Coulombic interactions.12 We remind ourselves
again from Sect. 1.1 that for particles with classical Hamiltonian variables {qi ,pi}
this is

H=
n∑

i

p2
i

2mi
+

n∑

i<j

eiej

4πε0|qi − qj | (1.17)

with the non-zero Poisson-bracket

{xi ,pj } = δij .

12The reader may find it helpful to refer to the Appendix which summarizes some mathematical
notions that are needed here, and illustrates them in a simple model of coupled oscillators with two
degrees of freedom.
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Let us denote the classical dynamical variables for the electrons collectively as
x,p, and those for the nuclei by X,P and denote the classical Hamiltonian by
H(x,p,X,P). After the customary canonical quantization these variables become
time-independent operators in a Schrödinger representation

x→ x̂ etc.

In the following it will be important to distinguish between operators and c-numbers,
so in the following we will use the x̂ notation for operators, and make no special
choice of representation.

As we have seen, the idea that the kinetic energy of the massive nuclei could be
treated as a perturbation of the electronic motion was first formulated in the frame-
work of the Old Quantum Theory. The idea was to separate the classical Hamilto-
nian H into two parts to isolate the nuclear momentum variables

H(x,p,X,P)=Ho(x,p,X)+ κ4H1(P). (1.18)

According to Hamilton’s equations for the unperturbed problem

dX
dt
= {X,Ho} = 0, (1.19)

using Poisson-bracket notation, which was interpreted (correctly) as describing the
dynamics of the electrons in the field of stationary nuclei. This was the starting point
of Born and Heisenberg’s calculations [36].

Let us now move to quantum theory and recast (1.18) as an operator relation,
writing the molecular Hamiltonian operator as

Ĥ(x̂, p̂, X̂, P̂)= Ĥo(x̂, p̂, X̂)+ κ4Ĥ1(P̂) (1.20)

with equation of motion under Ĥo

i�
dX̂
dt
= [X̂, Ĥo] = 0 (1.21)

from which we infer the nuclear position operators X̂ are constants of the motion
under Ĥo. We no longer make the interpretation that follows from (1.19) since speci-
fying precisely the positions {X} for stationary nuclei violates the Uncertainty Prin-
ciple. Instead (1.21) leads to a completely different conclusion (see below).

We must now take a little bit of care about the definition of the variables, and
dispose of the uninteresting overall motion of the molecule [4]. Since the Coulomb
interaction only depends on interparticle distances it is translation invariant, and
therefore the total momentum operator P̂

P̂=
∑

n

p̂n
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commutes with Ĥ. It follows that the molecular Hamiltonian may be written as a
direct integral

Ĥ=
∫ ⊕

R3
Ĥ (P )dP (1.22)

where [52]

Ĥ (P )= P 2

2MT
+ Ĥ′ (1.23)

is the Hamiltonian at fixed total momentum P and MT is the molecular mass. The
internal Hamiltonian Ĥ′ is independent of the centre-of-mass variables and is explic-
itly translation invariant. The form of Ĥ′ is not uniquely fixed but whatever coordi-
nates are chosen the essential point is that it is always the same operator specified
in (1.23) acting on a Hilbert space H that may be parameterized by functions of the
electron and nuclear coordinates.

The separation of the centre-of-mass terms from the internal Hamiltonian is the
same in quantum mechanics as in classical mechanics so we need not distinguish
operators from classical variables in this step. It is convenient to choose the centre-
of-nuclear mass for the definition of suitable internal coordinates.13 Let te be a set
of internal electronic coordinates defined as the original electronic coordinates x
referred to the centre-of-nuclear mass, and let tn be a set of internal nuclear coor-
dinates constructed purely from the original nuclear coordinates X. If there are s
electrons and M nuclei, there are s internal electronic coordinates, and M − 1 in-
ternal nuclear coordinates. There are corresponding canonically conjugate internal
momentum variables. In terms of these variables the total kinetic energy of all the
particles can be decomposed into the form

T0 = TCM + TN + Te (1.24)

where TCM is the kinetic energy for the centre-of-mass, TN is the kinetic energy for
the nuclei expressed purely in terms of the internal nuclear momentum variables,
and Te is the kinetic energy for the electrons expressed purely in terms of the inter-
nal electronic momentum variables. The Coulomb energy can be expressed purely
in terms of the internal coordinates, U = U(te, tn). These relations are true both
classically and in quantum mechanics with a suitable operator interpretation.

In parallel with the decomposition in (1.18), we define the quantum mechanical
‘electronic’ Hamiltonian as

Ĥelec = T̂e + Û
(
t̂e, t̂n) (1.25)

13It is always possible to split off the kinetic energy of the centre-of-mass without any approxi-
mation; with this choice we retain the separation of the electronic and nuclear kinetic energies as
well, as in (1.24). Explicit formulae are given in e.g. [3] where it is shown that the nuclear kinetic
energy terms involve reciprocals of the nuclear masses, so that overall, the nuclear kinetic energy
is proportional to κ4.



1 The Potential Energy Surface in Molecular Quantum Mechanics 19

so that after dropping the uninteresting kinetic energy for the overall centre-of-mass,
we see that the internal Hamiltonian has the form,

Ĥ′ = Ĥelec + T̂N (1.26)

where, as before, the nuclear kinetic energy term is proportional to κ4 (see foot-
note 13). Its Schrödinger equation may be written

Ĥ′|Ψm〉 =Em|Ψm〉 (1.27)

where m is used to denote a set of quantum numbers (J M p r i): J and M for
the angular momentum state: p specifying the parity of the state: r specifying the
permutationally allowed irreducible representations within the groups of identical
particles, and i to specify a particular energy value. Any bound state (a ‘molecule’)
has an energy lying below the start of the essential spectrum.

Now just as in (1.21) Ĥelec is independent of the nuclear momentum operators
and so it commutes with the internal nuclear position operators

[
Ĥelec, t̂

n]= 0. (1.28)

They may therefore be simultaneously diagonalized and we use this property to
characterize the Hilbert space H for Ĥelec. Let b be some eigenvalue of the t̂n cor-
responding to choices {xg = ag, g = 1, . . . ,M} in the laboratory-fixed frame; then
the {ag} describe a classical nuclear geometry. The set, X, of all b is R3(M−1).
We denote the Hamiltonian Ĥelec evaluated at the nuclear position eigenvalue b
as K̂(b, t̂e)o = K̂o for short; this K̂o is very like the usual clamped-nuclei Hamil-
tonian but it is explicitly translationally invariant, and has an extra term, which is
often called the Hughes-Eckart term, or the mass polarization term. Its Schrödinger
equation is of the same form as (1.13), with eigenvalues Eo(b)k and corresponding
eigenfunctions ϕ(te,b)k ,

K̂oϕ
(
b, te)

k
=Eo(b)kϕ

(
b, te)

k
. (1.29)

As before its spectrum in general contains a discrete part below a continuum,

σ(b)≡ σ (K̂(b, t̂e)
o

)= [Eo(b)0, . . . ,Eo(b)m
)⋃[

Λ(b),∞). (1.30)

Note that for other than diatomic molecules, it is not possible to proceed further
and separate out explicitly the rotational motion. For any choice of b the eigenvalues
of K̂o will depend only upon the shape of the geometrical figure formed by the {ag},
being independent of its orientation. It is possible to introduce a so-called body-
fixed frame by transforming to a new coordinate system built out of the b consisting
of three angular variables and 3M − 6 internal coordinates. In so doing however
one cannot avoid angular momentum terms arising which couple the electronic and
nuclear variables, and so there is no longer a clean separation of the kinetic energy
into an electronic and a nuclear part. Moreover no single specification of body-fixed
coordinates can be given that describes all possible nuclear configurations.
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The internal molecular Hamiltonian Ĥ′ in (1.23) and the clamped-nuclei like op-
erator K̂o just defined can be shown to be essentially self-adjoint (on their respective
Hilbert spaces) by reference to the Kato-Rellich theorem [53] because in both cases
there are kinetic energy operators that dominate the (singular) Coulomb interaction;
they therefore have a complete set of eigenfunctions. As regards Ĥelec, we have a
family of Hilbert spaces {H (b)} which are parameterized by the nuclear position
vectors b ∈ X that are the ‘eigenspaces’ of the family of self-adjoint operators K̂o;
from them we can construct a big Hilbert space as a direct integral over all the b
values

H =
∫ ⊕

X

H (b)db (1.31)

and this is the Hilbert space for Ĥelec in (1.25).
Equation (1.31) leads directly to a fundamental result; since Ĥelec commutes with

all the {t̂n}, it has the direct integral decomposition

Ĥelec =
∫ ⊕

X

K̂
(
b, t̂e)

o
db. (1.32)

Even if the ‘ clamped-nuclei’ Hamiltonian has a set of discrete states—Potential En-
ergy Surfaces—(1.32) implies that the unperturbed Hamiltonian,14 Ĥelec, has purely
continuous spectrum (cf. Appendix),

σ = σ (Ĥelec)=
⋃

b

σ(b)≡ [V0,∞)

where V0 is the minimum value of E(b)0; in the diatomic molecule case this is the
minimum value of the usual ground-state potential energy curveE0(r). The operator
Ĥelec has no localized eigenfunctions; rather, its eigenfunctions are continuum func-
tions. To avoid any misunderstanding, we emphasize that this result has nothing to
do with the continuous spectrum of the full molecular Hamiltonian associated with
the centre-of-mass motion which can be dealt with trivially in the preliminaries.

A possibly helpful way to think about this paradoxical result is as follows. The
quantum mechanical molecular Hamiltonian for a collection of electrons and nuclei
with Coulomb interactions is a function of position and momentum operators for all
the specified electrons and all the nuclei. If now we separate off the terms containing
all the nuclear momentum operators (the terms proportional to κ4) what is left must
be a function of position and momentum operators for the electrons and position
operators for all the nuclei. This statement is true in any representation of the oper-
ators, and in particular must be respected if one chooses a position representation.

This is not what Born and Oppenheimer assumed about their equation (12) [our
equation (1.10)] when κ = 0—see Sect. 1.3.1 above—and which has been assumed
ever since in Quantum Chemistry. In effect they chose to work only in the ‘small’

14After the elimination of the centre-of-mass variables Ĥelec is playing the role of Ĥo in (1.20).
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Hilbert space of a fixed configuration, H (X), in which X can be assumed to be a
‘parameter’ in the position space wavefunction ψ(x,X), whereas if they had con-
tinued with quantum mechanics they would have been working in the ‘big’ Hilbert
space H with x̂ and X̂ treated on an equal footing as operators, and all possible
nuclear configurations being treated simultaneously, rather than one at a time.

The unusual properties of the (‘electronic’) Hamiltonian Ĥo(x̂, p̂, X̂) = Ĥelec

in (1.32)15 considered as a quantum-mechanical operator on the whole space H,
are of exactly the kind to be expected from the work of Kato [54]. In Lemma 4 of
his paper he showed that for a Coulomb potential U and for any function f in the
domain D0 of the full kinetic energy operator T̂0, the domain, DU , of the internal
Hamiltonian Ĥ′ contains D0 and there are two constants a, b such that

‖Uf ‖ ≤ a‖T̂0f ‖ + b‖f ‖
where a can be taken as small as is liked. This result is often summarised by say-
ing that the Coulomb potential is small compared to the kinetic energy. Given this
result he proved in Lemma 5 (the Kato-Rellich theorem) that the usual Coulomb
Hamiltonian operator is essentially self-adjoint and so is guaranteed a complete set
of eigenfunctions, and is bounded from below.

In the present context the important point to note is that the Coulomb term is
small only in comparison with the kinetic energy term involving the same set of
variables. So the absence of one or more kinetic energy terms from the Hamiltonian
may mean that the Coulomb potential term cannot be treated as small. It is evident
that one can’t use the Kato-Rellich argument to guarantee self-adjointness for the
customary representation of Helec in a position representation as a differential and
multiplicative operator because it contains the nuclear positions {X} in Coulomb
terms that are not dominated by corresponding kinetic energy operators involving
the conjugate momentum operators {−i�∇} since they have been separated off into
the ‘perturbation’ term ∝ κ4. As a quite separate matter, the abstract direct integral
operator (1.32) is self-adjoint since the resolvent of the clamped-nuclei Hamiltonian
is integrable. This is demonstrated in Theorem XIII.85 in the book by Reed and
Simon [53]. It is in this form that the operator is used in the mathematically rigorous
accounts (to be discussed later) of the Born-Oppenheimer approximation in [64]
and [70]. The operator used in the standard account of Born and Huang [44] is
however simply the usual one which, as discussed above, is not self-adjoint in the
Kato sense.

1.3.4 Approximate Calculations

It might have been hoped, in the light of the claim in the original paper by Born
and Oppenheimer quoted in Sect. 1.3.1, that the eigensolutions of the κ→ 0 limit

15We assume that the centre-of-mass contributions are eliminated as usual.
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of the internal Hamiltonian, Ĥ′, would actually be those that would have been ob-
tained from (1.10) after separation of the centre-of-mass term, by letting the nuclear
masses increase without limit. Although there are no analytically solved molecular
problems, the work of Frolov [55] provides extremely accurate numerical solutions
for a problem with two nuclei and a single electron. Frolov investigated what hap-
pens when the masses of one and then two of the nuclei increase without limit in his
calculations. To appreciate his results, consider a system with two nuclei; the natu-
ral nuclear coordinate is the internuclear distance which will be denoted here simply
as t. When needed to express the electron-nuclei attraction terms, xn

i is simply of the
form αit where αi is a signed ratio of the nuclear mass to the total nuclear mass; in
the case of a homonuclear system αi =± 1

2 .
The di-nuclear electronic Hamiltonian after the elimination of the centre-of-mass

contribution as described in Sect. 1.3.3 is

Ĥelec(te, t
) = − �

2

2m

N∑

i=1

∇2(te
i

)− �
2

2(m1 +m2)

N∑

i,j=1

∇(te
i

) ·∇(te
j

)

− e2

4πε0

N∑

j=1

(
Z1

|te
j + α1t| +

Z2

|te
j + α2t|

)

+ e2

8πε0

N∑

i,j=1

′ 1

|te
i − te

j |
+ Z1Z2

R
, R = |t| (1.33)

while the nuclear kinetic energy part is:

T̂N(t)=−�
2

2

(
1

m1
+ 1

m2

)
∇2(t)≡− �

2

2μ
∇2(t). (1.34)

The full internal motion Hamiltonian for the three-particle system is then

Ĥ′
(
te, t
)= Ĥelec(te, t

)+ T̂N(t) (1.35)

which is of the same form as (1.26).
It is seen from (1.34), that if only one nuclear mass increases without limit then

the kinetic energy term in the nuclear variable remains in the full problem and so the
Hamiltonian (1.35) remains essentially self-adjoint. Frolov’s calculations showed
that when one mass increased without limit (the atomic case), any discrete spec-
trum persisted but when two masses were allowed to increase without limit (the
molecular case), the Hamiltonian ceased to be well-defined and this failure led to
what he called adiabatic divergence in attempts to compute discrete eigenstates of
(1.35). This divergence is discussed in some mathematical detail in the Appendix to
Frolov [55]. It does not arise from the choice of a translationally invariant form for
the electronic Hamiltonian; rather it is due to the lack of any kinetic energy term to
dominate the Coulomb potential.
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To every solution of (1.29) there corresponds a function

Φ
(
te, tn)

m
= ϕ(b, te)

m
δ
(
tn − b

)
(1.36)

in the (te, tn) position representation which is a formal solution, in the sense of dis-
tributions, of the Schrödinger equation for Ĥelec. The energy, Em(b) of the function
(1.36) is independent of the orientation of the figure defined by the b, and is also un-
altered by the parity operation b→−b, and by permutations of the labelling of any
identical nuclei. Φm however depends on the orientation of the body-fixed frame
defined by the configuration b with respect to some space-fixed reference frame.
Let the Euler angles relating these two frames be Ω so that

Φ(b)m =Φ(b,Ω)m
in an obvious notation, so we have a continuous family of degenerate states. The
dependence on orientation is eliminated by forming a continuous superposition
through integration over the Euler angles with some weight function c(Ω)

Ψm =
∫
dΩ ′c

(
Ω ′
)
Φ
(
b,Ω ′

)
m
.

Similarly one may form superpositions of the space-inverted and permuted states in
order to form a new basis that displays the corresponding symmetries that leave the
energy eigenvalue unchanged.

There are two quite distinct approaches to the solution of the molecular
Schrödinger equation (1.27) based on the formal theory reviewed in Sect. 1.3.3.
Functions of the type (1.36) can be used as the basis of a Rayleigh-Ritz calculation
being, hopefully, well-adapted to the construction of useful trial functions. Several
different lines have been developed; in the adiabatic model the trial function is
written as the continuous linear superposition

Ψ
(
te, tn)

m
=
∫
dbF(b)ϕ

(
b, te)

m
δ
(
tn − b

)

= F (tn)ϕ
(
tn, te)

m
(1.37)

where the square-integrable weight factor F(tn) may be determined by reducing
(1.27) to an effective Schrödinger equation for the nuclei in which F(tn) appears as
the eigenfunction [56].

If the {ϕm} are chosen to be orthonormal we have

〈Ψm|Ψm〉 =
∫∫

dtedtn
∣∣Ψ
(
te, tn)

m

∣∣2 =
∫
dtn
∣∣F
(
tn)∣∣2.

We may choose the weight factor F to be normalized, so that the state function Ψm
is also normalized. On the other hand

〈Ψm|Ĥ′|Ψm〉 =
∫∫

dtedtnΨ ∗m
(
Ĥ′Ψm

)=
∫
dtnF

(
tn)∗(ĤmF)

(
tn)
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where we have defined the effective nuclear Hamiltonian

(ĤmF)
(
tn)=

∫
dteϕ
(
te, tn)

m

[
Ĥ′ϕ
(
te, tn)

m
F
(
tn)]. (1.38)

The Rayleigh-Ritz quotient

E[Ψm] = 〈Ψm|Ĥ
′|Ψm〉

〈Ψm|Ψm〉 (1.39)

is stationary for those functions that are solutions of the effective nuclear
‘Schrödinger equation’

ĤmFs =EmsFs. (1.40)

In particular, using the electronic ground state ϕ0, the Rayleigh-Ritz quotient
leads to an upper bound to the ground state energy E0 of Ĥ′. Having set up the cal-
culation with square integrable functions the approximate ground-state is naturally
a discrete state; the discussion however yields no information about the bottom of
the essential spectrum i.e. it does not prove the existence of a bound-state below
the continuum. This calculation amounts to the diagonalization of the projection of
Ĥ′ on the one-dimensional subspace spanned by Ψ0. In principle the subspace may
be enlarged, and the accuracy thereby improved, by using the subspace spanned by
a set of trial functions (Ψ0,Ψ1, . . . ,Ψm) of the form of (1.37). Such non-adiabatic
calculations which make no use of a Potential Energy Surface are restricted to very
small molecules.

In practice the variational approach is implemented as follows; a collection of en-
ergiesE(bi ) is found through standard quantum chemical computations for different
geometries {bi} and fitted to produce a function V (tn) that is treated as a potential
energy contribution to the left-hand-side of the Born equation (1.15), rather than
(1.40), so the clamped-nuclei assumption enters in an essential way (see Appendix).
With considerable computational effort it is possible to construct permutationally
invariant energy surfaces for molecules with up to 10 nuclei [57]. Note however that
if Ĥ′ is separated as in (1.26), then it is Ĥelec that appears in (1.38) rather than the
clamped-nuclei Hamiltonian.

Another generalization is to replace the unnormalizable delta function in (1.37)
by a square integrable function; the relation

δ3(x− y)= lim
a→∞

(
a

π

) 3
2

e−a(x−y)2 ≡ lim
a→∞χa(x,y)

suggests that one might consider trial wavefunctions

Ψ
(
te, tn)GCM

m
=
∫
dbF(b)ϕ

(
b, te)

m
χa
(
tn,b
)

for some suitably chosen parameter a. This is the basis of the molecular Genera-
tor Coordinate Method (GCM) which is a non-adiabatic formalism; as before the
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weight factor F(b) is determined by appeal to the Rayleigh-Ritz quotient, although
part of its structure can be determined purely by symmetry arguments. In the GCM
the effective Schrödinger equation for the weight function becomes an integral equa-
tion (the Hill-Wheeler equation) [45]. Again the trial function may be improved, in
the sense of a variational calculation, by forming linear superpositions of the wave-
functions {Ψ GCM}; this has been done for diatomic molecules for which a fairly
complete GCM account has been developed [45, 58]. Usually however the depen-
dence on the nuclear variables {tn} is not expressed through functions adapted to
nuclear permutation symmetry, and the GCM weight functions are determined by
molecular structure considerations.

It should be noted here that ϕ(b, te) as a solution to the Schrödinger equation
(1.29) where tn has been replaced by b, is defined only up to a phase factor of the
form

exp
[
iw(b)

]

w is any single-valued real function of the {bi} which can be different for different
electronic states. The phase factor is only trivial in the absence of degeneracies. Spe-
cific phase choices may therefore be needed when tying this part to the nuclear part
of the product wave function. It is only by making suitable phase choices that the
electronic wave function is made a continuous function of the formal nuclear vari-
ables, b, and the complete product function, made single valued. This is the origin
of the Berry phase in clamped-nuclei calculations involving intersecting Potential
Energy Surfaces; for a discussion of these matters see [59, 60]. It is worth noting
explicitly that notions of molecular Berry phases and conical intersections of PE
surfaces are tied to the clamped-nuclei viewpoint which introduces ‘adiabatic pa-
rameters’. According to quantum mechanics the eigensolutions of (1.27) are single-
valued functions by construction with arbitrary phases (rays) so one does not expect
any Berry phase phenomena a priori.

The rigorous mathematical analysis of the original perturbation approach pro-
posed by Born and Oppenheimer [38] for a molecular Hamiltonian with Coulombic
interactions was initiated by Combes and co-workers [61–64] with results for the
diatomic molecule. Some properties of the operator Helec, (1.32), seem to have been
first discussed in this work. A perturbation expansion in powers of κ leads to a
singular perturbation problem because κ is a coefficient of differential operators
of the highest order in the problem; the resulting series expansion of the energy
is an asymptotic series, closely related to the WKB approximation obtained by a
semiclassical analysis of the effective Hamiltonian for the nuclear dynamics. This
requires a more complete treatment than the adiabatic model using the partitioning
technique to project the full Coulomb Hamiltonian, Ĥ′, onto the adiabatic subspace.
A normalized electronic eigenvector |ϕ(b)j 〉 is associated with a projection operator
by the usual correspondence

P̂ (b)j =
∣∣ϕ(b)j

〉〈
ϕ(b)j

∣∣.


