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Preface

All-Digital Phase Locked Loops (ADPLLs) have become very common in low
cost and feature mobile phones. In recent years, extensive research activity on
ADPLLs has focused on increasing the performance of ADPLLs, thus increasing
the range of their possible applications. The theoretical noise performance of an
ADPLL is limited by the quantization error of the TDC and the DCO. In the
literature, noise shaping of the quantization error is one of the main techniques
used to reduce the impact of the quantization error of the TDC and the DCO on the
noise performance of an ADPLL. In this book, we present a framework to analyse,
design, simulate and compare different ADPLL architectures with noise shaping
TDCs and DCOs.

In Chap. 1, we summarize the main contributions of the book.

In Chap. 2, we review the operations of the main ADPLL architectures in terms
of phase-to-digital conversion.

In Chap. 3, we review the main TDC architectures and relate their operations to
quantizers and/or sigma-delta modulators.

In Chap. 4, we derive discrete-time models for the main ADPLL architectures
and derive analytical equations for predicting the phase noise performance.

In Chap. 5, we show the advantages of noise shaping and dither by means of an
analytical method in the time domain.

In Chap. 6, we focus on simulating ADPLLs as mixed-signal systems. We show
that there is a tradeoff between accuracy and simulation time. We describe a
simulation method in Simulink that can mitigate this tradeoff.

In Chap. 7, we discuss phase noise in more detail. We describe a procedure to
model and extract the phase noise of a signal in Matlab.

This work was supported in part by Science Foundation Ireland under grant
08/IN.1/1854 and by Microelectronic Circuits Centre Ireland.

Cork, September 2013 Francesco Brandonisio
Michael Peter Kennedy
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Chapter 1
Introduction

An All Digital Phase Locked Loop (ADPLL) is an alternative to a traditional Phase
Locked Loop (PLL) for implementation in nanoscale digital CMOS, especially as
part of a system-on-chip (SoC) [1, 2]. One of the key advantages of ADPLLs over
their analog counterparts is that they remove the need for large capacitors within the
loop filter by utilizing digital circuits to achieve the desired filtering function. The
resulting area savings are important for achieving a low-cost solution. Moreover,
the phase error signal in an ADPLL is a digital word that is produced by means
of digital circuits such as accumulators, samplers and Time-to-Digital Converters
[3, 4]. As a consequence, a much more attractive, mostly digital, design flow is
achieved [2]. Furthermore, the essentially digital architecture of an ADPLL can be
augmented with reconfigurable gains and a filter [5, 6], or with a software-assisted
digital processor for calibration [7].

In the literature of recent years, there has been a significant effort to improve
the performance of ADPLLs in terms of the output frequency [6, 8], resolution
[9], bandwidth [10-12], locking speed [13, 14], phase noise [15-17], and power
consumption [18].

In this book, we focus on ADPLLs that include TDCs with noise-shaping of the
quantization error. We explain how to design an ADPLL, analyse its noise perfor-
mance and realize behavioral models that require the minimum possible simulation
time. We also review the main TDC architectures in order to highlight the advantages
of a first-order noise-shaping TDC. We show how to relate the operation of a TDC to
a quantizer and/or a first-order sigma-delta modulator. Furthermore, we determine
analytically the precisions of a quantizer and a sigma-delta modulator when followed
by a moving average filter in terms of the maximum difference between the input
and the output when this difference is bounded.

First-order noise-shaping of the quantization error is produced by a system that
can be represented by a first-order sigma-delta modulator. During our analysis, we
show that there is an inherent sigma-delta modulation in both Vernier TDCs and
accumulator-based ADPLLs. In fact, we demonstrate that the models of a Vernier
TDC and an accumulator-based ADPLL can be based on sigma-delta modulators. In
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2 1 Introduction

particular, we use the equations of a sigma-delta modulator to implement an efficient
model of an accumulator-based ADPLL.

The book is organized as follows:

In Chap. 2, we review the operating principles of the main topologies of ADPLLs
(PFD-plus-TDC-based, TDC-based and accumulator-based ADPLLs) in terms of the
integer and fractional parts of the phase difference. We also mention the flip-flop-
based ADPLL which can be considered as a special case of a TDC-based ADPLL.
We show models that describe the phase-to-digital conversion in each ADPLL ar-
chitecture. We also discuss possible strategies to clock the digital filter in the various
ADPLL architectures. We show how to modify the ADPLL architectures to syn-
thesize a fractional ratio between the frequencies of the reference oscillator and the
DCO. Finally, we compare the ADPLL architectures in terms of phase-to-digital
conversion, TDC dynamic range, and metastability. The analytical approach used in
this chapter is general and it can be extended to any modified ADPLL architecture
that can be obtained from those we have studied.

In Chap. 3, we briefly review the main TDC architectures that have been published
in the literature. We introduce notation for comparing different TDC architectures in
terms of their operating principles and time resolution. By comparing different TDC
architectures, we show that a first-order noise-shaping TDC is an interesting archi-
tecture for digital systems because it allows a tradeoff between high time resolution
and speed. We also show how the Vernier method can be considered as a special
case of sigma-delta modulation. To our knowledge, the Vernier method is recog-
nized as a particular case of sigma-delta modulation for the first time in this work. A
Vernier-TDC model based on a sigma-delta modulator is also new in the literature,
to our knowledge. There are already reviews of TDC architectures such as [19] and
[20]. However, in this review, a single notation is used to derive models based on
quantizers and sigma-delta modulators for the main TDC architectures from their
respective timing diagrams. The same notation allows a simple comparison between
different architectures in terms of time resolution.

In Chap.4, we focus on the noise performance of the main architectures of
ADPLLs. We derive analytical predictions of the phase noise in TDC-based and
accumulator-based ADPLLs with noise-shaping TDCs and a DCO driven by a sigma-
delta modulator. In order to derive analytical predictions for the ADPLL phase noise,
we first explain how to calculate the phase noise of the DCO when its input is known.
Then we derive linear models associated with the building blocks in an ADPLL. We
use the linear models of the building blocks of an ADPLL to develop a linear model
of the full ADPLL. We derive analytical predictions of the ADPLL phase noise
from the linear ADPLL model. Finally, we compare Matlab simulations and analyt-
ical predictions for an example TDC-based ADPLL architecture. We also show that
our results are in very good agreement with predictions obtained by means of the
“PLL Design Assistant” [21] which is an automatic design tool for PLL. By contrast
with the “PLL Design Assistant” program, which is compiled and therefore cannot
be modified by the user, the Matlab scripts that we present are ready to be edited.
Hence, the Matlab scripts in this chapter represent a complementary learning tool
that gives direct insight into the design equations.
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In Chap.5, we determine the precision of the systems “Quantizer plus Moving
Average Filter” and “Sigma-Delta Modulator plus Moving Average Filter” with
dither. We show analytically that the difference between the input and output of
a “Sigma-Delta Modulator plus Moving Average Filter” is smaller than that of an
equivalent “Quantizer plus Moving Average Filter”. The analytical results derived
in this chapter are important in order to understand how to exploit noise shaping in
ADPLLs. Notice that we determine the precision of systems comprising sigma-delta
modulation and dither followed by moving average filters in terms of the maximum
difference between the input and the output and the variance of the output in the
time domain. In the literature, it is common to analyse the advantages of sigma-
delta modulation and dither in the frequency domain [22]. However, the analysis
in the frequency domain is usually based on the assumptions that the quantization
error of a sigma-delta modulator is white and independent of the input. This white
noise approximation is not valid when the output of a sigma-delta modulator exhibits
tones. The approach that is presented in this chapter is an alternative to the standard
frequency domain analysis and does not require the white noise approximation.

In Chap. 6, we discuss how to simulate an ADPLL with fully nonlinear behavioral
models. We show how to realize an efficient behavioral model of an ADPLL that
produces the minimum number of samples during a simulation. The equations that
we use to implement the efficient model of an ADPLL are related to a sigma-delta
modulator. We report example C- and Matlab code that can be used to implement an
efficient Simulink model of an ADPLL. We also illustrate how to realize a Simulink
S-function that controls the simulation loop while the simulation is running. The
modelling approach for ADPLLs that is detailed in this chapter is similar to that
described by Staszewski et al. [23]. The technique reported in [23] describes how
to realize event-driven models in Verilog-AMS. Models that are event-driven can be
built in Verilog and Verilog-AMS by means of the command “timer”. In this chapter,
we show how to realize event-driven models in Simulink. The Simulink models that
we describe are simple and can be used as learning tools to understand how to deal
with the problems that are associated with modeling ADPLLs.

In Chap.7, we show how to model and calculate the phase noise of an oscillator
in Matlab. The approach presented has been adopted in Chap.4 to calculate the
phase noise of an ADPLL. The material included in this chapter refers mostly to
Kundert’s work on model oscillators and signals with phase noise in Verilog-AMS
[24]. However, we focus more on the steps that are necessary to model a noisy signal
and to extract its phase noise. The steps of an example noise extraction procedure
are clearly illustrated with Matlab scripts.
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Chapter 2
Phase Digitization in All-Digital PLLs

2.1 Introduction

In this chapter, we review the operating principles of the main topologies of ADPLLs
(PFD-plus-TDC-based, TDC-based and accumulator-based ADPLLs) in terms of the
integer and fractional parts of the phase difference. We also mention the flip-flop-
based ADPLL which can be considered as a particular case of a TDC-based ADPLL.
We show models that describe the phase-to-digital conversion in each ADPLL archi-
tecture when the integer part of the phase difference is equal to or different from zero.
We show that a flip-flop based ADPLL can be viewed as the ADPLL architecture
with the simplest phase-to-digital conversion. We also discuss possible strategies to
clock the digital filter in the various ADPLL architectures. We show how to modify
the ADPLL architectures to synthesize a fractional ratio between the frequencies of
the reference oscillator and the DCO. Finally, we compare the ADPLL architectures
in terms of phase-to-digital conversion, TDC dynamic range, and metastability.

2.2 Definitions of Integer and Fractional Phases

The phase @ () of asignal at the instant ¢ is the integral of the instantaneous frequency
over the time interval [0, 7], as shown by the following equation:

1
(1) = / f (v)d + o, @.1)
=0

T

where f () and @ are the instantaneous frequency and the initial phase of the signal.
According to Eq. (2.1), the phase of a signal is determined when the initial phase
and the frequency f () over the interval [0, t] are known. In order to simplify our
analysis, we assume that the signal with unknown frequency can be associated with
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Fig. 2.1 Timing diagram
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cycles. The cycles are determined by choosing a reference level which is crossed by
the signal. The beginning and the end of a cycle are determined by two consecutive
crossings. Without loss of generality, we assume that the rising edges of a signal are
associated with the beginnings and the ends of the cycles. Moreover, we assume that
the frequency of the signal is constant and equal to f[i] over the i-th cycle. Hence,
the duration of the i-th cycle is equal to the period T'[i] = 1/f[i] of the signal. The
frequency f[i] can be obtained by measuring the duration 7'[i] of the i-th cycle.
Without loss of generality, we assume that the rising edges of a signal determine the
durations of the cycles that have to be measured. Figure 2.1 shows the cycles and the
values of the instantaneous frequency of an example signal.

When the frequency f () is a piecewise constant function of the type shown in
Fig. 2.1, Eq. (2.1) can be simplified, as we will show in the following. We first write
Eq. (2.1) as:

I t
D(t) = /f(r)dr—}— /f(r)dr, 2.2)
=0 T=l;

where f is the instant associated with the previous rising edge with respect to z,
as shown in Fig. 2.1. There are two integrals in Eq. (2.2). By considering that f(z)
is equal to 1/ T [k] between two consecutive rising edges of the k-th cycle, the first
integral in Eq. (2.2) gives:

15 n
/ f@dr =" flil-Tlil=n, (2.3)
=0 i=1
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where n is the number of complete cycles of the signal over the time interval [0, #].
We define the integer part of the phase ®;,,(¢) of a signal as the number of complete
cycles of the signal over the time interval [0, #;].

By considering that f(¢) is equal to 1/T[n + 1] over the time interval [z, ], the
second integral in Eq. (2.2) gives:

Iy
/f@M T[+u (2.4)

We define the fractional part of the phase @, (t) as the ratio (t — ,)/T[n + 1].
We conclude that the phase @ (¢) of a signal can be written as:

D(1) = Pini(1) + P frac(t). 2.5

Assume two signals, Ref and Div whose cycles are defined by their respective
rising edges. Moreover, we assume that the periods of Ref and Div are constant and
variable with respect to time, respectively. This assumption is consistent with the
operations of an ADPLL that we will analyse in the next sections.

By means of Egs. (2.3) and (2.4), we can define the integer and fractional parts
of the phase @ g, of Ref at the instants tp;,[n] at which the edges of Div occur, as
shown in Fig. 2.2. The integer part of @ g.r at the instant ¢p;,[n] is determined by the
number of previous edges of Ref, where n is the index associated with the edges of
Div. The fractional part of @ g.r at tp;,[n] is equal to Az[n]/Tge, where At[n] is the
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duration of the time interval between #p;,[n] and the instant of the previous edge of
Ref, as shown in Fig. 2.2.

It is important to notice from Egs. (2.3) and (2.4) that we can also define the
phase @ p;, of Div at the instants tgen] at which the edges of Ref occur, as shown
in Fig. 2.3.

The integer part of @ p;,, at the instant g,¢[n] is equal to the number of the previous
edges of Ref, where n is the index associated with the edges of Ref. The fractional
part of @ p;, at trefn] is equal to At[n]/Tp;[k], where At[n]is the duration of the
time interval between tg.r[n] and the instant of the previous edge of Div, and Tp;,[k]
is the duration of the k-th cycle of Div which includes g.r[n], as shown in Fig. 2.3.

Finally, the phase difference between Ref and Div can be determined from Figs. 2.2
and 2.3, as shown in Fig. 2.4.

Considerations of the fractional and integer phases of Ref and Div and the defin-
ition of the phase difference between two signals are fundamental to understanding
and comparing the operations of the ADPLL architectures that we will consider in
the next sections.

2.3 Architectures of Phase-Difference Digitizing and Phase
Digitizing ADPLLs

The operation of an ADPLL is based on the association of a digital word with the
phase difference between two signals. In order to realize this association, it is possible
to follow two approaches. The first approach is to produce an analog measurement



