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Preface

This volume of Advances in Intelligent Systems and Computing contains
accepted papers presented at ICGEC 2013, the 7th International Conference
on Genetic and Evolutionary Computing. The conference this year was techni-
cally co-sponsored by The Waseda University in Japan, Kaohsiung University of
Applied Science in Taiwan, and VŠB-Technical University of Ostrava. ICGEC
2013 was held in Prague, Czech Republic. Prague is one of the most beautiful
cities in the world whose magical atmosphere has been shaped over ten centuries.
Places of the greatest tourist interest are on the Royal Route running from the
Powder Tower through Celetná Street to Old Town Square, then across Charles
Bridge through the Lesser Town up to the Hradčany Castle. One should not
miss the Jewish Town, and the National Gallery with its fine collection of Czech
Gothic art, collection of old European art, and a beautiful collection of French
art.

The conference was intended as an international forum for the researchers
and professionals in all areas of genetic and evolutionary computing. The main
topics of ICGEC 2013 included Intelligent Computing, Evolutionary Computing,
Genetic Computing, and Grid Computing.

The organization of the ICGEC 2013 was entirely voluntary. The review pro-
cess required an enormous effort from the members of the International Technical
Program Committee, and we would therefore like to thank all its members for
their contribution to the success of this conference. We would like to express
our sincere thanks to the invited session organizers, to the host of ICGEC 2013,
VŠB – Technical University of Ostrava, and to the publisher, Springer, for their
hard work and support in organizing the conference.

August 2013 Jeng-Shyang Pan
Pavel Krömer
Václav Snášel
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Marek Penhaker VŠB-Technical University of Ostrava,

Czech Republic
Sylvain Piechowiak University of Valenciennes, France
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Forecast Models of Partial Differential Equations Using 
Polynomial Networks 

Ladislav Zjavka 

VŠB-Technical University of Ostrava, IT4innovations Ostrava, Czech Republic 
ladislav.zjavka@vsb.cz 

Abstract. Unknown data relations can describe lots of complex systems 
through partial differential equation solutions of a multi-parametric function 
approximation. Common neural network techniques of pattern classification or 
function approximation problems in general are based on whole-pattern 
similarity relationships of trained and tested data samples. They apply input 
variables of only absolute interval values, which may cause problems by far 
various training and testing data ranges. Differential polynomial neural network 
is a new type of neural network developed by the author, which constructs and 
substitutes an unknown general sum partial differential equation, defining a 
system model of dependent variables. It generates a total sum of fractional 
polynomial terms defining partial relative derivative dependent changes of 
some combinations of input variables. This type of regression is based only on 
trained generalized data relations. The character of relative data allows 
processing a wider range of test interval values than defined by the training set. 
The characteristics of differential equation solutions also in general facilitate a 
greater variety of model forms than allow standard soft computing methods. 

Keywords: polynomial neural network, partial differential equation 
composition, sum relative derivative term, multi-parametric function 
approximation. 

1 Introduction 

Differential equation solutions allow define models for a variety of pattern 
recognition [10] and primarily function approximation problems, applying genetic 
programming (GP) techniques [3] or an artificial neural network (ANN) construction 
[9]. A common ANN operating principle is based on entire similarity relationships of 
new presented input patterns with the trained ones. It does not allow for eventual 
forthright data relations of variables, which might define a generalized model. 
Common soft-computing techniques utilize only absolute interval values of input 
variables, which are not able to describe a wider range of applied data [1]. The 
generalization from the training data set may be difficult or problematic if the model 
has not been trained with inputs around the range covered testing data [2]. If training 
data involve relations, which may become stronger or weaker character, the network 
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model could generalize it into wide-range valid values. Differential polynomial neural 
network (D-PNN) is a new neural network type, which creates and resolves an 
unknown partial differential equation (DE) following a data description of a multi-
parametric function approximation. A general DE is substituted producing sum of 
fractional polynomial derivative terms, forming a system model of dependent 
variables. In contrast with the ANN functionality, each neuron can direct take part in 
the network total output calculation, which is formed by the sum of active neuron 
outputs. The study tried to create a neural network, which function approximation is 
based on any dependent data relations. ANN solutions do not provide model 
specifications in the form of a math description. The model appears to the users as a 
“black box”. D-PNN combines the neural network functionalities with some math 
techniques of differential equation solutions. Its models are the boundary of neural 
network and exact computational techniques.  
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D-PNN’s block skeleton is formed by the GMDH (Group Method of Data 
Handling) polynomial neural network, which was created by a Ukrainian scientist 
Aleksey Ivakhnenko in 1968, when the back-propagation technique was not known 
yet [4]. General connection between input and output variables is possible to express 
by the Volterra functional series, a discrete analogue of which is Kolmogorov-Gabor 
polynomial (1). This polynomial can approximate any stationary random sequence of 
observations and can be computed by either adaptive methods or system of Gaussian 
normal equations [6]. GMDH decomposes the complexity of a process into many 
simpler relationships each described by low order polynomials (2) for every pair of 
the input values. Typical GMDH network maps a vector input x to a scalar output y, 
which is an estimate of the true function f(x) = yt. 

 
y = a0 + a1xi + a2xj + a3xixj + a4xi

2 + a5xj
2    (2) 

2 General Partial Differential Equation Composition 

The basic idea of the D-PNN is to compose and substitute a general sum partial 
differential equation (3), which is not known in advance and can describe a system of 
dependent variables, with a generated sum of fractional relative multi-parametric 
polynomial derivative terms (5). 
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u = f(x1, x2,, … , xn) – searched function of all input variables 
a, B(b1, b2,, ..., bn), C(c11, c12, ,... ) – polynomial parameters 
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Partial DE terms are formed according to the adapted method of integral 
analogues, which is a part of the similarity model analysis. It replaces mathematical 
operators and symbols of a DE by ratio of corresponding values. Derivatives are 
replaced by their integral analogues, i.e. derivative operators are removed and 
simultaneously with all operators are replaced by similarly or proportion signs in 
equations to form dimensionless groups of variables [5].  
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n – combination degree of  a complete polynomial of n-variables 
m – combination degree of denominator variables 

 
The fractional polynomials (5) define partial derivative relations of n-input 

variables. The numerator of a DE term (5) is a polynomial of all n-input variables and 
partly defines an unknown function u of eq. (4). The denominator is a derivative part, 
arose from the partial derivation of the complete n-variable polynomial in respect to 
competent variable(s). The root function of numerator takes the polynomial into 
competent combination degree to get the dimensionless values [5]. 

 

 

Fig. 1. D-PNN block of basic and compound neurons 

Blocks of the D-PNN (Fig.1.) consist of derivative neurons, one for each fractional 
polynomial derivative combination, so each neuron is considered a summation DE 
term (4). Each block contains a single output polynomial (2), without derivative part. 
Neurons do not affect the block output but participate direct in the total network 
output sum calculation of a DE composition. Each block has 1 and neuron 2 vectors 
of adjustable parameters a, resp. a, b.  
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where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables 
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In the case of 2 input variables the 2nd odder partial DE can be expressed in the 
form of eq. (6), which involve all derivative terms of variables applied by the GMDH 
polynomial (2). D-PNN processes these 2-combination square polynomials of blocks 
and neurons, which form competent DE terms of eq. (5). Each block so include 5 
basic neurons of derivatives x1, x2, x1x2, x1

2, x2
2 of the 2nd order partial DE (6), which 

is most often used to model physical or natural systems.  

3 Differential Polynomial Neural Network 

Multi-layered networks forms composite polynomial functions (Fig.2.). Compound 
terms (CT), i.e. derivatives in respect to variables of previous layers, are calculated 
according to the composite function partial derivation rules (7)(8). They are formed 
by products of partial derivatives of external and internal functions. 

 
F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(φ1(X), φ2(X),..., φm(X))    (7) 
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Fig. 2. 3-variable multi-layered backward D-PNN with 2-variable combination blocks 
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Thus blocks of the 2nd and following hidden layers are additionally extended with 
compound terms (neurons), which form composite derivatives utilizing outputs and 
inputs of back connected previous layer blocks. The 1st block of the last (3rd) hidden 
layer (Fig.2.) forms neurons e.g. (9)(10)(11) [10]. 
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The square (12) and combination (13) derivative terms are also calculated 

according to the composite function derivation rules. 
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The best-fit neuron selection is the initial phase of the DE composition, which may 

apply a proper genetic algorithm (GA). Parameters of polynomials might be adjusted 
by means of difference evolution algorithm (EA), supplied with sufficient random 
mutations. The parameter optimization is performed simultaneously with the GA term 
combination search, which may result in a quantity of local or global error solutions. 
The number of network hidden layers coincides with a total amount of input 
variables. There would be welcome to apply an adequate gradient descent method too, 
which parameter updates result from partial derivatives of polynomial DE terms in 
respect with the single parameters [7].  
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Only some of all potential combination DE terms (neurons) may participate in the 

DE composition, in despite of they have an adjustable term weight (wi). D-PNN’s 
total output Y is the sum of all active neuron outputs, divided by their amount k (14). 
The root mean square error (RMSE) method (15) was applied for the polynomial 
parameter optimization and neuron combination selection. D-PNN is trained only 
with a small set of input-output data samples likewise the GMDH algorithm does [6]. 
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4 Test Experiments 

The presented 3-variable multi-layered D-PNN (Fig.2.) can be tested to approximate 
non-linear multi-parametric functions. The D-PNN and ANN models were trained 
with 24 data samples, randomly generated by benchmark functions from the interval 
<10,400>. The ANN approximation ability falls rapidly outside of training range, 
while the D-PNN’s alternate errors grow just slowly (Fig.3. and Fig.4.). Experiments 
with other benchmarks (e.g. x1+x2

2+x3
3) result in similar outcome graphs. The ANN 

with 2-hidden layers of neurons applied the sigmoidal activation function and 
standard back-propagation algorithm. The parameter and weight adjustment of both 
methods appeared heavy time-consuming and have not succeed any experiment. 
 

 

Fig. 3. Comparison of the f(x1, x2, x3)=( x1+x2+x3)
2 function approximation 

 

Fig. 4. Comparison of the f(x1, x2, x3)= x1
2+x2

3+x3
4  function approximation 
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5 Real Data Multi-parametric Models 

A real data multi-parametric function can be represented by the relative humidity 
model which inputs are 3 weather variables of wind speed, temperature and sea level 
pressure of a 1-site locality. The test model of real meteorological data can roughly 
estimate the time and amount of precipitations. The relative humidity values increase 
at night hours (with temperature decrease), upswing or day grows can indicate 
precipitations (Fig.5a-d). The comparisons were done with 1-layer recurrent neural 
network (RNN), which applies as inputs also its neuron outputs from a previous time 
estimate. D-PNN applies only 3 current state variables, which disadvantages it, as it 
does not allow for time sequences. Both networks were trained with previous day 
hourly data series (24 or 48 hours, i.e. data samples) free on-line available [11].  

 

  

Fig. 5a. RMSED-PNN = 4.16, RMSERNN = 4.72 

 

Fig. 5b. RMSED-PNN = 5.75, RMSERNN = 3.48 



8 L. Zjavka 

 

 

Fig. 5c. RMSED-PNN = 5.33, RMSERNN = 5.70 

  

Fig. 5d. RMSED-PNN = 5.27, RMSERNN = 7.99 

The humidity value estimation model (Fig.5.) is only a search test of unknown real 
meteorological data function relations. The model could be formed with reference to 
other weather variables forecasts, as meteorological predictions of this very complex 
dynamic system are sophisticated and not any time faithful, using simple neural 
network models requiring as a rule high amount of input variables. This method could 
try to improve an official “Aladin” forecast model provided by Czech hydro-
meteorological institute. The model comprises 2-day chart prognoses of temperature, 
humidity, wind speed, pressure and cloudiness in a selected locality [12]. Thus D-
PNN can be trained with real data observations of previous 1 or 2 days to define a true 
multi-parametric function relation, exactly actual for this time interval. After it can 
form a new revised 24-hour estimation of some variable (e.g. relative humidity),  
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applying the previous day trained real model of data relations and input variables of 
the “Aladin” predictions. In the case of an unexpected weather change from a day to 
day the model will be not equally true, however this trend is not very frequent. The 
estimation will also depend on prediction accuracies of other “Aladin” model 
variables, which form the D-PNN’s input vector. 

6 Time-Series Predictions 

The simple neural network models applying 3 state weather variables of 1 site locality 
are able to predict their values simultaneously in this very complex system (Fig.6a-c.). 
The 3 meteorological variables (wind speed, dew point, see level pressure) and their 
3-time series of hour stamps form 9 variables of the input vectors totally [11]. 
However D-PNN applies only 3 hidden layers of blocks, i.e. 3 inter-connected 
networks of Fig.2, which disallows it to define all possible data relations.  

 

 (a) 

 (b) 

Fig. 6a-b. Comparison of weather variables predictions 
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 (c) 

Fig. 6c. Comparison of weather variables predictions 

The D-PNN and RNN (Fig. 7) predict values of the 3-variables at a next time state, 
which form the 3 latest time inputs of a following prediction. Dew point is the non-
linear function of temperature and relative humidity. There was need of doing more 
time-consuming experiments, which were not always succeeded and also not valid on 
all tested data as other factors can fair influence the very complex weather system [8]. 

 

Fig. 7. Recurrent neural network 

7 Conclusion 

D-PNN is a new neural network type, which function approximation and 
identification is based on generalized data relations. Its relative data processing is 
contrary to the common soft-computing method functionality (e.g. ANN, GP), which 
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applications are subjected to a fixed interval of absolute values. This handicap 
disallows it to use far various training and testing data range values, which may 
involve real data applications. Regarding to test experiments the D-PNN’s non-linear 
regression can cover a wider interval of input values. It forms and resolves an 
unknown general DE with a composition of sum fractional derivative terms, defining 
a system model of dependent variables. The inaccuracies of presented experiments 
can result from applied incomplete rough training and selective methods, requiring 
improvements. The D-PNN’s operating principle differs by far from other common 
neural network techniques. 
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Abstract. In image processing, finding the optimal threshold(s) for an
image with a multimodal histogram can be done by solving a Gaussian
curve fitting problem, i.e. fitting a sum of Gaussian probability density
functions to the image histogram. This problem can be expressed as a
continuous nonlinear optimization problem. The goal of this paper is to
show the relevance of using a recently proposed variant of the Particle
Swarm Optimization (PSO) algorithm, called PSO-2S, to solve this im-
age thresholding problem. PSO-2S is a multi-swarm PSO algorithm using
charged particles in a partitioned search space for continuous optimiza-
tion problems. The performances of PSO-2S are compared with those of
SPSO-07 (Standard Particle Swarm Optimization in its 2007 version),
using reference images, i.e. using test images commonly used in the lit-
erature on image segmentation, and test images generated from brain
MRI simulations. The experimental results show that PSO-2S produces
better results than SPSO-07 and improves significantly the stability of
the segmentation method.

1 Introduction

Digital image processing has attracted a growing interest, due to its practical
relevance in many fields of research and in industrial and medical applications.
Image segmentation is typically used to locate objects and boundaries in im-
ages. It is one of the main components of several image analysis systems, thus
it received a great deal of attention. Several surveys and comparative papers
are available in the literature [13,10,14,7]. Image thresholding is one of the most
popular segmentation approaches. It makes use of the image histogram to par-
tition the images into several meaningful groups of pixels. In automatic image
thresholding methods, the segmentation problem can be formulated as a con-
tinuous nonlinear optimization problem. Hence, the use of a metaheuristic is a
relevant choice to solve it efficiently.

In this paper, we propose to use a recently proposed algorithm [5], called
PSO-2S, which is a new variant of particle swarm optimization (PSO) [8]. PSO
is inspired by social behavior simulations of bird flocking. It has already been

J.-S. Pan et al. (eds.), Genetic and Evolutionary Computing, 13
Advances in Intelligent Systems and Computing 238,
DOI: 10.1007/978-3-319-01796-9_2, c© Springer International Publishing Switzerland 2014
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applied successfully to image processing problems [6,9]. This algorithm optimizes
a problem by iteratively improving a candidate solution with regard to a given
measure of quality. PSO-2S is a multi-swarm PSO algorithm based on several
initializations in different zones of the search space, using charged particles. This
algorithm uses two kinds of swarms, one main and several auxiliary swarms. The
best particles of the auxiliary ones generate the main swarm. More precisely, the
auxiliary swarms are initialized several times in different zones. An electrostatic
repulsion heuristic is then applied in each zone to increase the diversity of the
particles. Each auxiliary swarm performs several generations based on standard
PSO algorithm to provide the best solution in its related zone. The provided
solutions are then used as the main swarm.

This paper is structured as follows: Section 2 presents an overview of the
standard particle swarm optimization and its new variant PSO-2S. Section 3 is
dedicated to the presentation of the image thresholding method. The image seg-
mentation criterion is given in Section 4. Experimental protocol and parameter
setting are presented in Section 5. Experimental results are discussed in Section
6. The work in this paper is concluded in section 7.

2 Presentation of the PSO-2S Algorithm

2.1 Review of the Standard PSO

The particle swarm optimization (PSO) [8] is inspired originally by the social
and cognitive behavior existing in the bird flocking. The algorithm is initialized
with a population of particles randomly distributed in the search space, and each
particle is assigned a randomized velocity. Each particle represents a potential
solution to the problem.

In this paper, the swarm size is denoted by s, and the search space is n-
dimensional. In general, the particles have three attributes: the current position
Xi = (xi,1, xi,2, ..., xi,n), the current velocity vector Vi = (vi,1, vi,2, ..., vi,n) and
the past best position Pbesti = (pi,1, pi,2, ..., pi,n). The best position found in
the neighborhood of the particle i is denoted by Gbesti = (g1, g2, ..., gn). These
attributes are used to update iteratively the state of each particle in the swarm.
The objective function to be minimized is denoted by f . The velocity vector
Vi of each particle is updated using the best position it visited so far and the
overall best position visited by its neighbors. Then, the position of each particle
is updated using its updated velocity per iteration. At each step, the velocity of
each particle and its new position are updated as follows:

vi,j(t+1) = wvi,j(t)+c1r1i,j (t) [pbesti,j(t)−xi,j(t)]+c2r2i,j (t) [gbesti,j(t)−xi,j(t)]
(1)

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1) (2)

where w is called inertia weight, c1, c2 are the learning factors and r1, r2 are two
random numbers selected uniformly in the range [0, 1].
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Fig. 1. Partitioning of the search space

2.2 PSO Improved Variant: PSO-2S

An improved variant of the original PSO algorithm, called PSO-2S, was proposed
by El Dor et al. [5]. This variant consists of using three main ideas: the first is
to use two kinds of swarms: a main swarm, denoted by S1, and s auxiliary ones,
denoted by S2i, where 1 ≤ i ≤ s. The second idea is to partition the search space
into several zones in which the auxiliary swarms are initialized (the number of
zones is equal to the number of auxiliary swarms s). The last idea is to use the
concept of the electrostatic repulsion heuristic to diversify the particles for each
auxiliary swarm in each zone.

To construct S1, the auxiliary swarms S2i evolve several times in different
areas, and then each best particle for each S2i is saved and considered as a new
particle of S1. To do so, the population of each auxiliary swarm is initialized
randomly in different zones (each S2i is initialized in its corresponding zone i).
After each of these initializations, nbgeneration displacements of particles, for each
S2i, are performed in the same way as standard PSO. Then the best solution
found by each auxiliary swarm, named gbesti, is added to S1. The number of
initializations of S2i is equal to the number of particles in S1.

As mentioned above, the second idea is to partition the search space [mind,
maxd]

D into several zones (maxzone zones). Then, one calculates the centerd and
the stepd of each dimension separately, according to (3) and (4). In the case of
using an uniform (square) search space, the stepd are similar for all dimensions.

centerd = (maxd +mind)/2 (3)

stepd = (maxd −mind)/2×maxzone (4)

where maxzone is a fixed value, and d is the current dimension (1 ≤ d ≤ D).
This process is illustrated in Figure 1, where the ith swarm S2i and its

attributed zone Zi are denoted by (Zi, S2i).
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(a) (b)

Fig. 2. Repulsion process: (a) (Z3, S23) before repulsion, (b) (Z3, S23) after repulsion

The sizes of the zones of the partitioned search space are different (Z1 < Z2 <
. . . < Zmaxzone). Therefore, the number of particles in S2i, denoted by S2isize,
depends on its corresponding zone size. Indeed, a small zone takes less particles
and the number of particles increases when the zone becomes larger. The size of
each auxiliary swarm is calculated as follows:

S2isize = numzone × nbparticle (5)

where numzone = 1, 2, ..., maxzone is the current zone number and nbparticle is
a fixed value.

After the initializations of the auxiliary swarms in different zones (Zi, S2i), an
electrostatic repulsion heuristic is applied to diversify the particles and to widely
cover the search space [4]. This technique is used in an agent-based optimization
algorithm for dynamic environments [11]. Therefore, this procedure is applied
in each zone separately, hence each particle is considered as an electron. Then
a force of 1/r2 is applied, on the particles of each zone, until the maximum dis-
placement of a particle during an iteration becomes lower than a given threshold
ε (where r is the distance between two particles, ε is typically equal to 10−4).
At each iteration of this procedure, the particles are projected in the middle of
the current zone, before a new application of the repulsion heuristic. Figure 2
presents an example of the repulsion applied to (Z3, S23).

3 The Problem at Hand

The segmentation problem has received a great deal of attention, thus any at-
tempt to survey the literature would be too space-consuming. The most popular
segmentation methods may be found in [15]. In this work, image segmentation
is performed using the thresholding approach. Image thresholding is a super-
vised segmentation method, i.e. the number of regions (classes of pixels) and
their properties are known in advance by the user. The segmentation is done by
determining, for each pixel, the class whose properties are the closest to those
observed for that pixel. The thresholding technique is based on the assumption
that different regions of the image can be distinguished by their gray levels.
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It makes use of the histogram h(j) of the processed image, i.e. the observed
probability of gray level j. It can be defined as follows:

h(j) =
g (j)∑L−1
i=0 g (i)

(6)

where g(j) denotes the occurrence of gray-level j ∈ {0, 1, . . . , L−1} in the image.
Thresholding the image into N classes is to find the N − 1 thresholds that

will partition the histogram into N zones.
The main contribution of the work we present here is to show the significance

of using PSO-2S for MR image segmentation. The performances of PSO-2S are
first compared with those of SPSO-07 (Standard Particle Swarm Optimization in
its 2007 version) [2], using reference images, commonly used in the literature on
image segmentation. Then, the performances of both algorithms are compared
using images from a database generated by brain MRI simulation [1,3]. This
database, called BrainWeb, provides images for which an ”optimal” segmentation
is known. Indeed, the BrainWeb MRI simulations are based on a predefined
anatomical model of the brain. The images generated by these simulations can
then be used to validate a segmentation method, or to compare the performance
of different methods.

4 Image Segmentation Criterion

Before using this criterion we must fit the histogram of the image to be seg-
mented to a sum of Gaussian probability density functions (pdf’s). This proce-
dure is named Gaussian curve fitting, more details about it are given below. The
pdf model must be fitted to the image histogram, typically by using the max-
imum likelihood or mean-squared error approach, in order to find the optimal
threshold(s). For the multimodal histogram h(i) of an image, where i is the gray
level, we fit h(i) to a sum of d probability density functions [12]. The case where
the Gaussian pdf’s are used is defined by:

p (x) =

d∑
i=1

Pi exp

[
− (x− μi)

2

σ2
i

]
(7)

where Pi is the amplitude of Gaussian pdf on μi, μi is the mean and σ2
i is the

variance of mode i, and d is the number of Gaussians used to approximate the
original histogram and corresponds to the number of segmentation classes.

Our goal is to find a vector of parameters, Θ, that minimizes the fitting error
J , given by the following expression:

J(Θ) =

L−1∑
i=0

|h(i)− p(Θ, i)|2 (8)

where h(i) is the measured histogram. Here, J is the objective function to be
minimized with respect to Θ, a set of parameters defining the Gaussian pdf’s
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and the probabilities, given by Θ = {Pi, μi, σi; i = 1, 2, · · · , d}. After fit-
ting the multimodal histogram, the optimal threshold could be determined by
minimizing the overall probability of error, for two adjacent Gaussian pdf’s,
given by:

e(Ti) = Pi

∫ Ti

−∞
pi (x) dx+ Pi+1

∫ ∞

Ti+1

pi+1 (x) dx (9)

with respect to the threshold Ti, where pi(x) is the ith pdf and i = 1, . . . , d− 1.
Then the overall probability to minimize is:

E(T ) =
d−1∑
i=1

e(Ti) (10)

where T is the vector of thresholds: 0 < T1 < T2 < ... < T(d−1) < L − 1. In our
case L is equal to 256.

5 Experimental Protocol and Parameter Setting

To compare the performance of PSO-2S and SPSO-07, the criterion (8) is min-
imized for each test image in Figure 3 (a). The stagnation criterion used is
satisfied if no significant improvement (greater than 1E−10) in the current best
solution is observed during 1E+4 successive evaluations of the objective function.
In addition, the maximum number of evaluations allowed is set to 300000.

In this figure, LENA and BRIDGE are reference images used for the validation
of segmentation methods in the literature. The images MRITS and MRICS are
obtained from BrainWeb [1] and correspond to transverse and coronal sections
of a brain, respectively. The parameters used for the MRI simulation are a T1-
weighted sequence, a slice thickness of 1mm, a Gaussian noise of 3% calculated
relative to the brightest tissue, and a 20% level of intensity non-uniformity (radio
frequency bias).

The values of the PSO and SPSO-07 parameters used for the segmentation
problem are defined below:

– PSO-2S using 30 zones and p4

7000 + 10 particles in each zone, where p is the
zone number. The parameter K used to generate the neighborhood of the
particles is set to K = 3. The parameter Nbgeneration is set to 15 ;

– SPSO-07 (Standard Particle Swarm Optimization in its 2007 version) [2]
using 10+2

√
D particles (the formula recommended by the authors of SPSO-

07), where D is the dimension of the problem. The parameter K is set to
K = 3.

6 Experimental Results and Discussion

In this section, the experimental results obtained with PSO-2S and SPSO-07 are
presented. The segmentation results are shown in Figure 3. In this figure, the
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LENA

BRIDGE

MRITS

MRICS

(a) (b) (c) (d)

Fig. 3. Illustration of the segmentation process. (a) Original images. (b) Segmented
images using thresholds in Table II. (c) Original histograms. (d) Approximated his-
tograms.

original images and their histograms are illustrated in (a) and (c), respectively.
Approximated histograms are presented in (d), and segmented images (using 5
classes) are shown in (b). For each test image, one can see that the approximation
of its histogram, illustrated in detail for LENA in Figure 4, leads to a good image
segmentation.

The histogram approximation results, for each test image, are presented in
Table 1. In this table, the parameters of each of the five Gaussian pdf’s used
to approximate the histogram of each image are given. The parameters of the
ith pdf of an image are denoted by Pi, μi and σi. Threshold values between
the different classes of pixels, calculated for each image using its approximated
histogram, are given in Table 2.

For each test image, the number of evaluations performed by each algorithm,
averaged over 100 runs, is given in Table 3. The success rate (the percentage of
acceptable solutions found among the ones of the 100 runs, i.e. the percentage of
solutions with an objective function value lower or equal to 5.14E−4, 5.09E−4,
7.51E−4, 7.99E−4 for LENA, BRIDGE, MRITS, MRICS, respectively), and the
average approximation error (the average value of the objective function for the
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Fig. 4. Illustration of the histogram approximation process for LENA. (a) Original
histogram. (b) Gaussian pdf’s for each class of pixels. (c) Sum of the Gaussian pdf’s
(approximated histogram).
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Table 1. Parameters of the Gaussian pdf’s used to approximate the histogram of each
test image

Image μ1 P1 σ1 μ2 P2 σ2 μ3 P3 σ3 μ4 P4 σ4 μ5 P5 σ5

LENA 41.62 0.17 9.87 90.57 0.28 23.14 117.21 0.06 6.33 142.54 0.43 23.82 199.56 0.07 12.64
BRIDGE 41.13 0.06 15.36 76.75 0.39 25.97 119.25 0.38 34.73 173.38 0.14 28.43 225.53 0.02 9.09
MRITS 4.71 0.28 3.78 40.79 0.17 10.05 94.50 0.36 14.26 131.55 0.19 9.17 225.60 0.00 252.92
MRICS 4.66 0.41 3.66 41.76 0.09 7.64 99.57 0.21 11.92 135.53 0.29 7.46 192.73 0.00 239.82

Table 2. Threshold values for each test image

Image Thresholds

LENA 57 112 120 183
BRIDGE 46 98 156 215
MRITS 15 62 117 184
MRICS 17 64 121 177

Table 3. Average number of evaluations for the segmentation of an image, approxi-
mation error and success rate obtained for each algorithm, for each test image

Image Algorithm Evaluations Approximation error Success rate

LENA
PSO2S 119721.7 ± 64844.3 5.44E−4 ± 3.06E−5 41 %
SPSO-07 67057.1 ± 64316.9 5.52E−4 ± 3.08E−5 25 %

BRIDGE
PSO2S 241537.8 ± 70707.8 5.27E−4 ± 9.54E−5 48 %
SPSO-07 125524.4 ± 63277.9 5.16E−4 ± 6.01E−6 24 %

MRITS
PSO2S 81080.9 ± 66569.8 7.69E−4 ± 1.26E−4 95 %
SPSO-07 44212.0 ± 57321.5 8.79E−4 ± 2.73E−4 77 %

MRICS
PSO2S 72922.5 ± 35894.4 8.68E−4 ± 1.18E−4 70 %
SPSO-07 28185.4 ± 16188.4 9.46E−4 ± 2.71E−4 54 %

best solution found) of an image histogram are also given in this table, for 100
runs of an algorithm.

In this table, we see that PSO-2S requires more evaluations than SPSO-07
to converge to an acceptable solution. However, its success rate is significantly
higher than the one of SPSO-07 for all images, according to the Fisher’s exact test
with a 95% confidence level. Indeed, PSO-2S is designed to prevent premature
convergence of PSO algorithm. Hence, it significantly improves the stability of
the segmentation method. It shows the significance of using PSO-2S for this class
of problems.

7 Conclusion

In this paper, we present an image segmentation method using the thresholding
approach to identify several classes of pixels in standard and medical images.
This method includes an optimization step in which we integrated our PSO-2S
algorithm. We also tested the method using the algorithm SPSO-07.
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Segmentation results obtained on several test images, commonly used in the
literature in image processing and on synthetic images obtained from simulations
of brain MRI, are satisfactory. We show that using PSO-2S provides greater
stability for this segmentation method, compared with SPSO-07. It shows the
relevance of using PSO-2S for this type of problems. Our work in progress con-
sists in the improvement of the segmentation criterion in order to enhance the
segmentation quality and accelerate the optimization process.
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Abstract. A grid computing environment is a parallel and distributed system that
brings together various computing capacities to solve large computation prob-
lems. Task scheduling is a critical issue for grid computing, which maps tasks
onto a parallel and distributed system for achieving good performance in terms
of minimizing the overall execution time. This paper presents a genetic algorithm
to solve this problem for improving the existing genetic algorithm with two main
ideas: a new initialization strategy is introduced to generate the first population
of chromosomes and the good characteristics of found solutions are preserved for
new generations. Our proposed algorithm is implemented and evaluated using a
set of well-known applications in our specific-defined system environment. The
experimental results show that the proposed algorithm outperforms other algo-
rithms within several parameter settings.

1 Introduction

In past few years, grid computing systems and applications become popular [3], due to
a rapid development of many-core. A grid computing environment is a parallel and dis-
tributed system that brings together various computing capacities to solve large compu-
tation problems. In grid environments, task scheduling, which plays an important role,
divides a larger job into smaller tasks and maps tasks onto a parallel and distributed sys-
tem [1,6]. The goal of a task scheduling is typically to schedule all the tasks on a given
number of available processors so as to minimize the overall length of time required to
execute the whole program.

A parallel and distributed computing system may be homogeneous [10] or hetero-
geneous systems [7,11,13]. A homogeneous system means that the processors are the
same performance in processing capabilities. On the other hand, heterogeneous systems
have different processing capabilities in the target system. In general, the processors
are connected by an interconnection network, which is either fully-connected [11,13]
or partially-connected [2]. In the fully-connected network every processor can commu-
nicate with each other, whereas data can be transferred to some specified processors
in a partially-connected network. Besides, the task duplication issue [10] was also dis-
cussed to reduce the communication time by duplicating some tasks on more than one
processor to eliminate communication cost. To avoid increasing energy consumption,
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here we consider the target system which is the fully-connected heterogeneous systems
without task duplication.

The genetic algorithm (GA), first proposed by Holland [5], provides a popular so-
lution for application problems [4,9]. GAs have been shown that outperforms several
algorithms in the task scheduling problem, which simply define the search space to be
the solution space in which each point is denoted by a number string, called a chro-
mosome. Based on these solutions, three operators which are selection, crossover, and
mutation, are employed to transform a population of chromosomes to better solutions it-
eratively. In order to keep the good features from the previous generation, the crossover
operator exchanges the information from two chromosomes chosen randomly, and the
mutation operator alters one bit of a chromosome.

In this paper, we proposed a genetic algorithm for task scheduling on a grid com-
puting system, called TSGA. In general, GA approaches directly initialize the first pop-
ulation by some uniform random process. TSGA develops a new initialization policy,
which divides the search space into specific patterns in order to accelerate the con-
vergence of solutions. To solve the task scheduling problem, a chromosome usually
contains a mapping part and an order part to indicate the corresponding computer and
the executing order. In the standard GA, when crossover and mutation operators are
applied, both of the mapping part and the order part will be changed, which brings that
the parents’ characteristics cannot be kept in the next generation. Inspired by the idea
of eugenics, TSGA presents new operators for crossover and mutation to preserve good
features from the previous generation.

The remainder of the paper is organized as follow. In the next section, we provide the
problem definition. The proposed genetic scheduling algorithm is presented in Section
3. We describe our experimental results in Section 4. Finally, conclusions are drawn in
Section 5.

2 Problem Definition

Task scheduling is mapping smaller tasks to multiprocessors. Tasks with data prece-
dence are modeled by a Directed Acyclic Graph (DAG) [13]. The main idea of DAG
scheduling is minimizing the makespan which is the overall execution time for all tasks.

2.1 DAG Modeling

A DAG G = (V,E) is depicted in Fig. 1(a), where V is a set of N nodes and E is a
set of M directed edges. For the problem of task scheduling, V represents the set of
tasks and each task contains a sequence of instructions that should be completed in a
particular order. Let wi, j be the computation time to finish a particular task ti ∈ V on
the processor Pj, detailed in Fig. 1(b). Each edge ei, j ∈ E in the DAG indicates the
precedence constraint that task ti should complete its execution before task t j starts. Let
ci, j denote the communication cost needed to transport the data between task ti and task
t j, which is the weight on an edge ei, j. If ti and t j is assigned to the same processor, the
communication cost ci, j is zero.

The source node of an edge is called a predecessor of that node. Similarly, the des-
tination node emerged from a node is called a successor of that node. In Fig. 1(a), t1 is
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the predecessor of t2, t3, t4, and t5. On the other hand, t2, t3, t4, and t5 are the successor
of t1. In a graph, a node with no parent is called an entry node, and a node with no child
is called an exit node. If a node ti is scheduled to a processor Pj, the start-time and the
finish-time of ti are denoted by ST (ti,Pj) and FT (ti,Pj), respectively.

(a) (b) (c)

Fig. 1. An example of (a) DAG, (b) the computation cost matrix, and (c) an example of scheduling

2.2 Makespan

After all tasks are scheduled onto parallel processors, considering a particular task ti on
the processor Pj, the start-time ST (ti,Pj) can be defined as

ST (ti,Pj) = max{RTj,DAT (ti,Pj)},
where DAT (ti,Pj) is the data arrival time of task ti at the processor Pj, which is the
time when all the needed data have been transmitted. On the other hand, DAT (ti,Pj) is
defined as

DAT (ti,Pj) = max
tk∈pred(ti)

{(FT (tk,Pj)+ ck,i)},

where pred(ti) denotes the set of immediate predecessor tasks of the task ti. Since

FT (tk,Pj) = wk, j + ST(tk,Pj)

and
RTj = max

tk∈exe(Pj)
{FT (tk,Pj)},

where exe(Pj) is the set containing tasks which executes on the processor Pj, the overall
schedule length of the entire program is the largest finish time among all tasks and can
be expressed as

makespan = max
ti∈V

{FT (ti,Pj)}.

Fig. 1(c) demonstrates a scheduling for the graph described in Fig. 1(a). The makespan
of this scheduling is 23.
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3 Proposed Method

In this section, we introduce TSGA algorithm in detail, including the encoded and de-
coded representations and five important operators.

3.1 The Representation of Solutions

The representation of a chromosome is given in Fig. 2, which is divided into a mapping
part (SM) and an order part (SO). We use integer arrays to store SM and SO and the size
of arrays is equal to the number of tasks. If SM[i] is j and SO[i] is k, it means that a task
tk is executed on the processor Pj.

According to the chromosome represented in Fig. 2, the solution of a DAG in Fig.
1(a) can be scheduled in Fig. 1(c). First, we assign tasks into the mapping processor
according to the index of SM. Tasks t4, t7, and t8 are scheduled on processor P1. Tasks t3,
and t5 are executed on processor P2. Tasks t1, t2, t6, and t9 are assigned to the processor
P3. Following the order in SO, we schedule t4, t7, and t8 in the order of t4, t8, t7 in P1.
For P2, t3 is executed before t5. Tasks t1, t2, t6, and t9 are taken in the order of t1, t2, t6,
t9 in P3. Finally, we should count the wait time for communicating, if two dependent
tasks are scheduled on a different processor.

TSGA defines the fitness function in order to measure the quality of solutions. The
purpose of the scheduling problem is minimizing the makespan. Thus, the fitness func-
tion is defined as the makespan.

Fig. 2. A representation of chromosome

3.2 TSGA

An algorithmic flowchart of TSGA is given in Fig. 3. If the number of generation is not
smaller than the maximum generation G, TSGA will output the best solution.

Initialization. As shown in Algorithm 1, TSGA initializes the first population that
consists of encoded chromosomes. Each chromosome is composed of the processor
assignment and the execution order. Instead of using the random strategy to give the
processor assignment, we devise a new method dividing the search space into specific
patterns equally. The search space is divided into log2 n subspaces, where n is the num-
ber of processors. Since the best scheduling solution may occupy either few processors
or most processors in different cases, we give some patterns with a different number of
processors in order to explore the solution space in different aspects.
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Fig. 3. TSGA flowchart

Crossover Map Operator. As shown in Fig. 4(a), the crossover map operator is used
for changing the mapping processor of two chromosomes. The crossover map operator
chooses two chromosomes S and T from the population and an integer I between 1 and
N randomly. TSGA keeps the processor assignment which is located on the left of I.
For the processors on the right of I, we exchange the processors of S and T which are
assigned to execute the same task. The processor assignments of tasks t5, t6, and t9 are
exchanging directly, since those tasks are occupied in the same place in both chromo-
somes. On the other hand, tasks t7 and t8 are located at different places in these two
chromosomes, so they are scheduled to the processor in which they are assigned to an-
other chromosome, and TSGA exchanges the processor assignments. The chromosome
S′′ and T ′′ are generated by the crossover map operator in SGA.

Crossover Order Operator. The crossover order operator is practiced to the second
part of the chromosome. In Fig. 4(b), after choosing two chromosomes S and T , TSGA
chooses a crossover point I between 1 and N. Then, Step 1 copies the left portion of I in
S and T to the new chromosome S′ and T ′, respectively. In order to complete the right


