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Preface

This book is part of the Proceedings of the Seventh International Conference on
Intelligent Systems and Knowledge Engineering (ISKE2012) and the First Inter-
national Conference on Cognitive Systems and Information Processing (CSIP2012)
held in Beijing, China, during December 15–17, 2012. ISKE is a prestigious annual
conference on Intelligent Systems and Knowledge Engineering with the past events
held in Shanghai (2006, 2011), Chengdu (2007), Xiamen (2008), Hasselt, Belgium
(2009), and Hangzhou (2010). Over the past few years, ISKE has matured into a
well-established series of International Conferences on Intelligent Systems and
Knowledge Engineering and related fields over the world. CSIP2012 is the first
conference sponsored by Tsinghua University and Science China Press, and tech-
nically sponsored by IEEE Computational Intelligence Society, Chinese Associa-
tion for Artificial Intelligence. The aim of this conference is to bring together
experts from different expertise areas to discuss the state-of-the-art in cognitive
systems and advanced information processing, and to present new research results
and perspectives on future development. Both ISKE2012 and CSIP2012 provide
academic forums for the participants to disseminate their new research findings and
discuss emerging areas of research. It also creates a stimulating environment for the
participants to interact and exchange information on future challenges and oppor-
tunities of intelligent and cognitive science research and applications.

ISKE2012 and CSIP2012 received 406 submissions in total from about 20
countries (United States of America, Singapore, Russian Federation, Saudi Arabia,
Spain, Sudan, Sweden, Tunisia, United Kingdom, Portugal, Norway, Korea, Japan,
Germany, Finland, France, China, Argentina, Australia, and Belgium). Based on
rigorous reviews by the Program Committee members and reviewers, among 186
papers contributed to CSIP2012, high-quality papers were selected for publication
in the proceedings with the acceptance rate of 40.9 %. The papers were organized
in 25 cohesive sections covering all major topics of intelligent and cognitive
science and applications. In addition to the contributed papers, the technical
program includes four plenary speeches by Jennie Si (Arizona State University,
USA), Wei Li (California State University, USA), Chin-Teng Lin (National Chiao
Tung University, Taiwan, China), and Guoqing Chen (Tsinghua University,
China).
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As organizers of both conferences, we are grateful to Tsinghua University,
Science in China Press, Chinese Academy of Sciences for their sponsorship,
grateful to IEEE Computational Intelligence Society, Chinese Association for
Artificial Intelligence, State Key Laboratory on Complex Electronic System
Simulation, Science and Technology on Integrated Information System Labora-
tory, Southwest Jiaotong University, University of Technology, Sydney, for their
technical co-sponsorship.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the International Program Committee and additional
reviewers for reviewing the papers, and members of the Publications Committee
for checking the accepted papers in a short period of time. Particularly, we are
grateful to thank the publisher, Springer, for publishing the proceedings in the
prestigious series of Advances in Intelligent Systems and Computing. Meanwhile,
we wish to express our heartfelt appreciation to the plenary speakers, special
session organizers, session chairs, and student volunteers. In addition, there are
still many colleagues, associates, and friends who helped us in immeasurable
ways. We are also grateful to them all. Last but not the least, we are thankful to all
authors and participants for their great contributions that made ISKE2012 and
CSIP2012 successful.

December 2012 Fuchun Sun
Dewen Hu

Huaping Liu
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Effects of Stimulus Views on Mental
Rotation of Hands: An Event-Related
Potential Study

Xiaogang Chen, Guangyu Bin and Xiaorong Gao

Abstract Mental rotation of hands, which is subject to biomechanical constrains,
involves participants engaging in motor imagery processing. To contribute to a
better understanding of the process of hand mental rotation, reaction times and
event-related potential were measured while participants were performing a left–
right hand recognition task. Participants apparently solved the task by imagining
their own hands rotating to the orientation of the stimulus for comparison. In line
with previous studies, the behavioral results showed that slower reaction times
were found for the hand views that could not be easily reached with real move-
ment. More importantly, the event-related potential results revealed that the
amplitude of rotation-related negativity (RRN) decreased with the difficulty of the
hand views increasing. The previous results are complemented by this study; it is
stimulus views that modulate reaction times and the amplitude of RRN during
mental rotation task of hands.

Keywords Biomechanical constrain � Mental rotation � Motor imagery � Event-
related potential

1 Introduction

Mental rotation is a well-known paradigm used to study the cognitive process of
mentally rotating objects. It was first observed by Shepard and Metzler in 1971
when participants were shown pairs of three-dimensional block drawings at
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different orientations and required to distinguish whether both drawings were
presented as the same or the mirrored image version [1]. Results showed that the
reaction times (RTs) increased with increasing angles of rotation. At the psy-
chological level, this effect saliently explained that the image is mentally rotated to
align it with its upright position. Since their discovery, mental rotation has been
widely investigated [2–6]. The mental rotation paradigm has been extensively
applied not only for rotation of 3-D cubes but also for letters, numbers, hands, and
feet pictures [7, 8].

The investigation of hand mental rotation is classically performed by judgment
of hand laterality. In such mental rotation tasks, participants tend to use a set of
mental transformations of their own hands in order to closely match the stimulus.
The reaction times for judging hand laterality also increased with increasing angle
of rotated stimulus from its vertical position. Furthermore, hand mental rotation is
sensitive to proprioceptive constraints, leading to longer reaction times for stim-
ulus depicting anatomically difficult postures. These reaction times profiles were
interpreted as evidence of kinesthetic limitations on movement imposed by the
biomechanical constrains of the muscles and joints [9]. These constrains led to the
postulation that participants utilized an embodied cognitive processing, which was
classically referred to as motor imagery.

With the development of functional brain imaging methods such as positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI), a
number of neuroimaging studies have been conducted to illustrate brain regions
involved in mental rotation tasks [10–12]. Kosslyn et al. measured the regional
cerebral blood flow (rCBF) while participants were performing mental rotation of
Shepard–Metzler’s drawings and hands. For the Shepard–Metzler type of stimuli,
increased rCBF was observed in the parietal lobe and Area 19. In contrast, for
mental rotation task of hands, there was significantly greater rCBF in the pre-
central gyrus, superior and inferior parietal lobes, primary visual cortex, insula,
and frontal Areas 6 and 9. The authors claimed that at least two different mech-
anisms were involved in mental rotation, one for objects like hands related to
motor preparation processes and another for objects like Shepard–Metzler’s
drawings that did not [13]. A recent fMRI study compared activation regions while
participants performed mental rotation task of hands and tools. In addition to
replicating classic activation regions in mental rotation of hands and tools (bilat-
eral superior parietal lobes and visual extrastriate cortex), there was an important
difference in premotor area activation. Pairs of hands engendered bilateral pre-
motor activation while tools only activated the left premotor cortex. The authors
concluded that participants might simulate moving objects with their hands [14].
Results of PET and fMRI indicated that mental rotation was correlated with
activity in parietal, occipital, frontal regions, as well as primary motor cortex, and
the supplementary motor region of the precentral sulcus [15–17]. The involvement
of the motor cortex in mental rotation task of hands is also supported by evidence
from transcranial magnetic stimulation (TMS) studies. Pelgrims et al. found
Brodmann area 4 (BA4) virtual lesions selectively increased reaction times in the
left–right hand recognition task while leaving the mental rotation task of letters
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unaffected. The authors suggested that BA4 contribution to mental rotation task of
hands [18]. Activation in motor-related cortical areas implied that motor imagery
was being applied during hand mental rotation task, indicating that motor struc-
tures might play an important role in supporting the mental rotation task of hands.

In contrast to neuroimaging techniques such as PET and fMRI, electroen-
cephalography (EEG) has exquisite temporal resolution that make it possible to
measure the timing and order of activity of brain regions during the unfolding of
mental rotation task. Electrophysiological studies by event-related potential (ERP)
showed that the mental rotation tasks elicited a modulated positive component
approximately between 300 and 700 ms after stimulus presentation located at
parietal region. This component was known as rotation-related negativity. The
amplitude of this component was inversely related to the rotation angle and
becomes more negative with increasing angles of rotation [19, 20]. Wijers et al.
suggested that the gradual decrease of the positivity was caused by a modulation of
a slow negativity that would be understood as a direct electrophysiological cor-
relate of the mental rotation process [21]. This notion was extensively validated in
various studies, suggesting that the ERP effect observed during mental rotation
was highly specific to the process of mental rotation itself.

In this study we employed a hand mental rotation task similar to that used in the
upper limb amputees’ study by Nico et al. on the basis that there was a close
similarity in brain activity between mental rotation of a movement and its real
counterpart. Participants were presented with left–right hands at four different
views and were asked to perform left–right hand recognition task. Previous studies
have focused on the effect of rotational angle in general. To our knowledge, this is
the first study investigating view effect on mental rotation of hands. If the mental
rotation of hands relied on a first person perspective, we expect that it will be also
more sensitive to the stimulus view. Accordingly, for more awkward stimulus
view, we expect longer reaction times and more negative ERP component in the
mental rotation task of hands.

2 Materials and Methods

2.1 Participants and Stimuli

Fourteen healthy participants (seven males) aged between 19 and 26 years
[mean ± standard deviation (SD): 24.3 ± 1.93 years] took part in this experi-
ment. All participants were right-handed, had normal or corrected to normal vision
and had no history of psychiatric or neurological disorders. All participants signed
an informed consent prior to the experiment and were paid for their participation.

Participants sat approximately 60 cm away from a 19-inch CRT monitor.
Stimuli were black and white line drawings of both left and right hands presented
from different views (thumb, back, palm, and pinkie side). Each of the eight hands
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was rotated clockwise in a step of 30� (12 rotations), which produced a total of 96
pictures (Fig. 1). The pictures were displayed randomly at the center of the screen
on a background, which created an approximate 8� viewing angle. The stimulus
presentation was managed by a computer program (VC++) written by the authors.

2.2 Procedure

Participants sat comfortably in a sound attenuated and electrically shielded EEG
room. They were instructed to rest their right index and ring fingers on the left and
right arrow of the keyboard, representing the left and right hand, respectively.
Participants were asked to respond as quickly and accurately as possible, with a
motor imagery strategy on how to solve the task, and not to be too cautious in their
response. The experiment began with a practice phase to familiarize participants
with the procedure. When the accuracy rate reached 75 %, the practice phase was
ended. During the formal test phase, participants were instructed to respond by the
fingers alone, without any hand, arm, or wrist movement. Furthermore, they were
told to keep their eyes fixated on the central area of the screen while keeping their
hands on their laps and out of sight, avoiding eye blinking and any sort of
movement. After finishing one block, each participant was asked whether the
motor imagery strategy was used or not.

The experiment was separated into three blocks of 96 trials. Each trial began
with a green fixation cross lasting for 1,500 ms at the central area of the screen.

Fig. 1 The stimuli used in the hand rotation task
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Subsequently, the stimulus was displayed and did not disappear until the partici-
pant made a response. Then feedback on their performance of the participants were
shown and lasted for 1,000 ms in the center of the screen, including the reaction
time and whether the stimulus was correctly sorted (Fig. 2). At the end of each
block, the accuracy rate and reaction time were presented to give participants
insight into their progress.

2.3 Data Acquisition

For behavioral data acquisition, reaction times were defined as the period during
which the stimulus appeared on the screen and the onset of the participant’s
response. Corresponding information regarding the participant’s response was
automatically recorded by appropriate software.

EEG data were recorded continuously using SynAmps2 amplifiers and Scan 4.3
software (Compumedics Neuroscan, EI Paso, TX, USA) with a 64-channel
ElectroCap according to the international 10–20 system. EEG data were refer-
enced online to a point midway between Cz and CPz and grounded midway
between Fz and FPz. Electrode impedances were kept below 10 kohm. The hor-
izontal electrooculogram (EOG) was recorded from electrodes placed next to the
outer canthi of each eye. For the vertical EOG, electrodes were placed at the
supraorbital and infraorbital regions of the left eye. Data were digitally amplified
and collected at a sampling rate of 1,000 Hz.

2.4 Data Analysis

Reaction times and accuracy rates were analyzed to ensure that the participants
used the motor imagery strategy in the procedure of the task. If they did, it would
be expected that more time was taken for difficult hand views [22]. Reaction times
and accuracy rates were calculated in separate analyses of variance (ANOVA)

Fig. 2 Sequence of events within one trial in the mental rotation paradigm
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with factor view (thumb, back, palm, and pinkie side). Errors and trials with RTs
shorter than 200 ms or longer than 3 standard deviations from the mean were
removed before analysis of reaction times and left out from the EEG analyses;
7.9 % data were eliminated for all participants in this task. The Greenhouse–
Geisser correction was applied if the data did not conform to the sphericity
assumption by Mauchly’s Test of Sphericity. Whenever a main effect reached
significance, pairwise comparisons were conducted by using Bonferroni adjust-
ments for multiple comparisons. The alpha level was set at 0.05.

Raw EEG data were bandpass filtered between the frequency ranges from 0.5 to
40 Hz (24 dB/octave) and digitally re-referenced to the average of the left and
right mastoids. Ocular artifacts were corrected using a linear regression procedure
[23]. The continuous EEG was segmented subsequently into epochs of -200 to
+1000 ms relative to the stimulus onset. Then, the prestimulus baseline of 200 ms
was performed for baseline correction. Epochs with amplitude above ±100 lV
were rejected (0.9 % of the whole trials). Then epochs were averaged separately
for each of the four conditions.

In the present study, there was no statistically significant difference between
left- and right-hand stimuli, thus these data were pooled for further study. The
view effect was studied by analyzing mean amplitude measures in the 400–550 ms
time window, spanning the RRN component, selected according to visual
inspection of grand average ERP waveforms. A 4 9 6 9 3 repeated-measures
ANOVA was performed on the mean amplitudes at 18 electrodes (F3, Fz, F4, FC3,
FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, P4, PO3, POz, and PO4), tasking as
factors view (thumb, back, palm, and pinkie), region (frontal, fronto-central,
central, central-parietal, parietal, and occipito-parietal), and laterality (left, middle,
and right). Statistical analyses were carried out by the same way described for
behavioral data.

To investigate the relationship between reaction times and RRN amplitudes, we
conducted a linear regression analysis. Two-tailed Pearson correlation was imple-
mented to compare the resulting regression slope coefficients across participants.

3 Results

3.1 Behavioral Data

All participants engaged in the mental rotation task of hands, with a mean accuracy
of 94.37 %. A one-way ANOVA on accuracy was conducted and a marginal main
effect of view was observed [mean ± standard error of the mean (SEM);
F(3,39) = 3.23, P = 0.07]. Pairwise comparisons revealed significant mean dif-
ferences between the palm and pinkie condition (P \ 0.01). In contrast to accu-
racy, reaction times revealed a significant effect of view [mean ± SEM;
F(3,39) = 14.27, P \ 0.01; thumb, 1462 ± 134 ms; back, 1508 ± 126 ms; palm,
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1563 ± 135 ms; pinkie, 1740 ± 143 ms]. Pairwise planned comparisons con-
firmed that hands presented in pinkie-side views took significantly longer RTs than
those presented in more usual perspectives, such as thumb, back, or palm views
(all P \ 0.01), but there were no differences among thumb, back, and palm views,
as shown in Fig. 3.

3.2 ERP Data

Figure 4 shows the grand average ERP for each view at Fz, FCz, Cz, CPz, and Pz
sites. As can be seen in Fig. 4, the rotation-related negativity component becomes
more negative for stimuli depicting hands in unnatural views. That is, views
difficult to reach with a real movement. Figure 5 shows the mean amplitude in the
400–550 ms time window as a function of stimulus view at Fz, FCz, Cz, CPz, Pz,
and POz sites. The plots show again that response to pinkie-side views are more
negative than the others views. Voltage maps in Fig. 6 show the spatial distri-
bution of the view effect over all electrodes at the scalp surface in the 400–550 ms
time window. These topographic maps show that the greatest mean amplitude was
found at the CPz site.

The statistical analysis performed on the average ERP amplitude from 400 to
550 ms supports these observations. Three-way repeated-measures ANOVA
showed that a significant main effect of view [mean ± SEM; F(3,39) = 8.79,
P \ 0.01; thumb, 1.01 ± 0.17 lV; back, 1.10 ± 0.13 lV; palm, 1.10 ± 0.14 lV;
pinkie, 0.83 ± 0.15 lV]. Pairwise planned comparisons revealed that pinkie-side
views were distinctly different from back and palm views (all P \ 0.01) and
marginally different between pinkie-side views and thumb views (P = 0.09).
Specially, the amplitude decreased with increasingly awkward/uncomfortable
views. There were also significant effects of region [mean ± SEM;
F(5,65) = 5.24, P \ 0.05], laterality [mean ± SEM; F(2,26) = 4.53, P \ 0.05],
and region 9 laterality [mean ± SEM; F(10,130) = 3.55, P \ 0.01], indicating

Fig. 3 a Accuracy and b reaction times as a function of stimulus viewpoint. The sign ‘‘**’’
indicates significance P \ 0.01. Error bars represent standard error of the mean

Effects of Stimulus Views on Mental Rotation of Hands 7



Fig. 4 Grand average ERP (n = 14) in each view at the Fz, FCz, Cz, CPz, Pz, and POz
electrodes

Fig. 5 Mean amplitude in the 400–550 ms time window as a function of stimulus view at the Fz,
FCz, Cz, CPz, Pz, and POz sites
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the topographic specificity of the RRN component. The interaction of
region 9 view [mean ± SEM; F(15,195) = 3.51, P \ 0.05] was also significant.
Pairwise planned comparisons showed that the largest effect size was in the central
region, suggesting the most significant view effect in this region (Table 1).
However, no other significant interactions were obtained.

The three-way repeated-measures ANOVA was performed for these analyses.
The significant level was set at P \ 0.05.

Since pairwise planned comparisons revealed no significant difference between
the mean amplitude with the thumb, back, and palm views. These results were
pooled (Poolviews) for comparison with pinkie views. A significant reduction in
mean amplitude was observed in the pinkie views (Fig. 7a) and topographic maps
of difference wave Poolviews versus pinkie (Fig. 7b) showed the following spatio-
temporal distribution for the ERP data. The amplitude was more negative in pinkie
than in Poolviews in the 400–550 ms time window over the central region.

The mean values of strongest correlations between RRN amplitudes and
reaction times for each electrode are depicted in Fig. 8a. The strongest and sta-
tistically significant correlations were obtained only for POz site. In Fig. 8b, a
scatter plot illustrating the relationship between RRN amplitudes change and
reaction times for participants during hand mental rotation task. Change in RRN
amplitudes showed a significant negative correlation with reaction times [Pearson
correlation coefficient (r) = -0.49; P \ 0.01], which indicated that more negative
RRN amplitude was associated with slower responses to hand stimuli.

Fig. 6 Topographical maps of the view effect based on the average ERP amplitude from 400 to
550 ms

Table 1 The view effects
reflected by the mean
amplitudes of RRN in each of
the six regions

Region RRN

F P

Frontal 9.72 0.002
Frontal-central 13.02 0.001
Central 23.06 \0.001
Central-parietal 13.16 0.001
Parietal 3.12 0.070
Occipito-parietal 1.19 0.358
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4 Discussion

The primary purpose of the present study was to further understand the process of
hand mental rotation task. We investigated reaction times and event-related
potential for the neural dynamics of mental hand rotation task by using EEG.

4.1 Behavioral Response

For all participants with low error rates, it was found that significantly longer
reaction times were taken for pinkie-side views compared to the other three

Fig. 7 a Grand average ERP to Poolviews (average of thumb, back, and palm) and pinkie
conditions and the difference wave (pinkie-Poolviews) at Cz site. b Topographical maps of the
voltage amplitudes for the Poolviews versus pinkie condition difference wave in the 400–550 ms
time window

Fig. 8 a The P value at each electrode, as assessed the statistical significance by a linear
regression analysis between reaction times and ERP amplitudes from 400 to 550 ms.
b Association of individual mean ERP amplitudes from 400 to 550 ms and reaction times for
stimulus view (thumb, back, palm, and pinkie) at the POz site
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conditions, which was in line with previous studies [22] (see Fig. 1). It can be
concluded that the pinkie-side views were the most biomechanically difficult
mental spatial transformations. This modulation of reaction times has been linked
to the increase of biomechanical constraints when imaging the hand rotation to
match the difficult stimulus view. Therefore, the biomechanical constraints might
be primarily responsible for the greater mental simulation times and play an
important role in stimuli-related cognitive processing. In addition, it has been
reported that this cognitive processing can be affected by both current and desired
states [24]. In a hand mental rotation task, the desired state is the presented
stimulus view. Because motor imagery is subject to biomechanical constraints,
reaction times are increased to judge the stimuli oriented in anatomically difficult
positions if participant uses the motor imagery strategy to solve this task. In an
informal debriefing following the experimental session, all participants reported to
have solved the task by using a set of mental transformations of their own hands in
order to closely match the view presented in the line drawing (motor imagery
strategy). These behavioral results and participants’ debriefings indicated the
engagement in motor imagery.

4.2 ERP Amplitude Modulation Association with Mental
Rotation

Our ERP data showed that this mental rotation task had its main impact on neural
activity during the RRN segment. In contrast to natural views such as thumb, back,
and palm, the pinkie views elicited more negative component. This slow ERP
component was functionally related to the P3b component of the P300 complex,
which was generally interpreted as reflecting quality of information processing and
the amount of effort allocated to a task. Therefore, we conclude that it takes more
effort for the mental rotation in a difficult view than that in an easier one.

The RRN showed a maximal correlation with reaction times at parieto-occipital
sites. Increased reaction time was associated with reduced ERP amplitude over
parieto-occipital regions. Therefore, we can conclude that this effect may be an
index of the increase in posterior parietal/occipital cortex activity. This notion is in
accord with numerous previous studies that have reported that a large region of
activation centered in the intraparietal sulcus and extending into the transverse
occipital sulcus during mental rotation task [13, 25, 26]. Participants were slower
and less accurate when making a ‘same’ judgment for a difficult view in com-
parison to an easy one. Therefore, the tendency of RRN amplitude in the partieto-
occipital region to be negatively correlated with the reaction time might also
indicate that attention to the mental rotation task is more demanding in a difficult
view than in an easy one.
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4.3 Role of Central Motor Regions in Mental Rotation

There is growing evidence that the parietal lobe play an important role in mental
rotation. A variety of studies using PET, fMRI, and EEG have shown parietal lobe
activation during mental rotation [13, 14, 19]. Furthermore, as task demands are
increased, parietal lobe activation increases. In addition to activating the parietal
lobe, there is also considerable evidence reporting activity in the precentral sulcus
during mental rotation tasks [18].

In the current study we observed view-sensitive amplitude modulations and the
most significant view effect in the central region. Thus, we conclude that mental
rotation of hands is based on biomechanical constraints related to motor simulation
and the central region is indeed involved in mental rotation of hands. Regions in
the central cortex are associated with motor planning and motor execution. Motor
imagery shares many cognitive aspects of movement with actual motor execution.
These results suggest that the central lobes activity may reflect the use of action
simulation to solve this task. In other words, participants use a set of mental
transformations of their own hands in order to closely match the view presented in
the line drawing. Evidence from PET and fMRI has provided support for the
notion that when participants use the motor imagery strategy to solve the mental
rotation tasks, medial/superior motor regions are activated [13, 14].

5 Conclusion

We employed a mental rotation task of hands which is similar to that previously
adopted to involve in motor imagery [22]. The behavioral data showed that
reaction times were subject to biomechanical constraints because longer reaction
times were found for those views when hands are not able to reach easily with real
movement. ERP results showed that the RRN amplitude was more negative for
difficult to maintain or unfamiliar views with the most significant view effect in the
central region. Behavior was closely linked with the slope of the parieto-occipital
ERP amplitude modulation. These results suggest that the neural activity under-
lying mental rotation of hands are primarily conducted in parietal, occipital, and
central lobes.
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Predictive Coding with Context
as a Model of Image Saliency Map

Duzhen Zhang and Chuancai Liu

Abstract Predictive coding/biased competition (PC/BC) is a computational
model of primary visual cortex (V1). Recent literature demonstrates that PC/BC
model provides an implementation of the V1 bottom-up saliency map hypothesis.
In this paper, we propose a novel approach toward natural color images saliency
detection via the PC/BC model with top-down cortical feedback as context. We
compare our method with the five state-of-the-art models of saliency detectors.
Experimental results show that our method performs competitively for visual
saliency detection task.

Keywords Saliency map � PC/BC model � Primary visual cortex (V1) � Top-down �
Bottom-up � Context

1 Introduction

The visual system pays attention to the salient object. A number of psychophysical
experiments suggest that primary visual cortex (V1) may be involved in the
computation of visual salience. Spratling introduced the nonlinear predictive
coding/biased competition (PC/BC) model [1], a reformulation of predictive
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coding consistent with the biased competition theory of attention, that can simulate
a very wide range of V1 response properties including tuning and suppression [2,
3]. The paper [4] extends his previous work by showing that the PC/BC model of
V1 can also simulate a wide range of psychophysical experiments on visual sal-
ience, and demonstrates that PC/BC provides a possible implementation of the V1
bottom-up saliency map hypothesis. It proposes that the perceptual saliency of the
image is consistent with the relative strength of the prediction error calculated by
PC/BC. Saliency can therefore be interpreted as a mechanism by which prediction
errors attract attention in an attempt to improve the accuracy of the brain’s internal
representation of the world [4].

Visual saliency plays important roles in natural vision in that saliency can direct
eye movements, deploy attention, and facilitate tasks like object detection and
scene understanding. Many models have been built to compute saliency map.
There are two major categories of factors that drive attention: bottom-up factors
and top-down factors [5]. Bottom-up factors are derived solely from the visual
scene. Regions of interest that attract our attention are in a bottom-up way and the
responsible feature for this reaction must be sufficiently discriminative with
respect to surrounding features. Most computational models focused on bottom-up
attention, where the subjects are free-viewing a scene and salient objects attract
attention. Inspired by the feature-integration theory [6], Itti et al. [7] proposed one
of the earliest bottom-up selective attention models by utilizing color, intensity,
and orientation of images. Bruce et al. [8] introduced an idea of using Shannon’s
self-information to measure the perceptual saliency. Saliency using natural image
statistics (SUN) is a bottom-up bayesian framework [9]. Recently, Hou et al. [10]
proposed a dynamic visual attention approach to calculate the saliency map based
on Incremental Coding Length (ICL). Bottom-up attention can be biased toward
targets of interest by top-down cues such as object features, scene context and
task-demands. Bottom-up and top-down factors should be combined to direct
attentional behavior. A recent review of attention models from computational
perspective can be found in [11].

Reference [4] uses synthetic stimuli to test the saliency of the PC/BC model. In
this paper, inspired by the work of Spratling, we propose an approach toward
natural color images saliency detection via the PC/BC model with top-down
cortical feedback as context. We compare our method with the five state-of-the-art
models of saliency detectors. Experimental results show that our method performs
competitively for visual saliency detection task. The rest of this paper is organized
as follows. Section 2 introduces and analyzes Spratling’s PC/BC model, and based
on his work, a novel method combining top-down cortical feedback for measuring
image saliency is proposed. Experimental results and comparisons with state-of-
the-art models are presented in Sect. 3, and discussions are given in Sect. 4.
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2 The Model Description

Figure 1 illustrates the retina/LGN model and the PC/BC model of V1, from left to
right, capital characters I, X, E, Y, and A represent input image, image prepro-
cessing stage by the retina/LGN, the error-detecting neurons, the prediction neu-
rons, feedback from higher cortical regions, respectively.

2.1 The Retina/LGN Model

To simulate the effects of circular-symmetric center-surround receptive fields
(RFs) in lateral geniculate nucleus (LGN) and retina, input image (I) preprocessed
by convolution with a Laplacian-of-Gaussian (LoG) filter (l) and a saturating
nonlinearity:

X ¼ tanhf2pðI � lÞg: ð1Þ

The positive and rectified negative responses were separated into two images
XON and XOFF simulating the outputs of cells in retina and LGN with on-center/off-
surround and off-center/on-surround RFs, respectively. These ON- and OFF-
channels provided the input to the PC/BC model of V1.

2.2 The V1 Model

The PC/BC model of V1 is described by the following equations:

EO ¼ XO£ e2 þ
Xp

k¼1

ðx̂ok � YkÞ
 !

: ð2Þ

Yk  ðe1 þ YkÞ �
X

o

ðxok � EOÞ: ð3Þ

Yk  Yk � ð1þ gAkÞ: ð4Þ

YX E AI

Fig. 1 The retina/LGN
model and the PC/BC model
of V1
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where o [ [ON, OFF]; Xo represents the input to the model of V1, Eo represents
the error-detecting neuron responses, Yk represents the prediction neuron respon-
ses, Ak represents the weighted sum of top-down predictions, all of them are two-
dimensional array, equal in size to the input image; xok is a two-dimensional
kernel representing the synaptic weights for a particular class (k) of neuron nor-
malized so that the sum of all the weights is equal to w; x̂ok is a two-dimensional
kernel representing the same synaptic weights as xok but normalized so that the
maximum value is equal to w, the Gabor function is used to define the weights of
each kernel xok and x̂ok (a family of 32 Gabor functions with eight orientation
(0�–157.5� in steps of 22.5�) and four phases (0�, 90�, 180�, and 270�) were used);
p is the total number of kernels; e1; e2; g and w are parameters; £ and � indicate
element-wise division and multiplication, respectively; o represents cross-corre-
lation (which is equivalent to convolution without the kernel being rotated 180�);
and * represents convolution (which is equivalent to cross-correlation with a
kernel rotated 180�). Parameter values w ¼ 5000; e1 ¼ 0:0001; e2 ¼ 250; and g ¼
1 were used in the experiments.

Equation (2) describes the calculation of the neural activity for each population
of error-detecting neurons. The activation of the error-detecting neurons can be
interpreted as representing the residual error between the input and the recon-
struction of the input generated by the prediction neurons. The values of E are
related to the image saliency, with high error values corresponding to high
saliency.

Equation (3) describes the updating of the prediction neuron activations. The
values of Yk represent predictions of the causes underlying the inputs to the model
of V1. If the input remains constant, the values of Yk will converge to steady-state
values that reconstruct the input with minimum error.

2.3 Modeling the Top-Down Effects

Equation (4) describes the effects on the V1 prediction neuron activations of top-
down inputs from prediction neurons at later processing stages (i.e., in extra-striate
cortical regions). In Eq. (4), the effects of cortical feedback are modeled by using
an array of inputs (A) to the V1 model which represents the weighted sum of top-
down predictions. In the simulations of Ref. [4], feedback was either simple ori-
entation preferences, the elements of A were set to values of 0.25 and zero, or
assumed to be negligible, the elements of A were given a value of zero, in which
cases Eq. (4) had no effect. We add the following equation between Eq. (3) and Eq.
(4) to model the top-down effects:

Ak  
Xp

k¼1

ðx̂ok � YkÞ: ð5Þ
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This top-down feedback will have two effects on the PC/BC model of V1. (1)
Increasing the response of the prediction neurons that represent information
consistent with the top-down expectation [see Eq. (4)]. This will result in these
prediction neurons sending stronger feed-forward activation, and hence, make this
information more conspicuous for cortical regions at subsequent stages along the
processing hierarchy. (2) The enhanced activity in the prediction neurons con-
sistent with top-down expectations will in turn decrease the response of the error-
detecting neurons from which these prediction neurons receive their input [see Eq.
(2)] [4]. Since the strength of the responses of the error-detecting neurons is
assumed to be related to saliency, in this way, top-down feedback modulates
bottom-up saliency.

3 Experimental Comparisons

3.1 Saliency Results Comparison

We evaluated our method on human visual fixation data from natural images. The
dataset we used was collected by Bruce and Tsotsos [8] as the benchmark dataset
for comparing human eye predictions between methods. The dataset contains eye
fixation data from 20 subjects for a total of 120 natural images.

Figure 2 affords a qualitative comparison of the output of the proposed models
(without/with context) for a variety of images. Visually, top-down effects increase
the performance of salient object detection, i.e., top-down signals modulate bot-
tom-up saliency. This is in line with preceding analysis. Figure 2d is fixation
density map based on experimental human eye tracking data as the ‘‘ground truth’’
saliency map of each image.

3.2 Comparing Our Saliency Results with Other Methods

We compare our saliency method with context against other five state-of-the-art
methods using the database from the publicly available database used by Achanta
et al. [12]. Each of the 1,000 images in the database contains a salient object or a
distinctive foreground object, so we can compare the performance of different
algorithms.

The five saliency detectors are Itti et al. [7], Harel et al. [13], Hou and Zhang
[14], Achanta [12], and Goferman et al. [15], hereby referred to as IT, GB, SR, IG,
and CA. We refer to our proposed method as PC. The choice of these algorithms is
motivated by the following reasons: citation in literature (the classic approach of
IT is widely cited), recency (IG, and CA are recent), and variety (IT is biologically
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(a)        (b)         (c)        (d) 

Fig. 2 Results for qualitative comparison: a Original image; b Saliency map without context;
c Saliency map with context; d Fixation density map based on experimental human eye tracking
data
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motivated, CA is purely computational, GB is a hybrid approach, SR and IG
estimates saliency in the frequency domain).

We randomly choose some images from the database. Figure 3 is the output of
the five state-of-the-art methods and our method for comparison. Our method is a
competitive, promising algorithm.

3.3 Quantitative Evaluation

To obtain a quantitative evaluation we compare ROC curves and Area Under
Curve (AUC) on the database presented in [8]. Figure 4 is the result of our method
and other three methods.

4 Discussions

PC/BC is a computational model of primary visual cortex (V1) which provides an
implementation of the V1 bottom-up saliency map. In this paper, we propose a
novel approach to natural color image saliency detection method with top-down
cortical feedback as context. Our experimental result is consistent with recent
literature conclusion: top-down signals modulate (override) bottom-up saliency (in

(a) (b) (c) (d) (e) (f) (g)

Fig. 3 Visual comparison of saliency map. a Original, b IT [7], c GB [13], d SR [14], e IG[12],
f CA [15], g PC
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a feature-specific way) [16]. We compare our method with the five state-of-the-art
models of saliency detectors. Experimental results show that our method performs
competitively for visual saliency detection task.

When the organism is not actively searching for a particular target (the free-
viewing condition), the organism’s attention should be directed to the most salient
points which potential targets in the visual field. Bottom-up attention mechanisms
have been more thoroughly investigated than top-down mechanisms. One reason is
that data-driven stimuli are easier to control than cognitive factors such as task-
demands, knowledge, and expectations. Even less is known on the interaction
between the two processes [17].

In future work, we will incorporate color feature and other task-demands fea-
tures as context to detect saliency, ‘‘Combining such features-specific top-down
signals with (learnt) contextual priors on target location therefore may provide a
promising approach to searching for real-world objects in their natural context
[16]’’, and develop applications of our model.

Acknowledgments This work is supported by the National Natural Science Fund of China
(Grant Nos. 60632050, 9082004) and by the basic key technology project of Ministry of Industry
and Information Technology of China (Grant No. E0310/1112/JC01).
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Multiclass Pattern Analysis
of Whole-Brain Functional Connectivity
of Schizophrenia and Their Healthy
Siblings

Yang Yu, Hui Shen, Ling-Li Zeng and Dewen Hu

Abstract Recently, a growing number of neuroimaging studies have begun to pay
attention to exploring the brains of schizophrenic patients to identify heritable
biomarkers for this disorder involving their healthy siblings. Based on whole-brain
resting-state functional connectivity of schizophrenic patients, their healthy sib-
lings and healthy controls, the objective of the present study aimed to use mul-
ticlass pattern analysis to reveal three types of neural signature: (i) state
connectivity patterns, reflecting the state of having schizophrenia; (ii) trait con-
nectivity patterns, reflecting the genetic vulnerability to develop schizophrenia;
and (iii) compensatory connectivity patterns, underlying special brain connections
by which healthy siblings compensate for an increased genetic risk for developing
schizophrenia. The current study may provide additional insights into the patho-
physiological mechanisms underlying schizophrenia and be helpful in further
highlighting genetic contribution to the etiology of schizophrenia.

Keywords Schizophrenia � Healthy siblings � Functional magnetic resonance
imaging � Resting-state � Functional connectivity � Multiclass pattern analysis
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1 Introduction

Schizophrenia is a highly heritable psychiatric disorder, and evidence from family
and twin studies demonstrated that heritable factors play an important role in the
pathogenesis of schizophrenia [1–4]. It was suggested that the similar genetic
backgrounds between schizophrenic patients and their healthy siblings contribute
to approximately ninefold higher risk for siblings to develop schizophrenia than
the general population [5, 6], whereas the healthy siblings of schizophrenic
patients behave normally in their daily lives and do not actually meet the diag-
nostic criteria for schizophrenic disorder. Thus, comparison among schizophrenic
patients, healthy siblings of schizophrenic patients, and healthy controls likely
provides additional insights into the pathophysiological mechanisms underlying
this disorder and may be helpful in further highlighting genetic contribution to the
etiology of schizophrenia.

In recent years, a growing number of neuroimaging studies have begun to pay
attention to exploring the brains of schizophrenic patients to identify heritable
biomarkers for this disorder involving their healthy siblings [7–10]. Increasing rs-
fcMRI studies have demonstrated altered functional connectivity in the brain of
schizophrenic patients and their healthy siblings [11–15]. However, most of these
previous studies focused mainly on the functional connectivities associated with
one or a few preselected seed regions of interest (ROIs), ignoring other potentially
informative connectivity patterns. Or they focused on group-level statistical
methods which are less helpful to clinical diagnosis on individual-level. In this
study, we investigated the whole-brain functional connectivity patterns of
schizophrenic patients, healthy siblings, and healthy controls, which could make
full use of information contained in the neuroimaging data.

Recent years, multivariate pattern analyses based on machining learning have
aroused great interest for its capacity of extracting functional patterns from neu-
roimaging data and its potential capability of finding valuable neuroimaging-based
biomarkers [16]. Our recent study [17] based on multivariate pattern analysis has
applied nonlinear support vector machine (SVM) to whole-brain rs-fMRI data to
train a one-against-one classifier between schizophrenic patients and their healthy
siblings, resulting in significant separation. However, one limitation of this work is
that reconstruction is unavailable for the use of nonlinear SVM classifiers, so that
it is difficult to discover informative functional connectivity patterns revealing the
pathophysiological mechanisms of schizophrenia.

In the present study, we used a multiclass pattern classifier to explore the
whole-brain resting-state functional connectivity patterns of schizophrenic
patients, healthy siblings and healthy controls based on rs-fMRI. Instead of using a
one-against-one classifier, we established our one-against-rest classifier for
addressing this multiclass pattern classification issue. There were three procedures
involved in this study: (i) dimensional reduction of the original feature space using
principal component analysis (PCA), (ii) one-against-rest classification based on
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linear SVM was trained to solve the multiclassification problems, and (iii)
reconstruction to identify features with high discriminative power.

2 Materials and Methods

2.1 Participants

Subjects consisted of 24 schizophrenic patients, 25 healthy siblings, and 22 healthy
controls. Schizophrenic patients were recruited from outpatient departments and
inpatient units at the Department of Psychiatry, Second Xiangya Hospital of
Central South University, and all the patients were evaluated by the Structured
Clinical Interview for DSM-IV, and fulfilled the criteria for schizophrenia
according to DSM-IV. Symptom severity for patients was assessed using the
positive and negative syndrome scale [18]. No patients had a history of neuro-
logical disorders, severe medical disorder, substance abuse, or electroconvulsive
therapy. Six of the schizophrenic patients were medication-free, while the others
accepted atypical psychotropic drugs during time of scanning (risperidone
[n = 10, 2–6 mg/day], clozapine [n = 4, 200–350 mg/day], quetiapine [n = 4,
400–600 mg/day], and sulpiride [n = 1, 200 mg/day]). Twenty-five healthy sib-
lings of schizoprenia were recruited so that each schizophrenic patient had a
corresponding sibling, and they do not fulfill the DSM-IV criteria for any Axis-I
psychiatric disorders. Twenty-five healthy controls who had no first-degree rela-
tives with a history of psychiatric disorders were recruited from Changsha City,
China. The schizophrenic patients, healthy siblings, and the healthy controls were
well demographically similar on age, gender, and education levels.

All participants gave their written informed consents to participate in the study
and they were studied under protocols approved by the Second Xiangya Hospital
of Central South University.

2.2 Resting Experiment and Data Acquisition

MRI scans were performed with a 1.5 T GE Signa System (GE Signa, Milwaukee,
Wisconsin, USA) via using a gradient-echo EPI sequence. The imaging parameters
are as follows: TR = 2000 ms, TE = 40 ms, FOV = 24 cm, FA = 90�,
matrix = 64 9 64, slice thickness = 5 mm, gap = 1 mm, slices = 20. In the
experiment, subjects were instructed simply to keep their eyes closed, to relax,
remain awake, and perform no specific cognitive exercise. Foam pads and earplugs
were used to minimize head motion and scanner noise, respectively. Each func-
tional resting-state session lasted 6 min, resulting in 180 volumes.
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2.3 Data Preprocessing

Image preprocessing is performed for all rs-fMRI images using the statistical
parametric mapping software package (SPM8, Welcome Department of Cognitive
Neurology, Institute of Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm).
For each subject, the first 5 volumes of the scanned data were discarded for
magnetic saturation effects. The remaining volumes were corrected by registering
and reslicing for head movement. All subjects in this study had less than 1.5 mm
translation and/or 2� of rotation in each axis. After the head motion effect was
removed, the volumes were normalized to the standard EPI template in the
Montreal Neurological Institute (MNI) space. The resulting images were then
spatially smoothed with a Gaussian filter of 8 mm full-width half-maximum kernel
to increase signal-to-noise ratio and temporally filtered with a Chebyshev band-
pass filter (0.01–0.08 Hz). All the registered fMRI volumes with the MNI template
were further divided into 116 regions according to the anatomically labeled
template previously validated and reported by Tzourio-Mazoyer et al. [19].

Regional mean time series were acquired for each individual by averaging the
fMRI time series over all voxels in each of the 116 regions. For each regional
mean time series, we further regressed out the global mean signals and the effects
of translations and rotations of the head estimated in the course of initial move-
ment correction by image realignment. The residuals of the above regressions
constituted the set of regional mean time series used for functional connectivity
analysis [20]. We then calculated the Pearson’s correlation coefficients between
the time series of all ROIs, resulting in a 6,670 dimensional feature vector.

2.4 Multiclass Pattern Analysis

Before training the multiclass classifier, PCA was applied to reduce the dimen-
sionality of original feature space [21]. We used one-against-rest strategy in
designing our classifiers. A leave-one-out cross-validation (Loocv) strategy was
used to estimate the generalization ability of our classifier [13]. Statistical sig-
nificance of the classification accuracy was determined by permutation test [22],
involving repeating the classification procedure 1,000 times with a different ran-
dom permutation of the classification labels of the training data.

2.5 Identification of Features with High Discriminative
Power

In this study, we determined the functional connectivity features with the highest
discriminative power by reconstruction based on the performance of each one-
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against-rest classifiers. Because each feature influenced the classification via its
weight, the larger the absolute magnitude of a feature’s weight is, the stronglier it
affected the classification result. For every one-to-rest classifier, we obtained a
weight vector in each Loocv experiment. The weight vector for the one-against-
rest classifier was finally acquired by averaging these above weight vectors. We
therefore obtained three weight vectors respectively representing the features’
discriminative power for each one-against-rest classifiers. Because we performed
the classification in the dimension-reduced subspace, in order to determine the
original functional connectivities which have significantly contribution to the
classification, we used the method detailed in previous study [23] to map back
each weight vector to the original high-dimensional space. Thus, for all the 6,670
resting-state functional connectivities, we obtained the order of their contribution
to the classification for each one-against-rest classifier.

Similar to the definition in the previous study [24], we defined three types of
neural signature patterns: (i) state connectivity pattern, functional connectivity
patterns responding to the state of having schizophrenia which potentially
underlying the nature of abnormal in brain network of schizophrenic patient; (ii)
trait connectivity pattern, functional connectivity patterns of dysfunction shared by
schizophrenic patients and their healthy siblings, providing a possible neuroend-
ophenotype to help to bridge genomic complexity and disorder heterogeneity and
thereby accelerate the investigate of pathophysiological mechanism; and (iii)
compensatory connectivity pattern, unique to healthy siblings, underlying special
brain connectivities by which healthy siblings might compensate for an increased
genetic risk for developing schizophrenia.

3 Results

3.1 Classification Results

The classification results indicated that the correct classifications of schizophrenic
patients, healthy siblings, and healthy controls were respectively 62.5, 48.0, and
63.64 % (details were shown in Table 1) and the generalization rate (GR)
achieved an accuracy of 57.75 %. Permutation test results (p \ 0.001) indicated
that the overall classification accuracy was statistically significance. The permu-
tation distribution of the estimate is shown in Fig. 1.

Table 1 Confusion matrix for results in leave-one-out cross-validation

Classes Schizophrenia (%) Healthy siblings (%) Healthy controls (%)

Schizophrenia 62.5 12.5 25.0
Healthy siblings 16.0 48.0 36.0
Healthy controls 13.7 22.7 63.6
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3.2 Functional Connectivity with High Discriminative Power

To identifying the three kinds of brain neural signature patterns: state, trait,
compensatory, we selected 5 % (330) of the total functional connectivities with the
highest discriminative power for each classifier. The regions related to the three
types of connectivity patterns were widely distributed throughout the entire brain
rather than restricted to a few specific brain regions (See Fig. 2 for details).

4 Discussion

To the best of our knowledge, this was the first study that used a multiclass pattern
analysis method based on resting-state functional magnetic resonance imaging to
investigate the difference of whole-brain functional connectivity among schizo-
phrenic patients, healthy siblings, and healthy controls. PCA was employed to reduce
the dimensionality of the original feature space for its ability to perform a direct
connectivity mapping of the whole brain within a reasonable time frame. And the use
of PCA leads to a minimum loss of information, which did not affect the functional
connectivity analysis [25]. We chose the generalization rate as the statistic to esti-
mate the statistical significance of the classification accuracy by permutation test.
The results demonstrate that the multiclass classifier learned the relationship
between the data and the labels with a probability of being wrong of\0.001.

Our classification accuracies for these three groups were respectively 62.5, 48.0,
and 63.64 %, resulting in a total accuracy of 57.75 %, which is significantly above

GR

Fig. 1 Histogram of the permutation distribution of the estimate (repetition times: 1,000). x-
label and y-label represent the generalization rate and occurrence number, respectively. GR is the
generation rate obtained by the classifier trained on the real class labels. With the generalization
rate as the statistic, this figure reveals that the classifier learned the relationship between the data
and the labels with a probability of being wrong of \0.001
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the chance level of 1/3. These results suggested our methods reliably captured
discriminative resting-state functional connectivity patterns among schizophrenic
patients, their healthy siblings, and healthy controls at the individual subject level
with a high degree of accuracy. From the confusion matrix for classification results,
we found that the classification accuracy of the healthy siblings was comparatively
lower, and the healthy siblings were easier to be misclassified as schizophrenic
patients than healthy controls. In addition, the healthy siblings were much easier to
be misclassified as the healthy controls than as the schizophrenic patients. There
results might help to explain the normal daily behaviors exhibition of the healthy
siblings and demonstrated that healthy siblings of schizophrenic patients have an
potential higher risk for developing schizophrenia compared with the general
population, which was consistent with previous finds [17].

The identified state connectivity patterns represented the brain functional
connectivities which are observably different in schizophrenic patients and non-
psychotic individuals (including healthy siblings and healthy controls), and they
might reveal the nature of abnormality in brain connectivity pattern of schizo-
phrenic patients. The trait patterns, obtained from the healthy controls against rests
(including schizophrenia patients and their healthy siblings) classifier, likely
reflect the genetic vulnerability to develop schizophrenia. The compensatory
connectivity patterns, composed of connectivities which contributed most in
separating the healthy siblings from schizophrenia patients and healthy controls,
potentially reveal unique brain functional connectivity pattern owned by the
healthy siblings. Interestingly, we found few shared connectivities among these

Fig. 2 Region weights and the distribution of the 330 discriminative functional connectivities
responding to the state patterns a trait pattern b and compensatory pattern c in bottom and right
view, respectively. Regions are color-coded by category. The line colors represent the
discriminative power of the connectivities
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three types of connectivity patterns, this raises the question that whether the
functional connectivity patterns of the brains of schizophrenia patients, their
healthy siblings, and healthy controls are different in a whole-brain level rather
than restricted to a few specific brain regions This is an interesting finding need to
be considered with caution and confirmed by further investigations.

5 Limitations

There are two possible limitations in the current study that should be considered.
First, due to the limited size of samples and various noises resulting from acqui-
sition hardware, our findings needed to be confirmed with a larger sample size in
the future. Second, we focused on the whole-brain functional connectivity pattern,
and identified the discriminative connectivities using multiclass pattern analysis,
while how do these connectivities interact remained to be further investigated, i.e.,
whether these connectivities were decrease or increase what might reflect the
dysfunctional mechanism in the pathophysiology of schizophrenia was ignored in
this study. Finally, some of the schizophrenic patients in this study were medi-
cated. Previous studies suggest antipsychotic treatments that tend to change
aberrant connectivity [26]. We are yet unable to exclude the possibility effects of
antipsychotic treatment.

6 Conclusion

We used multiclass pattern analysis to investigate the functional connectivities
throughout the entire brain in the schizophrenia patients and their healthy siblings
with resting-state fMRI. We identified brain connectivity pattern related to the
state of having schizophrenia, provided a possible neuroendophenotype reflecting
the genetic vulnerability to develop schizophrenia, and revealed unique brain
functional connectivity pattern owned by the healthy siblings. Our investigation
suggested that the schizophrenia patients, their healthy siblings, and healthy
controls might have different brain connection patterns, which needs to be con-
sidered with caution and confirmed by further investigations.
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Network Organization of Information
Process in Young Adults’ Brain

Shao-Wei Xue, Yi-Yuan Tang and Lan-Hua Zhang

Abstract In order to characterize non-random organization patterns of informa-
tion process in the brain, we combine complex network analysis and resting-state
functional magnetic resonance imaging to investigate brain activity derived from
young adults, and then extract the tree layout and module structure of whole-brain
network. These network organizations may be associated with the emergence of
complex dynamics that supports the brain’s moment-to-moment responses to the
external world and widen understanding potentially biological mechanisms of
brain function.

Keywords Brain networks � Maximum spanning tree � Modularity � Hubs

1 Introduction

Complex networks have attracted great attention as a compelling framework with
which complex systems are being studied in many fields, such as computer sci-
ence, physics, social sciences, and neuroscience [1]. Under this framework, many
natural and man-made networks generated from different datasets have been
exhibited common principles that govern network behavior and can be quantita-
tively characterized by the same parameters [2].

In neuroscience, studies on relationship between brain and neural networks
have deep historical roots. However, the application of complex networks theory
to the brain is under development during recent years. Newly developed recording
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and imaging techniques help us to acquire large brain activity-based datasets
dynamically and noninvasively. Especially, resting-state functional magnetic res-
onance imaging offers a novel approach to assess the spontaneous brain activity as
low-frequency (usually \0.1 Hz) fluctuations in blood oxygen level-dependent
signals. These low-frequency fluctuations potentially provide insight into the
brain’s functional organization because their extremely disproportionate allocation
of energy resources is devoted to functionally significant intrinsic activity.
Moreover, such fluctuations are not random noise, but demonstrate temporal
synchrony within widely distributed brain regions. Communication between
neurons and neuronal ensembles is probably established to a large extent through
the synchronization of their activity [3]. Network analysis of these datasets is
helpful for uncovering the organizational principles that underlies information
process in the brain.

However, what can we extract about non-random organization patterns of
information process in the brain? Graph theory-based network analysis techniques
are employed to characterize brain activity data derived from young adults.
Functional brain networks are regarded as graph representations of brain activity,
where the nodes represent anatomically defined regions and the edges describe
their functional connectivity between each pair.

2 Datasets and Network Construction

The experimental data for network construction were acquired from 33 healthy
volunteers (17 males, mean age: 21.6 ± 2.23 (SD), right-handed) on a 3.0 Tesla
Philips Achieva MR imaging system. Images of the whole brain using an echo-
planar imaging (EPI) sequence were collected in 36 slices (TR = 2000 ms,
TE = 30 ms, flip angle = 80�, FOV = 23 cm, matrix = 64 9 64, 4 mm thick-
ness and 0 mm gap). Images preprocessing and further analysis are performed
including slice timing, head motion correction, spatial normalization and smooth-
ing with an 8 mm Gaussian kernel, full width at half maximum. Finally, temporal
band-pass filtering (between 0.01 and 0.08 Hz) is performed in order to reduce the
effects of low-frequency drift and high-frequency noise. Thus, the dataset available
for network analysis comprise thirty-three multivariate time series.

In this paper, we investigate the topological characters of brain networks
derived from resting-state functional magnetic resonance imaging. Detailed steps
include: (1) using a used anatomical automatic labeling atlas [4, 5] to parcellate the
whole brain into 90 cortical and sub-cortical regions as network nodes, (2) esti-
mating functional relationship between network nodes by partial correlation
analysis of 90 regional time series, (3) generating a correlation matrix (90 9 90)
by compiling all coefficients between nodes and applying a network density
threshold to each element to produce a binary adjacency matrix or undirected
graph, (4) calculating the network parameters of interest in this graphical model of
a brain network.
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3 Experimental Results

Figure 1 shows a maximum spanning tree derived from the mean matrix across 33
participants using Kruskal’s algorithm [6], which connects all nodes (N = 90)
such that the sum of their 89 connectivity coefficients is maximal. Each vertex is
first regarded as a separate tree, and then extra edges are added in order of the
decreasing correlation coefficients if those edges connect two different trees, until
all nodes form a maximum spanning tree. The resulting connectivity skeleton is
represented using a procedure known as the Kamada-Kawai algorithm [7]
implemented in Network Workbench Tool (http://nwb.slis.indiana.edu). The
algorithm generates the layout in an esthetically pleasing way, and positions the
network nodes in two dimensional spaces so that all the edges are of more or less
equal length and there are as few crossing edges as possible. As shown in Fig. 1,
most pairs of inter-hemispheric homogenous regions are tightly coupled, and two
major sub-networks with intrinsic functional activity (the default brain activity and
attention-related regions) seem to be at the center of the network layout, whose
nodes are highlighted in black.

A maximum spanning tree can be used as a sparse representation of whole-
brain networks. However, tree is by definition acyclic and its edges do not form
clusters. Accordingly, we grow the tree by adding extra edges in order of the
decreasing coefficients. The corresponding binary adjacency matrices are obtained
for further mesoscale analysis. The brain network comprising about 200 edges or
5 % of the possible N(N - 1)/2 edges (4005) is selected for modularity analysis by
Newman’s spectral optimization algorithm [8]. Modularity is used to evaluate the
goodness of a partition of a graph in terms of a modularity matrix and its eigen-
vector associated with the largest positive eigenvalue. Thus, the module identifi-
cation problem becomes a modularity optimization problem. The brain network is
supposed to consist of n nodes connected by m edges. The index vector s repre-
sents any partition in two groups, whose component si is +1 if vertex i is in one
group and -1 if it is in the other group. Modularity function is expressed as
follows:

Q ¼ 1
4m

sT Bs: ð1Þ

The modularity can be optimized using the eigenvalues and eigenvectors of a
special matrix, the modularity matrix, whose elements are

Bij ¼ Aij � kikj

2m
; ð2Þ

where ki and kj are the degrees of the nodes. Like a Laplacian matrix, B has always
an eigenvector (1, 1, 1 …) with eigenvalue 0, because the elements of each of its
rows and columns sum to zero. The algorithm generates a modularity matrix with
an associated modularity score. The modularity score (Q = 0.52) of the brain
network is significantly higher (P \ 0.05) than the mean value of the equivalent
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random networks (Qrand = 0.39). Figure 2 shows six connected modules in the
brain network, whose spatial distribution of these identified modules is closely
associated with some biologically meaningful functional systems of the brain
including attention control in prefrontal areas, visual processing module, temporo-
insular zones, limbic/paralimbic and subcortical systems, temporal gyrus, and
default system in fronto-cingulo-parietal. Notably, the modular detection algo-
rithm does not take into account prior knowledge of the anatomical locations and
functions of brain regions.

To further characterize how each module is organized, we determine the roles
of network nodes and edges by their connectivity patterns. We first distinguish
nodes that play the role of hubs in their own modules from those that are non-hubs
by the intra-modular degree z-score. The z-score of a node is defined as

zi ¼
ki mið Þ � k mið Þ

rk mið Þ
; ð3Þ

Fig. 1 The whole-brain network layout illustrated by a maximum spanning tree. Ninety regional
nodes defined by automated anatomical labeling template can be seen in the Ref. [4]
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where mi is the module containing node i, kiðmiÞ is the number of links of node i to
other nodes in its module mi, and k mið Þ and rk mið Þ are the respective mean and
standard deviation of the within-module mi degree distribution. Two nodes with
the same z-score play different roles if one is connected to several nodes in other
modules and another is not.

We then classify nodes based on their connections to nodes in other modules
than their own. The participation coefficient Pi of node i is computed as

Pi ¼ 1�
X

m2M

ki mið Þ
ki

2

; ð4Þ

Fig. 2 Module structure of brain networks. P posterior, L left, R right
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where M is the set of modules, and ki mið Þ is the number of links between i and all
nodes in module mi, and ki is the total degree of node i. Thus the participation
coefficient of a node tends to one if its links are uniformly distributed among all
the modules and zero if all links are within its own module.

We assign four roles to the nodes of the brain network. We first classify nodes
with z C 1 as module hubs and nodes z \ 1 as non-hubs. Both hub and non-hub
nodes are then more finely characterized by using the values of Pi, and the hub
nodes are further subdivided into R1 connector hubs (Pi [ 0.3) and R2 provincial
hubs (Pi \ 0.3), and non-hub nodes are divided into R3 connector non-hubs
(Pi [ 0.3) and R4 peripheral non-hubs (Pi \ 0.3).

Figure 3 shows the distribution of the roles obtained from the brain network
over the z–P parameter space. Most of the nodes (76/90; 84 %) can be assigned as
non-hubs. The anatomical distribution of the node roles is depicted in Fig. 4.
Interestingly, these parameter distributions could help us to characterize the
complex statistical properties and heterogeneity of edges and nodes.

We further characterize global roles of an individual node or edge in the brain
network by calculating betweenness centrality [9]. The betweenness centrality of a
node can be defined as follows:

Ni ¼
X

s 6¼t;s 6¼i;t 6¼i

gstðiÞ
gst

; ð5Þ

where gst is the total number of all shortest paths from node s to node t, and gst(i) is
the number of shortest paths from node s to node t that pass through the node
i. Betweenness measures the ability of a node over information flow between other

Fig. 3 Regional node roles
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nodes in the whole-brain network. The brain regions with high betweenness
(Ni [ mean ? SD) are considered global hubs in the brain network. The identified
hub regions include 6 association cortex regions, 2 limbic/paralimbic cortex
regions, 1 primary motor cortex region and 2 subcortical regions. Red nodes in
Fig. 4 are used to represent the global hubs. The roles of these global hub regions
in multiple highly integrated functional systems have been previously reported
[10]. Similarly, edges are identified as the bridges in the brain network, if their
edge betweenness [9] values are at least one standard deviation (SD) greater than
the average edge betweenness of the network. Thick lines in Fig. 4 show the
bridge connections between the two brain regions. It should be noted that most of

Fig. 4 The spatial distribution of hubs and bridges in the brain network
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the hub nodes (10 of 11) are linked with the identified bridge edges, suggesting
there is a tendency for these hub nodes and bridge edges to converge on func-
tionally integrated core system.

4 Discussion

In this paper, we measure brain activity and employ network analysis approach
based on graph theory to reveal functional organization in young adults’ brain.
This approach, unlike previous conventional functional imaging studies, quanti-
tatively assesses functionally integrated core at various levels. At a global level of
tree analysis, most brain areas of the default and attention-related network activity
are distributed at the center of the network layout and form important functional
hubs of information processing at rest to support the brain’s moment-to-moment
responses to the external world [11].

At a mesoscale level of modularity analysis, our identified module structure of
brain networks is closely associated with some biologically meaningful functional
systems of the brain, and the non-random structure with a balanced interplay
between local segregation and global integration of distant anatomofunctional
brain regions can contribute to efficiency of parallel information transfer at low
physical connection cost [12]. Moreover, modularity has the advantage of allowing
evolutionary adaptation of one functional subsystem, without risking loss of
function in others [13].

At individual node or edge level, we found hub nodes and bridge edges of brain
networks had a tendency to converge on functionally integrated core system or
rich-club organization [14], indicating playing key roles in integration of infor-
mation process in the brain [15].

5 Conclusion

In summary, we have applied graph theory-based network analysis techniques to
study the organization of intrinsic spontaneous information process in the young
adults’ brain at rest. Several specific non-random network organization patterns
including whole network layout and modular structure have been found. This non-
randomness may be associated with the brain’s moment-to-moment responses to
the external world. Many applications of this work to brain dysfunction will be
performed in our future work.
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Reconfigurable Control Allocation
of Multi-Surfaces Aircraft Based
on Improved Fixed Point Iteration

Kejun Bi, Weiguo Zhang, Chengzhi Chi and Jingkai Zhang

Abstract For the real-time requirement of reconfigurable control allocation
problem in the field of multi-surfaces aircraft, the control allocation scheme based
on max direction derivative increment (MDDI) fixed point (FXP) iteration is
proposed. The increment update for current iteration along the MDD and the
design steps are given. Moreover, the convergence of the improved method is also
proved. Comparisons of different methods are simulated in multi-surfaces aircraft
model. The simulation results show the rapidity of MDDIFXP method compared
with the original one and the effectiveness of the method in solving reconfigurable
control allocation problem of multi-surfaces aircraft.

Keywords Multi-surfaces aircraft � Control allocation � Fixed point arithmetic �
Pseudo-inverse method � Reconfiguration � Improvement

1 Introduction

Due to the increasing requirements on the reliability, maneuverability, and sur-
vivability of modern aircraft, control surfaces are no longer limited to three
conventional ones: aileron, elevator, and rudder, and many more control surfaces
have been introduced. With these redundant control surfaces, the problem of
allocating these controls to achieve the desired moments becomes non-unique and
far more complex [1]. So effective control allocation schemes has been studied
following the work of Durham [2] to distribute the required control moments over
the control surfaces [3]. In particular, in the case of control surface failures or
damages [4], an effective and rapid reallocation of the control surface deflections
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with the remaining healthy control surfaces is needed in order to maintain
acceptable performance, and this requirement asks for the so-called reconfigurable
control allocation or control reallocation technique, which is a necessary part of
the reconfigurable (or fault tolerant) flight control systems, and that is important
for continuing flight mission or safe landing.

Control allocation is the problem of distributing the control requirements
among redundant control surfaces for satisfying the optimized objectives within
their range of position and rate limits [5–7]. A comparison of different control
allocation methods are documented in [8]. However, the fault-tolerant control
reallocation problem has not been well investigated except a few notable works
presented in [1, 9–11].

In this paper, we propose control allocation scheme based on an improved fixed
point (FXP) algorithm, which is evaluated in ADMIRE aircraft model. The paper
is organized as follows: The improved FXP algorithm max direction derivative
increment fixed point (MDDIFXP) is presented in Sect. 2. MDD can be achieved
by computing the derivative along all directions of current iteration, and the
increments of the former and current iteration are taken as the update for current
iteration along the MDD, also, the convergence of the method is proved. Simu-
lations of the control allocation scheme compared to different methods in the
normal situation and fault-tolerant reconfiguration in the presence of different
partial control surface faults are presented in Sect. 3. Finally, conclusions and
future work are described in Sect. 4.

2 MDDIFXP Based Quadratic Programming

The control allocation problem studied in the paper is achieved by solving a
quadratic programming (QP) problem which involves the minimization of a
quadratic cost function subject to both equality and inequality constraints. In this
section, we will first discuss the establishment of FXP and MDDIFXP method for
QP problem. We then prove the convergence of MDDIFXP method.

2.1 FXP Method

The optimal control input is given by the solution to a weighted optimization
problem [8]:

min
u

J ¼ Wu u� udð Þk k 2

2
þ c WvðGu� vÞk k2

2 ð1aÞ

Subject to u� u� �u ð1bÞ

46 K. Bi et al.



Here ud is the desired control input and v is virtual control input, Wu and Wv are
weighting matrices. G is control effectiveness matrix, c[ 0 is the weighting
factor. Equation (1a) can be rewritten by:

J ¼ðu� udÞT Wuðu� udÞ þ cðGu� vÞT WvðGu� vÞ
¼uT Wuu� uT Wuud � uT

d Wuuþ uT
d Wuud þ c uT GT WvGu

�

� uT GT Wvv� vT WvGuþ vT Wvv
�

¼uT Wu þ cGT WvG
� �

uþ uT �2Wuud � 2cGT Wvv
� �

þ uT
d Wuud þ cvT Wvv

¼ 1
2

uT Tuþ uT d þ r

Here T ¼ 2Wuþ 2cGT WvG; d¼�2Wuud� 2cGT Wvv; r¼ uT
d Wuudþ cvT Wvv:

Because r is a constant value in a sampled cycle, so the solution will be the
same if we remove r from the cost function. Then, the control allocation problem
based on QP can be reduced to

min
u

J ¼ 1
2 uT Tuþ uT d ð2aÞ

Subject to u� u� �u ð2bÞ

When ud ¼ 0, Eq. (1) can be rewritten by [8, 9]:

J ¼ 1
2
ð1� eÞðGu� vÞT Q1ðGu� vÞ þ euT Q2u
� �

ð3aÞ

Subject to u� u� �u ð3bÞ

Here Q1 ¼ WT
v Wv [ 0; Q2 ¼ WT

u Wu [ 0; e ¼ ð1þ cÞ�1:

Suppose u ¼ u1; . . .; umð ÞT2 Rm, which satisfies

siðuÞ ¼
u; ui� u

ui; u\ui\�u; i ¼ 1; 2; . . .;m

�u; ui� �u

8
><

>:
ð4Þ

sð�Þ is the vector saturator, then the algorithm becomes

u ¼ s ð1� eÞxGT Q1v� ðxT � IÞu
� �

, f ðuÞ ð5Þ

Here x ¼ Tk k�1
F ¼ ðtrðTT TÞÞ�

1
2, which decides the step length.

T ¼ ð1� eÞGT Q1Gþ eQ2; e 2 ð0; 1Þ:
So the iterative formula of FXP method is listed as follows:

ukþ1 ¼ f uk
� �
ðk ¼ 0; 1; . . .;NÞ ð6Þ
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2.2 MDDIFXP Method

The principle of MDDIFXP is improvement of increment update for current
iteration along the MDD, in order to fasten the process of iteration.

Definition 1 Suppose that f : Rn ! Rn is a continuous function, and for the unit

vector ei ¼ di
1; . . .; di

n

� �T
; di

i ¼ 1; di
j ¼ 0 ðj 6¼ i; i ¼ 1; 2; . . .; nÞ; the derivative

of function f u0þ teið Þ at point t ¼ 0 (if it exists) is named as the first partial
derivative of fat point u0 with respect to ui ði ¼ 1; 2; . . .; nÞ. For 8i ¼ 1; 2; . . .; n, if
the first partial derivative of f at point u with respect to ui exists, then the gradient
of f ðuÞ at point u is defined as follows:

rf ðuÞ ¼ of ðuÞ
ou1

;
of ðuÞ
ou2

; . . .;
of ðuÞ
oun

� �T

ð7Þ

Definition 2 For u0 2 Rn, d 2 Rn, the directional derivative of f at point u0 with
respect to direction d is defined as follows:

of ðu0Þ
od

¼ lim
t!0þ

f ðu0þ tdÞ � f ðu0Þ
t

ð8Þ

Suppose Df ðu0; dÞ is the directional derivative of f at point u0 with respect to
direction d. When the first partial derivative of f is continuously differentiable, the
directional derivative can be computed by:

Df ðu0; dÞ ¼ rf ðu0ÞT d: ð9Þ

Then, the gradient of FXP function f ðuÞ at point u is defined as:

r
f

f ðuÞ ¼ f ðuþ Dte1Þ � f ðuÞ
Dt

; . . .;
f ðuþ DtenÞ � f ðuÞ

Dt

� �T

: ð10Þ

Here, the f at the top left corner of the left side of the equation means FXP. Dt is
the iteration interval, and which is set to 1 normally. So the directional derivative
of f at point u0 with respect to direction d can be computed by:

Df ðu0; dÞ ¼ r
f

f ðu0ÞTd ð11Þ

Then, MDD is the unit vector ei satisfies

Max
f u0þ Dteð Þ � f ðu0Þ

Dt

� 	
ði ¼ 1; 2; . . .; nÞ ð12Þ
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Definition 3 For uk; ukþ1 2 Rn and unit vector ei, the increment of f at point ukþ1

with respect to direction ei is defined as:

Df ukþ1; ei

� �
¼

f ukþ1 þ Dtei

� �
� f ukþ1
� �

Dt
�

f uk þ Dtei

� �
� f uk
� �

Dt
ð13Þ

MDDIFXP method takes the increments of the former and current iteration as
the update of current iteration along the MDD, and the design steps are:

1. Compute f uk
� �

; f ukþ1
� �

;

2. Compute r
f

f ukþ1
� �T

eiði ¼ 1; 2; . . .; nÞ; take the unit vector ei as the MDD

vector eM , which satisfies Max
f ukþ1þDteið Þ�f ukþ1ð Þ

Dt

� 	
;

3. Compute Df ukþ1; eM

� �
and update f ukþ1

� �
¼ f ukþ1
� �

þ Df ukþ1; eM

� �
eM ;

4. Take ukþ2 ¼ f ukþ1
� �

as the new iteration point, and compute f ukþ2
� �

, f ukþ3
� �

;

5. If k\KðK 2 NÞ and r
f

f ukþ1
� �









[ nðn[ 0Þ, repeat step 1–4, or turn to basic

FXP algorithm.

Note that the updated f ukþ1
� �

should also satisfies constraint condition.

2.3 The Convergence of MDDIFXP Method

Before discussing the convergence of MDDIFXP algorithm, we introduce the
convergence of basic FXP algorithm.

When the cost function is convex, every optimization algorithm should meet
Kuhn-Tucker condition [12]. For convex programming, Kuhn-Tucker condition is
the necessary and sufficient condition. And the necessary and sufficient condition
of u* is the solution to problem of positive definite quadratic programming is that
u* is the Kuhn-Tucker point [12]. From [13], we can see the solution to Eq. (5) is
also the solution to Eq. (2), so FXP algorithm can solve the QP problem accurately
[14]. Then, the convergence of basic FXP algorithm is proved.

Hence, u* is the globally optimal solution to the control allocation QP problem.
Suppose {un} is the sequence of iterations for basic FXP algorithm, then the
sequence should converge to u*. According to the design steps of MDDIFXP
algorithm, the improved algorithm changes only finite term of the sequence {un};
therefore, the convergence of the sequence is not changed. Further, due to the limit
of sequence is unique, the iteration sequence of MDDIFXP converge to u*.
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3 Simulation and Performance Evaluation

3.1 MDDIFXP in Normal Control Allocation

ADMIRE aircraft model is used in the simulation, and the main data of simulation
are listed as follow:

G ¼
0:7984 �0:7984 �4:5787 �3:9413 3:9413 4:5787 2:6919
1:3841 1:3841 �1:0906 �1:7433 �1:7433 �1:0906 0:0046
�0:3970 0:3970 �0:2014 �0:4256 0:4256 0:2014 �1:6265

2
4

3
5

Wv ¼
1 0 0
0 10 0
0 0 12

2

4

3

5; Wu = I7; e ¼ 1e � 3; K¼ 3; n ¼ 1e � 3

The control surfaces are

u ¼ dcl dcr droe drie dlie dloe dr½ �T

And the ranges of limits are listed in Table 1.
Two series of virtual inputs are generated in the simulation, as showed in black

line in Figs. 1 and 2. The algorithms such as Pseudo-inverse (PINV), Linear
Programming (LP), Interior point (IP), FXP, and MDDIFXP are compared. All
algorithms are simulated 100 times, and the average computation time is listed in
Table 2.

According to Table 2, we can see that among all the methods, MDDIFXP has a
minimum computation time for two series of virtual inputs except PINV. More-
over, for two series of virtual inputs, MDDIFXP saves 2.12 and 2.21 % of the
computation time, respectively. Figures 1 and 2 show that the outputs can track
the corresponding virtual inputs with MDDIFXP, and from Fig. 1, we can see the
outputs cannot track the corresponding virtual inputs well with PINV. According
to the above analyzing, rapidity of the MDDIFXP method compared with the
original FXP is demonstrated.

3.2 MDDIFXP in Fault Reallocation

In the above section, we have verified the rapidity and effectiveness of MDDIFXP
in normal control allocation. Then, we apply MDDIFXP method to the reconfig-
urable control allocation of multi-surfaces aircraft. In the following, two scenarios
are simulated: (1) a floating fault to be occurred at 2.3 s in right inner elevon; (2) a
50 % of loss of control effectiveness to be occurred at 2 s in right outer elevon. It
is assumed that the FDD information is available for control re-allocation, but with
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0.3 and 0.5 s FDD time delay simulated for floating fault and loss of control
effectiveness fault control reconfiguration, respectively.

As shown in Figs. 3 and 4, without reconfiguration, the outputs cannot track the
inputs. With reconfiguration, the reconfigured outputs track the inputs with zero
steady-state error. Meanwhile, the effectiveness of the MDDIFXP method in the
reconfiguration control allocation problem is indicated.
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Fig. 1 Comparison of different methods on virtual input V1

Table 1 Ranges of limits of control surfaces

Control
surface

Control variable Minimum deflection
(�)

Maximum deflection
(�)

Maximum rate
(�/s)

Canards dcl ; dcr -55 25 50
Elevons dlie; drie droe; dloe -30 30 150
Rudder dr -25 25 100
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Fig. 2 Comparison of different methods on virtual input V2

Table 2 Comparison of different algorithms

No CPU computation time (s)

PINV IP LP FXP MDDFXP

1 0.0280 0.0522 0.4517 0.0519 0.0508
2 0.0295 0.0472 0.4506 0.0452 0.0442
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4 Conclusion and Future Work

In this paper, an improved FXP method MDDIFXP is applied to control allocation
and fault reallocation in ADMIRE model. The design steps of MDDIFXP are
given, among which, the increment update for current iteration along the MDD is
discussed in detail. Moreover, the convergence of the method is also proved. The
comparisons of different methods applied to ADMIRE model show the rapidity of
the MDDIFXP method, and the effectiveness of MDDIFXP method in the
reconfiguration control allocation problem is also verified. Future work includes
incorporation of FDD schemes in the ADMIRE model and further investigation on
the conditions of step 5 in order to improve the performance of MDDIFXP
method.
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Particle Filter-Based Object Tracking
and Handover in Disjoint View
Multi-Cameras

Xiaoyan Sun, Faliang Chang and Wenhui Dong

Abstract In intelligent video surveillance, multiple cameras, even a distributed
network of video sensors, have to be employed to monitor activities over a
complex area nowadays. Hence, the continuous object tracking across multiple
cameras and object handover between adjacent cameras is urgently needed, in
which many appearance cues and spatial–temporal information can be employed.
This paper fuses the spatial–temporal cues with appearance cues into a particle
filter to handle the camera handover with multiple cameras having non-overlap-
ping view. The spatial–temporal cues, including source and sink regions, their
transition probabilities, and transition time among adjacent regions, are learned
offline. Then a spatial–temporal progressive matching scheme using particle filter
is proposed to deal with camera handover among adjacent cameras. In particle
filter matching course, the commonly used appearance cue, i.e. the histogram in
HSV color space is used. Once an object enters into sink region, we first contin-
uously scatter particles in source regions related to this sink region according
spatial–temporal information until the object emergence detected, and secondly,
based on the particle weights of every source region, adjust their particle numbers
till the camera handover is successfully completed. Encouraging experiment
results show the efficiency of this scheme.

Keywords Multi-camera surveillance � Camera handover � Particle filter �
Spatial–temporal information
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1 Introduction

Intelligent video surveillance has been one of the most active research areas in
computer vision, with a wide variety of applications both in public and private
environments, such as homeland security, crime prevention, traffic control, acci-
dent prediction and detection, and monitoring patients, elderly and children at
home. These applications require monitoring indoor and outdoor scenes of air-
ports, train stations, highways, parking lots, stores, shopping malls, and offices [1,
2]. Since a single camera has a limited field of view, multiple cameras, even a
distributed network of video sensors, have to be employed to monitor activities
over a complex area nowadays. Hence the continuous object tracking across
multiple cameras and consistent labeling of objects between adjacent cameras is
urgently needed. Continuously tracking objects across cameras and consistent
labeling of objects between adjacent cameras is usually termed as ‘‘object hand-
over.’’ The objective of object handover is to maintain the identity of moving
objects when they are traveling from one camera to another. More specifically,
when an object appears in one camera, we need to determine whether it has
previously appeared before in other cameras or is a new object [3]. Moreover, it is
usually not feasible to completely cover large areas with cameras having over-
lapping views due to economic and/or computational reasons. Thus, in realistic
scenarios, the system should be able to handle multiple cameras with non-over-
lapping fields of view. In this paper, we use particle filter to solve object handover
with multiple cameras having non-overlapping fields of view.

Possible cues for tracking across cameras include appearance information and
spatial–temporal information. Thus, existing algorithms of camera handoff can be
classified as: (1) Camera handover based on environment information, such as
dealing with the handoff problem based on 3D environment model and calibrated
cameras [4], tracking objects on a single global ground plane [5], or based on the
homography between camera views [6], the limits of fields of view to establish
correspondence between objects in multiple cameras [7]. All these handoff
methods need either the common fields of view or camera calibration, which
restricts their applications. (2) Camera handoff based on object model. Appearance
is the inherent feature of object, so using one cue or multiple cues of object to
construct the object model is a more popular method of camera handoff, especially
in cases where spatial–temporal reasoning is not feasible or accurate [8]. The most
widely used cues are spatial position, shape, color, intensity and motion. A lot of
research work has been done on this field only using visual information of
appearance to associate objects, which can be named as object re-identification [9,
10]. However, the appearance cues are easily fouled by many factors, such as
illumination, view angles, object deformation, etc. (3) Hybrid methods. Combining
appearance information with spatial–temporal information into Bayesian theory or
other fusion methods is more common since these two cues have their own defects
and merits. [11] integrates spatial position, shape, and color information to track
object blobs in single camera tracking, calibrates two fixed cameras using five
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coplanar control points, then tracks objects across them using Extended Kalman
Filter (EKF) to handle occlusion. [12, 13] learn the spatial–temporal relationship
of non-overlapping cameras and the appearance relationship of objects, then track
them, while the computation speed is slow for learning [14] using a map of the
surveillance area, which provides information about possible path trajectories
across the non-overlapping region in particle filter to help track prediction when
the subject leaves the field of view of a camera and enters another camera.

In order to solve the camera handoff of multiple cameras with disjoint view, a
camera handoff method using particle filter is proposed in this paper. We inte-
grated appearance information with spatial–temporal information to label consis-
tent objects in multiple cameras. The spatial–temporal information includes the
source, sink regions among cameras, their transition probabilities, and transition
time. In this paper, these spatial–temporal cues are learned offline. Based on these
spatial–temporal cues particles are sampled and adapted till the correct camera
handover is found. Histogram in HSV color space is used to compute the fitness of
particle. This algorithm is called particle filter handover. The work most similar
with ours is [14], who also use particle filter to resolve the problem of within field
of view visual tracking and track prediction when targets leave the field of view of
any camera; however, they do not involve the spatial–temporal cues, and their
applied environment is restricted in in-house scene.

The remainder of the paper is organized as follows: Section 2 introduces our
tracking initialization and intra-camera object detection and tracking, Sect. 3
discusses the camera handover scheme based on particle filter, experiments results
are given in Sects. 4, 5 conclude the paper.

2 Intra-camera Object Detection and Tracking

Tracking objects continually across cameras involves mainly two parts: Intra-
camera object tracking and inter-camera tracking. The first, tracking objects within
a camera view is the basic following process, so we discuss our tracking initial-
ization and intra-camera object detection and tracking scheme in this section.

2.1 Tracking Initialization

Tracking initialization has been little investigated although it is very important.
Most works set the initial target by drawing a rectangle to enclose the object in the
first frame. Our initialization can realize an automatic target setting, in which one
can directly input the description of target, for example, ‘‘a person dressed in red
shirt and black pants,’’ or else one can set the target by friendly man–machine
interface, only using drawing or filling. The reason we do this is because we first
detect a moving foreground, and then find the assigned object in all moving blocks
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using color matching. When comparing the color of moving objects with that of
assigned target, we quantified the HSV color space into 53 pieces based on fussy
logic [15] and named them like Joost [16]. Hue slice is quantified into 12 pieces
defined as: red, orange, yellow, green and yellow, green, blue, cyan, blue, purple,
magenta, pink, and red. Saturation S is divided into three parts, taking green for
example, the three parts are: white, light green, and green. Value V is divided into
three parts, also taking green for example, the three parts are: black, dark green,
green. If saturation S is less than the threshold range of 0.16, all the colors are
degenerated to grayscale, so this region is quantified alone to five parts: black, dark
gray, gray, light gray, and white. Thus the HSV color space is quantified as 12 * 2
* 2 ? 5 = 53 sub-regions. Considering the vagueness of color border, we use
Trapezium membership function in fuzzy quantification.

2.2 Particle Filter-Based Intra-camera Object Tracking

Once the original target is determined, particle filter is used to track the object in
single camera. The principle of particle filter is derived from the sequential Monte
Carlo method [17] that recursively generates random measurements to approxi-
mate the distribution of unknown variables. Particle filter technique has proved to
be robust and is widely used in many applications, especially object tracking [1,
18]. The principle of particle filter-based tracker is maintaining a probability
distribution over the state (location, scale, etc.) of the object being tracked [18].
Particle filters represent this distribution as a set of weighted particles. In general,
tracking using cameras is a nonlinear problem, thus the dynamic model is
expressed as (1)

xk ¼ fk xk�1; ukð Þ
zk ¼ hk xk; vkð Þ:

ð1Þ

In (1), k is time stamp, xk is the state sequences, and zk represents the obser-
vation measurement. The notation uk and vk are noise matrices. The first equation
is the function that predicts the current state given the previous state and a noise
vector. The second equation defines a measurement model, i.e., it determines how
well the prediction of current state based on current observation. Hence particles

can be denoted by xðiÞ1:k; wðiÞk

n oN

i¼1
, where i is the particle index, N is the total

number of particles, xðiÞ1:k, and wðiÞk represent the predicted state and weight of
particle i. Each particle is a guess representing one possible location of the object
being tracked. The set of particles contains more weight at locations where the
object being tracked is more likely to be. This weighted distribution is propagated
through time using a set of equations known as Bayesian filtering equations, and
the trajectory of the tracked object can be drawn from the density p x0:kjz1:kð Þ,
which is expressed in (2)
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pðx0:kjz1:kÞ �
XN

i¼1

wðiÞk d x0:k � xðiÞ0:k

� �
: ð2Þ

Then the estimation of the state observation can be determined by taking the
weighted mean of the particle set at each time step, denoted by (3), where hð�Þ is
the observation of statement.

E h x1:kð Þð Þ ¼
XN

i¼1

wðiÞk h xðiÞ1:k

� �
: ð3Þ

A general framework of particle filter algorithm can be described as:

1. Initialize: a particle set of N particles.
2. Prediction: for each particle using second order auto regressive dynamics in (4),

where xðiÞk�1 is the noise and xðiÞk�1�Nð0; r2Þ.

xðiÞk � xðiÞk�1 ¼ xðiÞk�1 � xðiÞk�2 þ xðiÞk�1: ð4Þ

3. Importance: weighting each particle based on current observation by histogram
distance.

4. Resample: a process to maintain the diversity of all particles according to their
re-normalized weights.

3 Camera Handover Based on Particle Filter

The objective of camera handover is to maintain the identity of moving objects
when they are traveling from one camera to another, it is parallel with maintaining
the identity of moving objects when they are traveling from one frame to another
in certain extent, so we consider using particle filter in camera handover as in
inter-frame tracking. When the object is traveling from one camera to another,
although the sights and illuminations of cameras are quite different, the appearance
of object remains consistent. For example, the color and texture of object con-
sidered as not changing excludes the impact of light, the velocity of subject
remains constant in two adjacent cameras if the angle change of two cameras is
small. Thus we employ a spatial–temporal progressive matching scheme in par-
ticle filter among adjacent cameras, which extracts the template and velocity of
target in prior camera and fuses them into matching the next camera. First we learn
the spatial–temporal relationship of camera network in Sects. 3.1, and 3.2
describes the algorithm of camera handover using particle filter.

Particle Filter-Based Object Tracking and Handover in Disjoint View Multi-Cameras 61



3.1 Spatial–Temporal Information of Inter-camera

We learn the spatial–temporal relationship among adjacent cameras from video
sequences of a long time. We group locations where objects appear (source region)
and disappear (sink region) by k-means clustering, and the sources and sinks are
represented by two-element Gauss distribution. The spatial transition probability
and transition time of each pair of source and sink can be calculated by statistics.

The spatial transition probability is defined as PðSi
kS j

l Þ, where Si
k is the kth source

region of camera i and S j
l is the lth sink region (or exit zone) of camera j, which

can be represented by a digraph in Fig. 1. Figure 1a shows the original sources and
sinks, dark and bright ellipses represent source and sink, respectively, in one way.
Figure 1b is the digraph, and Fig. 1c is the topology of cameras. In Fig. 1b,
vertexes represent source and sink regions, verges represent the transition of
source and sink, and the weight of verge is the transition probability of each pair of
source and sink. The Transition time is represented by PSi

kS j
l
ðtÞ. Each PðtÞ is

modeled as a mixture of Gaussian distribution. In this paper, we choose K as 3,
three Gaussian distributions correspond to people walking slowly, at normal speed,
and walking quickly. The probability of transition time t is as follows

(c)

C3

C1

C2

(b)

(a)

2

3

4
5

6 7

4

1
2

3

5

6 7

1 2

3

4

5 67

Fig. 1 Spatial–temporal constraint of inter-camera. a Original source and sinks of three cameras
C1, C2 and C3. b Digraph representation. c Topology of C1, C2 and C3
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PðtÞ ¼
X3

j¼1

xj � nj t; lj; rj

� �

nj t; lj; rj

� �
¼ 1ffiffiffiffiffiffi

2p
p

� rj

e
� t�ljð Þ2

2r2
j

ð5Þ

where xj is the weight of the jth Gaussian in the mixture, which can be interpreted
as a prior probability of the random variable generated by the jth Gaussian dis-
tribution, lj and rj are the mean value and standard deviation of the jth Gaussian,
nj is the Gauss probability density function.

3.2 Description of Camera Handoff Based on Particle Filter

In order to get effective camera handover, we employ a spatial–temporal pro-
gressive matching scheme in particle filter among adjacent cameras. Taking
camera handover in Fig. 1 as example, the steps of camera handover are described
below in detail.

• S1. When the target goes into the sink region of C1, extract the object model
H and speed Vh, push the object model H into targetlist, start the handover
judgment. For maximize repression the influence of illumination changes, his-
togram in HSV space is used in the object model.

– S1.1 according to the probability of transition time PSi
kS j

l
ðtÞ and spatial tran-

sition probability PðSi
kS j

l Þ, scatter particles in source regions of other cameras
corresponding to the sink region of C1 (that is, region 4 in C2 and 6 in C3).

– S1.2 calculates the similarity of all particles with the object model
H according to histogram Intersection in (6).

wðiÞk ¼ d hðiÞk ; Hk

h i
¼
Xm

j¼1

min hðiÞkj ; Hkj

� �
ð6Þ

where hðiÞk is the histogram of ith particle in HSV color space of t time, hk is
the object template of k moment.

– S1.3 If all similarities are less than a certain threshold TS, judge the target that
does not emerge in other cameras, in the next time step go S1.1 continue
scatter particles based on the spatial–temporal probability. Once the similarity
of some particle appears larger than threshold TS, which means target appears,
go S2 particle filter handover.

• S2 Particle filter handover.

– S2.1 motion predictions for all particles in regions 4 and 6 separately at the
same time. Motion model is shown in (7) and (8).
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vk ¼ a � Vh þ ð1� aÞ � vk�1 þ Gk�1 ð7Þ

xk ¼ xk�1 þ vk ð8Þ

where Vk is the speed of k time step, Vh is the object speed in prior camera,
Gk�1 is two-element Gauss random noise, and a is fusion coefficient.

– S2.2 computer the weights wðiÞk of all particles according to histogram Inter-
section coefficient in (6) and normalized according to (9).

wðiÞk ¼
1

PN
i wðiÞk

ð9Þ

In order to improve the accuracy, we use (10) to renew the template Ht when
computing the weights.

Hk ¼ b � H þ ð1� bÞ � Hk�1 ð10Þ

where H is the object model of the prior camera, Hk is the template of
k moment, and b is fusion coefficient.

– S2.3 calculate the weight sums of each source, if the sum of some source is
larger than others, increase the particle number of this source and decrease
particle number of other sources correlated with the sink. Taking Fig. 1 for
example, if the weight sum of source region 4 in C2 is larger than that of
region 6 in C3, increase particle number of region 4, decrease number of
region 6 at the same time, so that the total particle number is constant.

– S2.4 resample particles according the weights and numbers of each sources.
– S2.5 go to S2.1 recursive motion prediction and increase/decrease the parti-

cles. If the number of some source decreases to less than 5 % of the total
number, set it to 0. If the particle number of some source is more than 95 % of
the total number, or particle numbers of all the other sources are 0, the object
in current source is judged as the correct handover, and camera handover is
completed.

– S2.6 After particle filter handover is started for a long time T, there is no
particle’s similarity larger than threshold TS or the case that one particle’s
similarity larger than TS remains short time, we judged the camera handover
as failed. Object detection in subsequent cameras is restarted. If some object
is detected, compare it with targetlist, judge it as new subject if its model is
not similar to any target in targetlist, and then add it to targetlist.

• S3 In the next process, object tracking in single camera view keep going on.

In the above steps, fusion coefficients a and b are two important parameters,
which determine to what extent is the template consistent with prior camera and
how fast it adapts to the current scene. The impact of prior template is slowly
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reduced with time, so we name this scheme as spatial–temporal progressive
matching.

3.3 Mathematical Description of Particle Filter Handover

In (2), the trajectory of the tracked object can be drawn from the density
pðx0:kjz1:kÞ. In fact, the density in multiple cameras can be expressed by

pðx0:kjz1:kÞ �
XC

j¼1

XNj

i¼1

wðjiÞk dðx0:k � xðjiÞ0:k Þ ð11Þ

in which, C is the number of source regions related to the sink region. If we denote
density of each source region as pjðx0:kjz1:kÞ, S2.3 in Sect. 3.2 increases the particle
number of region with maxðpjðx0:kjz1:kÞ, that is, increases the density of maximal
likelihood; decreases that of other source regions, until it finds the correct
handover.

4 Experiments

In this part, the particle filter handover scheme above is tested by an outdoor
scenario taken by us. The experimental environment is: CPU, Intel Pentium 2.93G
Hz, and memory, 3.25 GB, developing tools are Visual Studio 2008 and OpenCV
2.3.

In our outdoor scenario, the topology of cameras is shown in Fig. 1, in which
the three cameras have no or little overlap view, so the homography-based or
limits of fields of view-based methods cannot be used. Some frames of C1, C2, and
C3 are shown in Fig. 2, from which one can see that the illuminations of three
cameras are quite different for different camera types and views of angles. So the
appearance-based method is not reliable. The only effective way is combining
appearance information with spatial–temporal information.

The space–time information of three cameras is first learned using a 2 h dataset.
In our test scenario, a person passes through C1, then exits from C1 and enters into
C2 after 266 frames, not C3. The types of these three cameras are different, and the

Fig. 2 Some frames of three cameras
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resolutions are also different: Resolutions of C1 and C2 are 320*240, and that of
C3 is 640*480, so normalization should be done first.

When the target enters into sink region 2 in C1, the camera handover judgment
is started, and particles are sampled according to the spatial–temporal constraints.
In the first few frames of C2 and C3 into which target did not enter, the camera
handover is not started as the similarities of particles with object model H in prior
camera are small. Continue scatter particles in next frame. Once the similarity of
some particle appears larger than threshold, it means the target goes in (in this
experiment, first similarity larger emerges in frame 266 of C2), does not scatter

Fig. 3 Particle distribution in frames target first emerged

Fig. 4 Camera handover
successfully completed in
frame 271 of C2

Fig. 5 Weight change of
particles in C2
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particles in the next frame, and switches to the particle filter camera handover. The
particle state of frame where target first emerged in source regions 4 and 6 is
shown in Fig. 3 where the dots represent a particle. The motion prediction,
resample based on weights and number adjustment of particles are carried out with
the time. Another parameter setting is: TS ¼ 16; a ¼ 0:9; b ¼ 0:95: Experiment
results show that in 15 frames after the target first emerged, all particles are
transferred into C2 and focus on the target, which indicates the handover is suc-
cessfully completed. Figure 4 is the handover ending in frame 271 of C2, in which
the pixels are particle positions and the rectangle is the estimation of object
location. The weight sum change of particles in 15 frames of C2 is given in Fig. 5.

5 Conclusion

In multiple camera intelligent surveillance, continuously object tracking across
cameras, i.e., object handover is an unresolved problem and has attracted many
research works in recent years. This paper proposed a particle filter camera
tracking and handover method to solve the continuous tracking across multiple
cameras with non-overlapping fields of view. The spatial–temporal constraints,
including source and sink regions, transition probabilities, and transition time of
each pair of source and sink are learned offline. Then a spatial–temporal pro-
gressive matching scheme is used to scatter particles and renew the number of
particles in source regions according to the spatial–temporal information among
adjacent cameras. Experiment shows that this particle filter camera handover
scheme is effective. Further and deeper employment should be done to extend this
scheme to camera handover and camera management in more complicate camera
networks.
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Analyzing Effects of Pressing Radio
Button on Driver’s Visual Cognition

Huacai Xian, Lisheng Jin, Haijing Hou, Qingning Niu
and Huanhuan Lv

Abstract An approach is presented based on driver simulator and SmarteyeII eye
tracking system to examine the effects of pressing in-vehicle radio button on
driver’s visual cognition. Parameters of glance frequency, glance duration, eye
movement speed, and visual line moving in different regions of interest (ROIs) in
task of pressing the radio button, closely related with driver’s visual cognition,
were collected and analyzed. Based on the experimental data, driver’s visualiza-
tion model with secondary tasks was built by CogTool. Driver’s vision, eye
movement, cognition, and hand motion were tracked and recorded by the model.
Results of experiment and running model show that pressing the in-vehicle radio
button while driving has adverse influence on driver’s visual cognition and
occupies a lot of the driver’s visual resources.

Keywords In-vehicle radio � Secondary task � Visual cognition � Visualization
model � CogTool

1 Introduction

Amelia Stenson reports that 90 % of causes of traffic accidents are related to
driver’s factor [1]. Some researchers consider that 80 % of the driver’s perception
of information origins from vision. Thus, it is put in a significant place while
driving and accident controlling [2, 3]. Thus, it is of remarkable significance to
study the driver’s visual cognition with the secondary task which is an important
factor for driver distraction. Secondary tasks are tasks that the driver voluntarily or
involuntarily engages in which do not directly pertain to the primary task of safe
vehicle operation [4], such as taking a look at the navigation system, listening to
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music or radio, talking on the phone, etc. These tasks occupy driver’s visual
resource, cognitive resource, and motion resource in different degrees and distract
the driver’s attention simultaneously as well. As the most important factor for safe
driving, the driver’s visual cognition remains largely unexplored, which is the
focus of this study.

Most previous studies paid close attention to eye movements and driving per-
formance while using cell phone [5–7], music and music tempo [8–10], text
messaging, and device position while driving [11, 12]. However, few have made
detailed and thorough analysis on driver’s visual cognition in secondary tasks
while driving. Therefore, it is of important significance to study the driver’s visual
cognition in secondary task.

With this motivation in mind, the overall goal of this paper is to develop a
method of examining the effects of pressing radio button on driving performance.
In particular, it has the following purposes:

(1) Collect parameters of drivers’ visual cognition behavior, taking an in-vehicle
radio as the secondary task while driving and coordinating Driving Simulator
with SmarteyeII system, which is separated from driver’s head and thus
relieves discomfort.

(2) Use SPSS and Matlab for analyzing parameters of driver’s glance frequency,
glance duration, eye movement speed, and visual line moving.

(3) Build driver’s visualization model in task and achieve prediction of driver’s
vision, eye movement, cognition, and hands motion using CogTool.

2 Description of Experiment

2.1 Experiment Equipments

The experiment equipment mainly includes the SmarteyeII system, an in-vehicle
radio, and a platform composed of a BESTURN B50 car and a Driving Simulator.

(1) Secondary task

The secondary task was performed on the in-vehicle radio button. The center of
radio-button coordinate was (29, -23, -13.5) and 23� away from the steering
wheel center (see Fig. 1).

(2) Eyes tracking system

Eyes tracking system of the Smarteye was mainly responsible for capturing
driver’s eye movement during the whole driving procedure. The Smarteye used four
cameras (shown in Fig. 1) mounted in front of the windscreen towards driver’s face
to capture driver’s eye movement. Besides, to pick driving environment out of the
vehicle, three panoramic cameras were also mounted between two back seats.
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(3) Driving simulator

Driving simulator is composed of a BESTURN B50 car, modules of dynamics
simulation, image simulation, and monitor simulation (see Fig. 2).

2.2 Participants

Eight participants (six male and two female) between the ages of 20 and 23
(mean = 21.5, SD = 1.18) were recruited from the University of Jilin. All par-
ticipants were required to hold a valid class C driver’s license for more than
2 years and drive a minimum of 5,000 km per year. Divers were also required to
be in good health.

2.3 Experimental Design

The performing course was divided into 13 steps. A four-lane divided highway
with an 80–120 km/h velocity limit was chosen. Each lane of the highway was
3.75 m wide and the middle belt was 3 m wide. The experiment was performed in
multi-vehicles and non-vehicle environment, respectively, in the following steps:

Fig. 1 In-vehicle radio and
SmarteyeII

Fig. 2 Driving environment
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(1) Participants were taught to operate the radio and then practice performing the
task and driving the simulator under multi-vehicles and non-vehicle road
conditions repeatedly, first separately and then together.

(2) Lead driver to complete secondary tasks at any time they feel safe while
driving. Each driver completed a drive without performing the in-vehicle radio
task and a drive with in-vehicle radio task under different highway road
conditions, after which parameters of driver’s eye behavior were recorded.

(3) Driver’s visual data was collected while driving and then analyzed.

3 Analysis of Drivers’ Visual Cognition Behavior

Eye movement was collected by SmarteyeII Recorder. A glance is defined as
consecutive focuses on an area of interest, not including saccade transition and
blinking behavior. As four regions of interest (ROI), the road, in-vehicle radio, and
two rearview mirrors were extracted in the experiment for further research.

Figure 3 shows the tracking of eye movement. From Fig. 4, four ROIs are
divided by rectangles of different colors. ROI-0 (blue area) and ROI-3 (green area)
are areas of on-road and in-vehicle radio conditions. ROI-1 (red area) and ROI-2
(light yellow area) stand for the right and left rear mirrors respectively.

3.1 Mean Glance Frequency

Glance frequency is defined as the number of glances at a target during the task
where each glance is separated by at least one glance to a different target [13].
Apart from glances at the lane, the more intensive the driver’s gaze points is, the
more visual resources the area occupies, resulting in driver’s visual distraction.

The glance frequency distribution without and with secondary tasks on multi-
vehicles road is shown in Figs. 5 and 6 respectively. Comparing the ROI0 and ROI1,
it can be perceived that the number of glances on rearview mirrors with radio task is

Fig. 3 Eye movement
tracking
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