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Preface

This edited book on “Modeling and Simulation of Diffusive Processes: Methods 
and Applications” contains contributions from authors with a variety of academic 
backgrounds. It is an outgrowth of the International Conference on Simulation and 
Modeling of Diffusive Processes and Applications (ICMSDPA12) organized in 
Banaras Hindu University, India during October 9–12, 2012. There are contributors 
from outside ICMSDPA12 also to make the book more broad-based. This book ad-
dresses some of the issues in simulation modeling and simulation over a number of 
application areas. There are fifteen chapters in the book.

The first chapter is on diffusive processes and modeling: an introduction by 
Naveen Kumar and S. K. Basu. It deals briefly with a number of processes which 
are intimately connected with the diffusion processes, advection–diffusion equa-
tion (ADE) in different coordinate systems, mentioning different transformations 
generally used, different analytical and numerical methods. The effect of fractional 
order space derivative with skewness parameter on the mass transport has been 
explained through simulation using ADE for a simplified wound healing problem. 
Lastly, simulation study about the effect of ionic diffusion on the controlled release 
of nutrients from a coated spherical fertilizer granule is explained.

The second chapter on diffusion and transport of molecules in living cells by 
Ruchi Gaur, Lallan Mishra, and Susanta K. Sen Gupta deals with diffusion and dif-
ferent models of it, and relevance of different transport phenomena in living cells.

The third chapter on modeling diffusion and transport of suspended sediment in 
open channels, using two-phase flow theory by Sanjeev Kumar Jha and Fabián A. 
Bombardelli deals with a general framework of sediment transport in open channels 
as a two-phase flow, composed of mass and momentum equations for both phases 
(water and sediment). The authors discuss two levels of model complexity based 
on the nature of the terms involved in modeling: the complete two-fluid model 
(CTFM), and a partial two-fluid model (PTFM).

The fourth chapter on mathematical modeling of peristaltic transport of nano-
fluids by Dharmendra Tripathi and O. Anwar Bég reviews the challenges and poten-
tial of mathematical modeling in biofluid mechanics. The fundamentals of peristal-
tic transport and nanofluid dynamics have also been described qualitatively. A novel 
mathematical model has additionally been presented by the authors, to simulate 
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the influence of nanofluid and thermo-diffusive/diffuso-thermal characteristics on 
peristaltic heat and mass transfer in a two-dimensional axisymmetric channel for 
simulation of nanofluid peristaltic drug delivery systems.

The fifth chapter on numerical study on isotachophoretic separation of ionic 
samples in microfluidics by Partho P. Gopmandal and S. Bhattacharyya deals with 
a high resolution numerical algorithm to analyze two-dimensional isotachophoresis 
(ITP) of electrolytes of different mobility in a wide micro-channel based on a finite 
volume method over a staggered grid arrangement along with a higher-order up-
wind scheme. The model is based on equations for conservation of mass and charge 
and also electro-neutrality condition.

The sixth chapter on thermal characterization of non-homogeneous media by 
Helcio R. B. Orlande, Carolina P. Naveira-Cotta, Henrique Massard da Fonseca, 
Diego Knupp, Renato M. Cotta, and Olivier Fudym presents application of a Mar-
kov chain Monte Carlo (MCMC) method, within the Bayesian framework, for the 
identification of non-homogeneities or inclusions in a medium through the solution 
of an inverse heat conduction problem. They present two different approaches in 
conjunction with the MCMC method. A nodal approach which locally linearizes 
the inverse problem by using temperature measurements for the computation of 
the sensitivity matrix, and an expansion of unknown spatially-dependent thermo-
physical properties in terms of eigen functions, which is used in conjunction with 
the Generalized Integral Transform Technique (GITT).

The seventh chapter on scale dependent porous dispersion resulting from the 
cumulative effects of velocity fluctuations by Wynand S. Verwoerd deals with semi-
analytical stochastic model of the dispersion effects of macroscopic drift velocity 
fluctuations leading to significant insights like enhancement of intrinsic dispersion 
by a fluctuation, beyond the value associated with flow at the mean drift velocity. 
This enhancement manifests as a factor multiplying the spatial variance of the sol-
ute plume, so that the effects of a sequence of fluctuations accumulate as a product, 
implying an exponential rise of dispersion with the distance travelled as a solute 
plume traverses the fluctuation sequence. This behavior is tempered by an anneal-
ing effect downstream of a velocity step, which has a length scale related to plume 
extension.

The eighth chapter on modeling nitrogen fate and transport at the sediment-water 
interfaceby M. M. Hantush, and L. Kalin deals with analytical models describing 
transport and fate phenomena at media interfaces. The first problem discussed is 
modeling of nitrogen cycling at the sediment-water interface at the bottom of lakes. 
The second is modeling atmospheric input of oxygen into under-saturated lakes. 
The third model describes polychlorinated biphenyl redistribution at the sediment-
water interface.

The ninth chapter on modeling groundwater flow in unconfined aquifers by S. N. 
Rai deals with groundwater flow equations to describe two dimensional groundwa-
ter flows in inhomogeneous anisotropic unconfined aquifer, inhomogeneous, iso-
tropic unconfined aquifer, in leaky unconfined aquifer, in homogeneous isotropic 
sloping aquifer in response to intermittently applied time varying recharge and/or 
pumping from multiple basins of rectangular shapes and wells, respectively along 
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with the initial and boundary conditions and methods of their solutions. The govern-
ing flow equations are used for the development of analytical/numerical models to 
predict water table fluctuations in the flow system under consideration.

The tenth chapter on two-dimensional solute transport from a varying pulse type 
point source by Premlata Singh, Sanjay Kumar Yadav, and Alexander V. Perig deals 
with solute transport originating from a source through a heterogeneous horizontal 
medium assuming temporal dependence of velocity and dispersivity.

The eleventh chapter on the problems of futile cycles in metabolic flux model-
ing: flux space characterization and practical approaches to its solution by Wynand 
S. Verwoerd and Longfei Mao deals with metabolic capabilities and behaviours 
of an organism by development of flux models of genome scale with flux balance 
analysis (FBA). For elimination of futile cycles in the FBA results, the authors 
introduce a simple notion to cut off the circulating flux layer while obtaining the 
same objective value. To comprehensively elucidate the alternate optimal solutions 
without the interference of futile values, they present flux variability analysis with 
target flux minimization, a combined pipeline approach based on FBA and flux 
variability analysis.

The twelfth chapter on contaminant concentration prediction along unsteady 
groundwater flow by Mritunjay Kumar Singh and Priyanka Kumari deals with the 
contaminant concentration pattern of one-dimensional advection-dispersion equa-
tion along a homogeneous semi-infinite aquifer with pulse type boundary condition 
for different forms of velocity expressions.

The thirteenth chapter on wavelet-multigrid method for solving modified Reyn-
olds equation modeling synovial fluid flow in a normal human knee joint by S. C. 
Salimath deals with modified Reynolds equation, incorporating surface roughness 
and poroelastic nature of articular cartilage enabling bio-medical engineers in se-
lecting suitable design parameters, giving deeper understanding of the lubrication 
of knee. The results obtained could guide the new material experimentation for knee 
replacement with mechanical characteristics.

The fourteenth chapter on a basic concept on modeling soil organic carbon by 
Nimai Senapati, Subhadip Ghosh, Heiko Daniel, and Amitava Rakshit discusses 
SOC models as important means of improving our understanding of C turnover pro-
cess as well as underlying C stabilization mechanisms in soil. The SOC models of-
ten simulate the dynamics of different macro- and micro-nutrients along with SOC 
dynamics inadequately. They also often do not account soil pH and do not simulate 
the whole process of soil aggregation and the dynamics of soil biota explicitly. In-
clusion of all these process/factors/parameters in the SOC models could represent 
the complex real life systems in a better way and might improve the overall model 
performance.

The fifteenth chapter on crop growth simulation modeling by Avnish Kumar 
Bhatia deals with crop growth models emphasizing crop physiology, weather pa-
rameters, soil parameters, and management practices to simulate growth and yield 
of crops. Crop simulation models compute growth values on a day to day basis using 
the relations among values of crop growth and weather parameters. A generic model 
can be developed using common crop physiological processes. Validating and fine 
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tuning of crop model is an important step before using it for actual prediction tasks. 
The author opines that future crop models should rely on improving the mechanism 
of interacting with environment and society.

The editors have attempted, through these chapters from different contributors, 
to put in one place wide ranging areas where simulation-modeling techniques are 
being used for better understanding of the underlying processes. The editors feel 
that this volume would be quite useful for researchers and advance graduate stu-
dents from multiple disciplines where simulation-modeling is of major interest.

S. K. Basu
Banaras Hindu University 	 Naveen Kumar
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Chapter 1
Diffusive Processes and Modelling: 
An Introduction

Naveen Kumar and S. K. Basu

S. K. Basu, Naveen Kumar (eds.), Modelling and Simulation of Diffusive Processes, 
Simulation Foundations, Methods and Applications, DOI 10.1007/978-3-319-05657-9_1, 
© Springer International Publishing Switzerland 2014

N. Kumar ()
Department of Mathematics, Banaras Hindu University, 221005 Varanasi, India
e-mail: navkumar50s@gmail.com

S. K. Basu
Department of Computer Science, Banaras Hindu University, 221005 Varanasi, India
e-mail: swapankb@gmail.com

1.1 � Introduction

Diffusion is a very common natural process occurring everywhere in physical, 
chemical, biological, geological systems. Considering the centrality of the diffusive 
process, understanding the effects of diffusion on different systems are of outmost 
importance. Assessment and management control of the degradation of our environ-
ment due to solute mass transport from a variety of sources of pollutants is a grow-
ing discipline. Mathematical modelling and computer simulation of these processes 
is nowadays one of the important approaches in quantitative analysis of different 
aspects of the discipline. One of the important analytical tools in this regard is the 
use of the advection–diffusion equation.

When a certain mass of solute is introduced in a medium, experience shows 
that the solute particles gradually spreads and occupies an increasing portion of the 
domain. If the medium is advective then this spreading is faster. This mixing and 
spreading is known as diffusive phenomenon (if there is no flow in the domain) or 
advective–diffusive phenomenon in the presence of advection. When a blob of ink 
is dropped in a glass of water, the water becomes coloured eventually; spreading of 
gas from the leakage point in the direction of wind, these are simple examples of 
diffusive and advective–diffusive processes, respectively.

Pollution can be classified on the basis of the medium in which it is occurring, 
such as air pollution, soil pollution, surface water pollution, and groundwater pollu-
tion, etc. Its source may be natural or anthropogenic. There are varieties of sources 
of pollution due to human activities [1–4]. One type of the source of these pollu-
tions is a point source. Stationary point sources include volcanoes, factories, elec-
tric power plants, mineral smelters, petroleum refineries, and different small scale 
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industries; while mobile point sources include all sorts of transport vehicles moving 
on road, rail, or in the air. A point source is a specific site in a medium (air, water, 
or soil) where the discharge of pollutant’s solute particles in the form of effluents or 
particulate matters from such a source, enters the environment, and is transported 
away from the source due to diffusion and advection.

Groundwater pollution occurs due to infiltration of wastes from garbage disposal 
sites, septic tanks, mines, discharge from surface water bodies polluted due to in-
dustrial and municipal wastes [5–6]. Medium of advective–diffusive transport may 
be porous (soil field, aquifer, oil reservoir) or open medium (air, surface water bod-
ies). In the real cases, medium is seldom homogeneous. Instead, it is heterogeneous. 
In the former case, the transport properties (porosity in porous medium), hydraulic 
conductivity, permeability remain uniform with position. In the latter case, these 
become position dependent or spatially dependent. Similarly, if these do not depend 
upon direction, the medium is isotropic, otherwise the medium is anisotropic. The 
source of advective–diffusive transport may be a point source (for example, garbage 
disposal sites, mines, etc.), or line source (for example, interface of sea water in 
aquifer), or surface source (for example, along agriculture field with high doses of 
chemical fertilizers) [7].

A point source may be of continuous type or pulse type. In either case, the point 
source may be uniform or of varying nature. In the presence of the source of pol-
lution, the input concentration may be uniform or of increasing nature. As soon as 
the source of pollution is eliminated, the input concentration becomes zero or starts 
decreasing. Solution of a dispersion problem for a pulse type point source is use-
ful in predicting the rehabilitation time period of a polluted domain once its source 
is eliminated. Smokes coming out of a chimney, wastes from a drainage system 
reaching a particular location in rivers, lakes, etc. are examples of uniform pulse-
type point sources. As soon as the source is eliminated, the input becomes zero. 
Infiltration from surface point sources reaches groundwater level or oil reservoirs, 
degrading their quality (an example of varying pulse-type point source). As soon as 
the source is eliminated, the input starts decreasing, instead of becoming zero. The 
pollutant’s solute transport from a source along the flow field through a medium of 
air or soil or water is described by a partial differential equation of parabolic type 
derived on the principle of conservation of mass, and is known as the advection–dif-
fusion equation, also written as ADE in abbreviated form [8–11].

This chapter discusses various diffusive processes, develops the ADE equation 
and illustrates the use of this equation with fractional derivatives and skewness 
parameter for wound healing, and ionic diffusion of nitrogen phosphorus potassium 
(NPK) release from coated fertilizer granules.

1.2 � Diffusive Processes

There are a number of processes which are intimately connected with the diffu-
sion processes. These are Brownian motion, chemotaxis, osmosis, random walk. 
We briefly describe these processes in this section.
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1.2.1 � Brownian Motion

In the early 1800s, Robert Brown a botanist, studied pollen samples with a mi-
croscope and noted that the pollen grains exhibited movement. The phenomenon 
recorded by Brown is known as the Brownian motion. In essence, all atoms, ions, 
and molecules are in constant random motion, even those within a solid. The 
molecular motion in solids is not very much; the molecules simply vibrate in 
place. This movement is due to the collision of invisible water molecules with 
those particles. For example, a sphere of 1 μm in diameter in air is subjected to 
1016 collisions per second. The distance of the particle from its initial position in-
creases with time, although at any given moment the displacement may be either 
forward or backward with equal probability. This result was derived by Einstein 
in 1906. The diffusion coefficient ( D) for a spherical particle in a liquid is related 
to its root mean squared displacement ( xrms) from the initial position at time t by 
x Dtrms = 2 . Suspended particles undergo Brownian motion and so these particles 
tend to move from regions of high concentration to ones with low concentration 
(diffusion) and this makes the concentration of suspended particles uniform over 
a long time.

1.2.2 � Diffusion

Diffusion is the passage of particles from a region of higher concentration to a 
region of lower concentration. Unless physically blocked, diffusion will always 
occur. More technically, diffusion can be defined by chemical potential. Chemi-
cal potential is the measure of free energy available to do work to move a mole of 
particles from one location to another. Another way of stating diffusion is molecu-
lar movement from regions of higher chemical potential to areas of less chemical 
potential.

A continuous time stochastic process with (almost surely) continuous sample 
paths having the Markovian property is called diffusion. The simplest and most 
fundamental diffusion process is Brownian motion B( t) (which is sometimes called 
the Wiener process W( t)). B( t) is Brownian motion if it is a diffusion process satisfy-
ing (i) B( ) ( ),0 0=  (ii) expected value of variance B t( ) ,= 0  variance 2( ) ,B t tσ= ×   
(iii) B( t) has stationary, independent increments.

1.2.3 � Chemotaxis

Chemotaxis is the process where cells, bacteria, and other single-cell or multicel-
lular organisms direct their movements according to certain chemicals in their en-
vironment. This is important for bacteria to find food by moving towards the high-
est concentration of food or to go away from harmful molecules. In multicellular 
organisms, chemotaxis is crucial for early and subsequent phases of development as 
well as in normal function. Leukocytes in blood move towards a region of bacterial 
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infection. The movement is up a chemical gradient caused by infection. There are 
numerous examples in biology for this chemotactic movement. In diffusion, the 
movement is down a concentration gradient, while in chemotaxis the movement is 
up a concentration gradient.

1.2.4 � Osmosis

Osmosis is the movement of water molecules from a region of higher water poten-
tial to a region of lower water potential through a semipermeable membrane. Semi-
permeable membranes allow the passage of some materials but block the passage 
of others. Water potential is a measure of chemical potential of water molecules. 
Pure water under atmospheric pressure has potential zero. When solute is added 
to water, its potential becomes negative. The direction of water flow is then from 
greater water potential to less water potential, that is, from pure water side to the 
side with solutes.

Biological membranes in many cases are semipermeable allowing passage of 
some molecules/ions and blocking passage of others. Transport of molecules/ions 
across the membrane is controlled by many factors such as particle size (smaller-
sized molecules/ions have greater chance of crossing the membrane), concentration 
of molecules/ions (the more the concentration, the greater the chance), tempera-
ture (higher temperature gives higher energy to the molecules/ions for crossing the 
membrane), electrical charge, pressure on the particles.

The osmotic pressure ascribed to the suspended particles is given by 
pV RTz V z= , / ,where  is sufficiently large, z is gram molecule of a nonelectrolyte 
dissolved in a volume V  at temperature T  [12]. Suspended particles undergo ir-
regular movement on account of the molecular movement of the liquid according 
to molecular–kinetic theory of heat. The solvent exerts pressure on the suspended 
particles as given by:

p
RT

V

n

N

RT

V
C= = ,

�
(1.1)

where n  is the number of suspended particles present in volume V ,  N  is the 
actual number of molecules contained in a gram molecule, and C  is the concen-
tration. Let the suspended particles of spherical shape with average radius a  be 
in a liquid with viscosity , and ,Dµ  denotes the coefficient of diffusion of the 
suspended particles. As a result of diffusion, − ∂ ∂D C x( / )  particles pass across 
unit area in unit time, where D satisfies the diffusion equation. In dynamic equi-
librium D is given by:

1
.

6

RT
D

N aπ µ
=

�
(1.2)

N. Kumar and S. K. Basu
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1.2.5 � Random Walk

A drunken person comes out of a bar and takes discrete steps of equal lengths on the 
street in front of the bar. The person may take a step towards left or right randomly 
with equal probability. Decision for moving left or right is taken independently. The 
total number of different paths that a drunken person can take, given the condition 
that the first return be at the 2k th step is:

TP =
−
−







2 2 2

1k

k

k
.

�
(1.3)

The probability that the drunken man reaches the bar for the first time after 2k th  
steps is TP/ 22k . Given that the drunken man is at the bar at step 2k,  the probability 
that this is his first return visit is 1 2 1/ ( ).k −

Diffusion processes are intimately related to random walks. Let us consider the 
random walk on R (a set of real numbers). Let the initial position of a particle be 
x0 0= .  Tossing a fair coin, if we get heads then we set x xi i+ = −1 1 ,  otherwise we 
set x xi i+ = +1 1 .  This can be seen to be associated with a partial difference equa-
tion satisfied by the distributions of positions that the random walk passes at suc-
cessive time steps:

Prob[ Prob[ Prob[

Prob[

x k x k x k

x k

i i i

i

= − = = = −

+ = + −

− −

−

] ] { ]

]

1 1

1

1

2
1

1 2 ×× =−Prob[x ki 1 ]}.

This is a discrete diffusion process. The heat or diffusion equation

∂
∂

=
∂

∂
p x

t

p x

x
t t( ) ( )

( )

2

22�
(1.4)

causes suitable functions from R to R to evolve as a function of time [13]. The op-
erator ∂ ∂2 22/ ( )x  is the infinitesimal generator of one-dimensional Brownian mo-
tion. If p x0 ( )  is a density function, the distribution p xt ( )  obtained by solving the 
heat equation is also the probability density of the Brownian motion witnessed at 
time t, if its position at zero time was chosen according to the density p x0 ( ).  Thus, 
Brownian motions are related to continuous time diffusions.

1.3 � Advection–Diffusion Equation (ADE)

Let us consider a small cubical element of volume dxdydz of sides, 
PQ dx PS dy dz= = =, , ,PA  surrounding a position P x y z( , , )  in a Cartesian 
three-dimensional frame of reference as shown in Fig. 1.1 in a moving fluid contain-
ing solute. Let the concentration of solute at this position be denoted by c x y z( , , ). 

1  Diffusive Processes and Modelling: An Introduction�
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Solute mass entering the elemental volume through the face PADS is J dydz Jx x, ,  
is the flux along the x-axis. Solute mass leaving the elemental volume through the 
face QBCR is J dydzx dx( ) .+  Net gain inside the elemental volume along the x-axis is:

dydz J J dydz J J dxJ dxdydz J xx x dx x x x x( ) [ ( )] ( / ).( )− = − + +… = −∂ ∂+
′

In the Taylor series expansion, the infinite series is truncated after the 
first order derivative term. Similarly, that along the y - and z -axes are 
dxdydz J y dxdydz J zy z( / ) ( / ),−∂ ∂ −∂ ∂, and  respectively. Total gain inside the el-
emental volume is:

−
∂
∂

+
∂
∂

+
∂
∂







dxdydz

J

x

J

y

J

z
x y z .

By Fick’s first law of diffusion, the flux Jx
 is proportional to the concentration 

gradient, J c xx ∝ − ∂ ∂( / ),  where negative sign occurs because the positive x -axis 
direction is from higher concentration to lower concentration. Similarly, we have in 
the other two directions, J c y J c zy z∝ − ∂ ∂ ∝ − ∂ ∂( / ) ( / ),and  respectively. The dif-
fusive current densities J J J Jdiff x y z( , , ) and convective current density Jconv through 
the elemental volume are given as follows:

J D
c

x
J D

c

y
J D

c

z
J vcx x y y z z conv= −

∂
∂

= −
∂
∂

= −
∂
∂

=; ; ,.and
�

(1.5)

respectively, where Dx ,  Dy ,  Dz
 are the proportionality constants, known as dif-

fusion or dispersion parameters along the x -, y -, and z -axes, respectively and 

Fig. 1.1   Mass gain inside an elementary volume
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v u v w( , , )  is the flow velocity. Total current density through the elemental volume 
is given by:

J J Jdiff conv= + .
�

(1.6)

According to conservation of mass, net rate of change of solute mass inside the 
elemental volume is equal to the net gain in the mass inside the volume, that is:

dxdydz
C

t
dxdydz

J

x

J

y

J

z
x y z∂

∂
= −

∂
∂

+
∂
∂

+
∂
∂







�
(1.7)

or
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
C

t

J

x

J

y

J

z
x y z 0.

�
(1.8)

Using the appropriate expressions from above, we have:

�
(1.9)

Equation 1.9 is known as the ADE in general form in three dimensions. The coef-
ficients D D Dx y z, , ,and  may be the function of position, time as well as concen-
tration. If it is not so, then these components are called dispersion coefficients. In 
case any one of the six coefficients is function of independent variables, the partial 
differential equation (Eq. 1.9) remains linear. In case any one of the coefficients de-
pends upon the dependent variable, c,  the partial differential equation is nonlinear. 
If the velocity depends upon time at a particular position, it is said to be unsteady 
or temporally dependent. If it varies with position at a particular time, the velocity 
is said to be nonuniform or spatially dependent. If the medium is porous, velocity 
vector v  in the ADE satisfies Darcy’s law. If the medium is not porous, it satisfies 
the laminar conditions of flow. In case all the coefficients in Eq. 1.9 are constants, 
the ADE becomes:

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

c

t
D

c

x
D

c

y
D

c

z
u

c

x
v

c

y
w

c

zx y z

2

2

2

2

2

2 .
�

(1.10)

The advection–diffusion Eq.  1.9 in one dimension along the x -axis, in general 
form, may be written as:

0 1 0 2 1 2

1
( , ) ( , ) ,e

e

nc S c
D f x t u f x t c c

t n t x x
µ µ−∂ ∂ ∂ ∂ + = − − +  ∂ ∂ ∂ ∂�

(1.11)

where c  is the solute concentration at a position x  at time t,  in liquid/air phase 
of the medium, S  is the adsorbed concentration on the solid matrix of the porous 
medium, D0  represents the solute diffusivity parameter, u0  is the velocity of the 

∂
∂

=
∂
∂

∂
∂







+
∂
∂

∂
∂







+
∂
∂

∂
∂







−
∂
∂

c

t x
D

c

x y
D

c

y z
D

c

z x
ux y z ( cc

y
vc

z
wc) ( ) ( ).−

∂
∂

−
∂
∂
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medium transporting the solute particles, ne
 is the porosity of the medium. The first 

and second terms on the left hand side represent the rate of change in concentration 
in the elementary volume of the liquid and solid phases, respectively, and the terms 
on the right hand side represent transport due to diffusion, that due to advection, 
decay in concentration of first order, and growth in concentration in liquid phase 
of zero order, respectively. The two concentrations c  and S  may be related by an 
isotherm:

S k c k pp= + =1 2 1, , represents a linear isotherm.� (1.12)

The partial differential equation (1.11) is of parabolic type [14]. To solve it analyti-
cally or numerically three conditions are required. The partial derivative with re-
spect to the time variable is of first order, so we need only one condition in the time 
domain, which is defined at only one point of the time domain. Hence, it is called an 
initial condition. It may be of homogeneous or nonhomogeneous types. The condi-
tion is defined usually at t = 0 . If it is of homogeneous type, it means the domain is 
initially solute free; otherwise the domain is not solute free. The partial differential 
Eq. 1.11 has second-order derivative in space variable, so two conditions in the x −
domain are needed to get the particular solution. Both the conditions are usually 
defined at two different points, hence are termed as the boundary conditions. The 
first condition is usually introduced at the origin, x = 0  of the domain. This condi-
tion is called input condition. It is of first type (solution type) and of inhomogeneous 
nature in case the input is of uniform nature. The input condition may be of continu-
ous nature or of pulse type. It is of the third type (mixed type) in case the input is of 
varying nature. In the uniform pulse-type input, the input concentration at the origin 
of the domain is considered uniform up to certain time period, beyond which it is 
assumed zero. It may also happen that the source of the input remains uniform up to 
certain time and after its elimination forever, the input concentration becomes zero. 
Such situations occur in the case of pollution sources in air and surface water bod-
ies. The smoke coming out of a chimney may be uniform up to certain time, but as 
soon as the source of the smoke stops working, the input becomes zero. It may also 
happen that the input increases in a certain time domain due to a variety of reasons 
and once the source is eliminated, the input starts decreasing instead of becoming 
zero at once. This type of input source may occur in groundwater reservoirs, whose 
source of pollution is on the earth’s surface and the pollutants infiltrate through the 
soil to reach the groundwater. This situation may be described by varying pulse-
type input. The second boundary condition is introduced at the other end of the 
domain. It may be of the first, second (flux type), or of the third type.

The term ‘free-boundary value problem’ is commonly used when the boundary is 
stationary. Moving boundaries, on the other hand, are associated with time-depen-
dent problems and the position of the boundary has to be determined as a function 
of time and space. Moving boundary problems are often called Stefan problems, 
with reference to the early work of J. Stefan who, around 1890, was interested in 
the melting of the polar ice cap [15]. Alloy solidification problems differ from the 
classical Stefan problems in that the melting temperature is not known in advance; 

N. Kumar and S. K. Basu



9

it depends on the composition of the alloy. Typically, an alloy is considered to com-
prise a pure substance containing small concentrations of one or more impurities. 
The solidification of an alloy calls for a simultaneous study of the processes of the 
heat flow and the diffusion of impurities.

1.3.1 � Transformation Equations

To solve the ADE with constant coefficients, some transformations are used. Mov-
ing coordinate transformation equations

X x ut T t= − =,� (1.13)

reduce the one-dimensional advection–diffusion equation

∂
∂

=
∂
∂

−
∂
∂

c

t
D

c

x
u

c

xx

2

2
�

(1.14)

into the diffusion equation

∂
∂

=
∂
∂

K

T
D

K

Xx

2

2 .
�

(1.15)

where K X T( , )  is the new dependent variable in the new space and time variables. 
The same diffusion equation in the same independent variables may also be ob-
tained by applying another transformation

c x t K x t
ux

D

u t

D
( , ) ( , ) exp ,= −





2 4

2

�
(1.16)

on the ADE (Eq.  1.14). A transformation X x tλ= −  (similar to that given in 
Eq. 1.13) reduces the ADE (Eq. 1.14) into an ordinary differential equation [16]

2

2 ( ) 0.x

d c dc
D u

dXdX
λ− − =

�
(1.17)

A transformation known as similarity transformation

X
x

t
=

�
(1.18)

reduces the diffusion equation (Eq. 1.15) into an ordinary differential equation

D
d K

dX
X

dK

dXx

2

2 0+ =
�

(1.19)
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for D Dx y= , the two-dimensional diffusion equation in Cartesian system of coor-
dinates

∂
∂

=
∂
∂

+
∂
∂







c

t
D

c

x

c

y

2

2

2

2

�
(1.20)

reduces into the radially symmetric polar system

∂
∂

=
∂
∂

+
∂
∂







c

t
D

c

r r

c

r

2

2

1

�
(1.21)

by using the transformation x y r2 2 2+ = . Similarly, a transformation 
x y z r2 2 2 2+ + =  reduces the three-dimensional diffusion equation

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂







c

t
D

c

x

c

y

c

z

2

2

2

2

2

2

�
(1.22)

into radially symmetric diffusion equation in spherical system of coordinates

∂
∂

=
∂
∂

+
∂
∂







c

t
D

c

r r

c

r

2

2

2

�
(1.23)

A new independent variable X  is introduced, using an operator:

∂
∂

=
∂
∂

−
X

f x t
x

f x t1 2( , ) ( , ).
�

(1.24)

Operating it on a dependent variable ,φ  we get a linear first order partial differential 
equation as:

1 2( , ) ( , ) .f x t f x t
x X

φ φ φ∂ ∂
− =

∂ ∂�
(1.25)

It is equivalent to a system of three ordinary differential equations:

1 2

.
( , ) 1 ( , )

dx dX d

f x t f x t

φ
= =

−�
(1.26)

One solution of it is:

X
dx

f x t

dX

dx f x t
= − = −∫

1 1

1

( , ) ( , )
.or

�
(1.27)

Introduction of this transformation with a suitable form of f x t1( , )  helps to reduce 
the variable coefficients of ADE (Eq. 1.3) into constant coefficients; hence enables 
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us to use the Laplace integral transformation technique (LITT), which is the sim-
plest and most useful among the analytical methods being used. The transformation 
may be modified according to the need, for example, negative sign may be omitted 
[17–18].

In another diffusive process, known as chemotaxis in which the mass movement 
is from lower concentration towards higher concentration, the flux components in 
Eq. 1.5 will be positive, and may be referred to as chemotactic flux. Hence, the 
mass conservation Eq. 1.15, in the presence of both diffusion and chemotaxis, may 
be derived as:

2 2

2 2 ,x x

c c c
D

t x x
ρ∂ ∂ ∂

= −
∂ ∂ ∂� (1.28)

where the dependent variable c  and the coefficient xρ  may be termed as the cell 
density and chemotactic coefficient, respectively.

1.3.2 � Dispersion Theories

There are three theories which relate the dispersivity and velocity parameters oc-
curring as the two coefficients in the one-dimensional ADE (Eq. 1.11), mostly ap-
plicable in porous medium. These are as follows:

i.	 Ebach and White [19], Bear [8] in their one-dimensional analysis suggested that 
D is proportional to u.

ii.	 Taylor [20] in his one-dimensional analysis obtained D proportional to u2 . 
Scheidegger [21] summarized his analysis on the two possible relationships 
between D  and u  according to the role played by molecular diffusion: (a) 

2 ,D uα≈  where ,α  a constant of the porous medium alone (dynamic disper-
sivity), is derived by a dynamic procedure applicable if there is enough time 
in each flow channel for appreciable mixing to take place by molecular trans-
verse diffusion; (b) ,D uβ≈  where ,β  another constant of the porous medium 
(geometric dispersivity), is derived by a geometric procedure applicable where 
there is no appreciable molecular transverse diffusion from one streamline into 
another. Thus, in all the models in which the combined effect of a velocity distri-
bution across a channel and transverse molecular diffusion are considered [20], 
the coefficient of dispersion is proportional to u2 .  Disregarding molecular dif-
fusion for the situation where only mean motion in a channel is considered and 
mixing occurs at junctions connecting different channels, one obtains D u≈ . 
Later, Freeze and Cherry [22] modified these dispersion theories and considered 
dispersion parameter proportional to the velocity raised to a power n, where n 
ranges between 1 and 2.

iii.	 According to Matheron and de-Marsily [23], some large subsurface formations 
exhibit variable dispersivity properties described by a variable D as a function 
of position or time variables, while the flow domain remains uniform. Such 

1  Diffusive Processes and Modelling: An Introduction�



12

variations may be caused, for example, by multiple length scales in these for-
mations. Such formations are often modelled by a scale-dependent dispersion 
coefficient in the diffusive flux term in the transport equation. This theory was 
fully supported in the later works [23–26].

1.3.3 � Why Modelling?

The idea of simulating real system or process on a computer rapidly spread among 
researchers since 1960s. It is accepted as one of the powerful tools for understand-
ing processes and systems for predicting functional or operative conditions. The 
standard approach is numerically solving a mathematical model that governs a cho-
sen process or system. Generally, the analytical solution is not known or difficult 
to reach for such situations. Solving mathematical models strongly depends on the 
used computational techniques and resources.

Shannon defined model as a representation of an object, a system, or an idea in 
some form other than that of the entity itself. We generally distinguish between two 
types of models: physical such as scale models, prototype plants, etc., and math-
ematical models such as partial differential equations (PDE), queuing models, etc. 
Simulation of a system is the operation of a model, which is a representation of 
that system. The model is amenable to manipulation which would be impossible, 
too expensive, or too impractical to perform on the system which it portrays. The 
operation of the model can be studied, and, from this, properties concerning the be-
haviour of the actual system can be inferred. Simulation is imitation of the operation 
of a real-world process or system over time. It generates an artificial history of a 
system; based on the observation of that artificial history, inferences concerning the 
operating characteristics of the real system can be drawn. A simulation can be only 
as good as the simulation model is. A simulation model makes a set of assumptions 
concerning the operation of the system and is expressed as mathematical, logical, or 
symbolic expressions between the entities (objects of interest) of the system. From 
the simulation, data are collected as if a real system was being observed. There are 
many applications such as designing and analysing manufacturing systems, deter-
mining ordering policies for an inventory system, designing communications sys-
tems and message protocols, drug design, analysing financial systems, and many 
more.

1.3.4 � Review of Modelling Efforts in Diffusive Processes

Pollutants originating from a variety of natural and anthropogenic sources (volcano, 
industries, factories, refineries, sewage system, garbage disposal sites, mines, etc.) 
are major causes of degradation of the environment, air, surface water, soil and 
groundwater. Mathematical modellers use the ADE to describe the concentration 
levels at different positions and time, away from its source, through its analytical 
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and numerical solutions. It is possible to solve this equation analytically only in 
some particular cases. In a more general situation, numerical techniques are re-
quired. A number of analytical methods are reviewed in [27]. Most of the analyti-
cal solutions for advective–diffusive transport problems in ideal conditions with 
growth and decay terms, subject to various initial and boundary conditions in semi-
infinite or finite media have been compiled in [28–30].

The mechanisms of solute transport and reaction have been studied for many 
years, and a wide variety of numerical techniques have been developed and success-
fully applied in many settings. Most of these studies are based on the application 
of the advection–dispersion–reaction equation (ADRE). Many researchers, recog-
nizing the importance of appropriately treating the hyperbolic part of the ADRE, 
have utilized various types of characteristic-based solution techniques that do not 
suffer from nonphysical behaviour such as oscillations at the sharp fronts [31–34]. 
The two-dimensional multispecies reactive transport in saturated and unsaturated 
porous media was simulated using Eulerian–Lagrangian localized adjoint methods 
(ELLAM) [35]. Its applicability and efficiency were assessed by comparing the 
results with those obtained using a numerical model based on the combination of 
discontinuous Galerkin and multipoint flux approximation methods.

Following the theories in [20–22] relating D  and u  in one-dimensional ADE, 
the number of mass transport studies has increased considerably. Many such mod-
els concern homogeneous media, but in reality the ability of the mass to permeate 
though the medium of air, soil or groundwater varies with position, which is re-
ferred to as heterogeneity. Early efforts to describe heterogeneity were achieved by 
making use of stratification and defining porosity–distance relationship [36–40]. In 
the former situation, the larger number of layers makes it difficult to get the desired 
analytical solution. In the latter situation, a numerical method is the only option to 
deal with the dispersion problems with most of the porosity–distance relationships. 
Later scale-dependent dispersion has been attributed to heterogeneity. According to 
the theory [41], some large subsurface heterogeneous formations exhibit variable 
dispersivity as a function of position or time variable. Based on such observations, 
analytical solutions to solute transport problems in a semi-infinite medium were ob-
tained [42–45], where the dispersion parameter depends on distance and increases 
up a limited value. In the third problem, first order reaction coefficient was con-
sidered space dependent in the one-dimensional transport of solute through soil. 
Later an integral expression for a similar problem without using the modified Bes-
sel functions was proposed [45]. Other authors have used simplified one- and two-
dimensional models that incorporate variable coefficients to some extent [46–49].

A numerical ADE model with a hyperbolic asymptotic distance-dependent func-
tion (HAD) for the dispersion coefficient was proposed and used [50–51]. In a latter 
study, HAD is adopted and incorporated into the general ADE for describing scale-
dependent solute transport in porous media. The problem is solved analytically by 
applying extended power series method coupled with Laplace transform. The quad-
rupole method was implemented in order to simulate the effects of heterogeneities 
on one-dimensional ADE of a passive solute in porous media [52]. Exact solu-
tions of the linear advection–diffusion transport equation with constant and variable 
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coefficients with different forms for both, transient and steady-state regimes was 
presented by Guerrero and colleagues [27] by using the generalized integral trans-
form technique (GITT). In approximate solutions [53–54], a time-dependent dis-
persion coefficient was used. Usually, solute transport models assume a constant 
dispersion coefficient that is calibrated separately for each different downstream 
sample location, resulting in different dispersion coefficients for the same flow 
problem. In an attempt to overcome this, the dispersion coefficient as a function of 
the mean travel distance was used successfully [55]. Another approach is to model 
dispersivity as a time-dependent function. Based on the numerical results [56], dis-
persivity has been suggested to have a time-dependent behaviour which reaches 
asymptotic values after a long time. Analytical solution for time-varying dispersion 
coefficients have been presented in one dimension [57–58], in two dimensions [59–
60], and in three dimensions [61–62]. Presently, the fractional advection–diffusion 
equation (FADE) is being used to model anomalous transport [63–66].

The importance of ADE is not confined to hydrology and soil sciences only. It 
has equal importance in other fields as well, some of which are mentioned below:

i.	 Petroleum engineering: Displacement of oil with gas; petroleum and natural gas 
production [67].

ii.	 Chemical engineering: Flow in packed columns involving chemical reactions or 
separation of chemical components; pore diffusion of gases, chromatography, 
ion-exchange [68–69].

iii.	 Modelling of flood waves: Modelling of flood waves in free-flowing rivers, 
which are more commonly bulk waves. Ferrick [70] classified these waves into 
(a) diffusion wave and (b) kinetic wave. A diffusion wave is governed by ADE 
(Eq. 1.11), where dependent variable, c  may be replaced by a suitable variable 
y  representing depth of flow; u =  wave celerity ; D =  diffusion coefficient. 
In case, ( / ) ( / )∂ ∂ ≈ ∂ ∂ >2 2 0 1y x y xbut  but, Eq. 1.11 reduces to kinetic wave 
governed by the kinetic equation [71]. It is to be noted that presence of ( / )∂ ∂y x  
is responsible of inducing diffusion, thus leading to attenuation of a flood wave.

iv.	 Wound Healing: In case of dermal wound, the variables in ADE (Eq. 1.11) will 
be: c =  cell density, or chemical concentration at position x, and time t , u = 
convection due to formation of extra cellular matrix (ECM). Readers can find 
mathematical models using ADE for wound healing in [72–73].

1.4 � Adevection-Diffusion with Fractional Derivatives

In order to simulate the memory formalism [74], the partial differential equation of 
fractional order space derivatives may be more useful. Skewness in diffusion may 
also be considered through a suitable parameter. For example, in wound-healing 
process, the density of cells and the chemical concentration at the centre and at 
a position close to the centre of the wound are decided by those at the preceding 
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adjacent position towards the wound margin. Also, a cell may take a skewed path 
instead of curvilinear path, and it may be captured through a distinct parameter. 
Following the work in [75–80], we may use fractional order derivative in place of 
integer order derivative as:

1 1

1 1

2 1

2 1

1 1

2 2( ) ( )

1 1 ( )
So

2 2 ( ) ( )( ) ( )

x x x

d x

x d xx x x

α α

α α

α α

α α

β β

β β

− −

− −

−

−

 ∂ + ∂ − ∂
≈ − ∂ ∂ ∂ − 

 ∂ + ∂ − ∂ ∂ −
≈ − ∂ −∂ ∂ ∂ − �

(1.29)
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2 2( ) ( )x x x

α α
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β β ∂ + ∂ − ∂

≈ + ∂ ∂ ∂ − �
(1.30)

where α is the fractional order of the derivative, and β  is the skewness param-
eter. For the nth integer order, α  is in the range 1 . For 2 and 0n nα α β− ≤ ≤ = =  
(no skewness), approximation sign (≈) may be replaced by equality sign. As α  
decreases from 2, the Leύy probability distribution (LPD) deviates from the Gauss-
ian distribution and the tail of the Leύy distribution becomes heavier. If β  is less 
than zero, the dispersion is skewed backward representing a slowly evolving con-
taminant plume followed by a heavy tail. For β  greater than zero, the dispersion is 
skewed forward describing a fast evolving contaminant plume followed by a light 
tail. Many other works on space-fractional partial differential equations refer to 
the same equation with minor changes. The finite difference approximations of the 
fractional order derivatives [81–82] are:
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(1.31)

where ( 1)
,

( 1) ( 1)kg
k k

α
α

Γ +
=

Γ + Γ − +
 Γ  is the gamma function, and h  is the uniform 

size of the intervals into which the spatial axis is divided.
The classical advection–diffusion equation is mathematically identical to the dif-

fusion equation with drift, and furthermore, the same random walk model underlies 
both. The mean jump size determines the velocity v of the advective drift. This con-
nection between random walk and diffusion is due to Einstein. When the variance 
of the particle jumps is infinite, the resulting plume follows a stable concentration 
curve, the solution to an ADE with space derivatives having fractional order. This 
plume has skewness and a power law leading edge. Random waiting times do not 
affect the eventual shape of the plume as long as the waiting times have finite mean. 
When the mean waiting time is infinite, the time derivative has fractional order in 
the ADE.
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1.4.1 � Application of Fractional Order Derivative 
in Wound Healing

We demonstrate the effect of fractional order space derivative and skewness pa-
rameter on the dependent variable of the ADE. For this, we consider the problem of 
epidermal wound healing. The epidermal wound area is assumed to be circular. The 
healing takes place due to convective and diffusive cell migration. The source is at 
the boundary of the circular wound region. The growth factors (chemicals) infuse 
inside the wound region, as a result of which one annular domain, ECM scaffolding, 
takes place adjacent to the wound boundary. The convection is due to movement 
of the ECM front towards the centre. As the wound is supposed to be confined to 
epidermis, the role of blood vessels, oxygen, chemotaxis, etc. is not taken into ac-
count. The production term in the convective diffusive equation is assumed to be a 
function of chemical concentration, while that in the diffusive equation is supposed 
to be a function of cell density. The loss terms in both the equations are supposed to 
depend upon the respective dependent variables. The partial differential equations 
for the diffusion of chemicals (concentration c ) and the cells (density n) in polar 
coordinate system and in nondimensional form are

2

1 22 ( ) ( ) ( ), 1 0,c c n

c c D c
D f c f n f c R

T R RR
λ µ∂ ∂ ∂

= + + − > >
∂ ∂∂�

(1.32)

and

�
(1.33)

The nondimensional variables used in above equations are (the asterisks are omitted 
in the PDEs):

* * 2
0 0 0 0 0 0 0

* 2 * 2 * 2 * 2
0 0 0 0

/ , / , / , / , / , / ,

/ , / , / , / ,
n n c n

n n n c c n n n n c c n

n n n c c c R r a T D t a Pe au D D D D

a D a D a D a Dλ λ λ λ µ µ µ µ
= = = = = =

= = = =

where n0 is the cell density at the unwounded state, c0
 is the chemical concentra-

tion at a position adjacent to the wound boundary just after the inflammatory phase 
(which is at t0 ), D Dc n0 0and  are the uniform diffusion parameters of chemicals and 
the cells, λ  and µ  with appropriately suffixed, are scalars controlling the produc-
tion and the loss of cell density and growth factor, respectively, r  is the radial direc-
tion from the centre ( r = 0 ) towards the boundary ( r a= ) of the circular wound 
of radius a. Cell density and chemical concentration inside the wound region are 
zero just after the occurrence of wound ( )t = 0 . At the boundary, cell density is the 
same as if there was no wound. As soon as the wound has occurred, chemicals start 
infusing inside the region, its level being the maximum adjacent to the boundary 
by the end of the inflammatory phase. With the progress in the healing process, 

2

3 42

1
( ) ( ) ( ), 1 0.n n n

n n n n
Pe Pe f n f c f n R

T R R RR
λ µ∂ ∂ ∂ = − − − + − > >  ∂ ∂∂
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chemical concentration level lowers down at the boundary and at the interior posi-
tions. The input chemical concentration is formulated in this way. At the other end 
(at the centre), the gradients in both the concentrations will be zero. During the time 
0 0< <t t , chemical concentration level at the boundary attains a value higher than 
c0 . This chemical concentration (growth factors) is instrumental in the formation of 
ECM front near the boundary and its movement towards the centre of the wound 
area. Thus, the initial and boundary conditions for both the partial differential equa-
tions may be written as:

n R c R R( , ) ; ( , ) ; ,0 0 0 0 1 0= = > ≥� (1.34)

n T c T T T T( , ) ; ( , ) exp( / ); ,1 1 1 1 00= = − >� (1.35)

∂
∂

=
∂
∂

= = ≥
n

R

c

R
R T0 0 0 0; , ; ,at

�
(1.36)

where T0
 is the nondimensional form of t0

. We assume that f cc ( )  in Eq. 1.32 in-
creases as c c→ 0 ,  and also f nn ( )  in Eq. 1.33 increases as n n→ 0 .  The functions 
in production and loss terms of both the Eqs. 1.32 and 1.33 are assumed to be of in-
creasing nature. An exponential function is a general form to represent the changes; 
as it may be reduced to linear, quadratic, or other higher degree expressions under 
different approximations as required in modelling of many natural processes. Since 
the nondimensional dependent variables ( )n c,  in our model are always in the range 
0–1, this limits the rapid growth of exponential functions. We consider:

f n
n n

f n n f c c

f c
c c

f c

n

c

( ) , ( ) exp( ), ( ) ,

( ) , ( ) exp(

=
−

= =

=
−

=

1

1
0

1 2

0
3and cc f n n), ( ) .4 =

To demonstrate the effects of fractional order derivative (α ) and skewness (β ) on 
the dependent variable, we performed computational experiments to study the two 
effects on the cell migration from the wound boundary towards its centre in the 
domain ( a r≥ ≥ 0 ). The integer order space derivatives in Eqs. 1.32 and 1.33 are 
replaced by fractional order derivatives as in Eqs. 1.29 and 1.30. Their approxima-
tions are used from Eq. 1.31. The input values are chosen as: wound radius a = 1 0.  
cm, cell density at unwounded state n0 1 0= . ,  chemical concentration at the end of 
inflammatory phase c0 1 0= . ,  convective velocity u0 0 00001= .  cm/day, prolifera-
tion period t* = 21  days, inflammatory period, t0 3 5= .  days, all the λs, and µ s, 
are assigned a uniform value 0 001 1. (day) ,−  as this is our baseline model, the uni-
form step sizes along the R − and T − axes are chosen as h T= =0 1 0 0001. , .∆  re-
spectively, satisfying the stability criterion. The diffusion coefficient values for the 
cell and the chemical concentration are taken from some of the works cited above. 
Biologically plausible values of Dn0

 are in the range 3 5 10 6 9 1011 9. .× ×− −to cm /sec2

[83], depending upon the type of the cell. Higher value of Dn0
75 10= × − cm /sec2  
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has been considered elsewhere [84]. The value of diffusion coefficient for chemi-
cal concentration (growth factors) is suggested to be higher than that of the cells. 
We have used Dn0

90 0005 100000 5 0 10= ≈ ≈ × −0.0005cm /day cm /sec,2 2. / .  and 
0.0005 cm2/day. The effect of the fractional order α  is studied for 1.85α = , 1.75, 
and 1.5 and is shown in Fig. 1.2. As the order of the space derivative approaches 
2 (LPD is closer to the Gaussian distribution), wound at a particular position is 
healed in a better way. This trend is not observed in the vicinity of the wound 
boundary (where cell density is 1.0). This is because we have considered an ideal 
situation by assuming cell diffusion and convective parameters uniform. In the real 
situation, both will depend upon chemical concentration; in a recent work (to be 
communicated soon) we have not found this reversal. The effect of skewness on the 
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Fig. 1.2   a Effect of fractional order of space derivatives on cell migration. b Effect of skewness 
parameter on cell migration
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cell density is studied by performing the simulations for 0.95, 0.5, 0.95,β = − − +  
and is shown in Fig. 1.3. It may be observed that the cell density has higher val-
ues in the backward skewness domain ( 1 0)β− ≤ ≤  compared with those in the 
forward skewness domain (0 1).β≤ ≤  This effect of β  is indistinguishable close 
to the wound boundary, whereas it is pronounced towards the centre of the wound 
region. The reversal in this trend near the wound boundary is due to the same reason 
stated above.

1.5 � Ionic Diffusion

We illustrate ionic diffusion with the example of NPK release from coated fertilizer 
granules. Let us consider a spherical coated fertilizer granule which contains three 
types of nutrients, one is a nonelectrolyte, other is a weak electrolyte, and the third 
is a strong electrolyte, the diffusion pattern of all of these three substances are dif-
ferent. The unsteady diffusion equations in a spherical domain for the two species, 
ions and molecules of a weak electrolyte may be written as [85]:

∂
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=
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∂
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respectively, where k  is the rate of formation of the molecules (the dimmers), 
C C1 2and  are the concentrations; D D1 2and  are the diffusion coefficients of the 
ions and the molecules, respectively. The diffusing coefficient of the ions is ex-
pressed in terms of diffusion coefficients of both the ions as:

D
z z

z

D

z

D

c a

a

c

c

a

1 =
+

+
.

�

(1.39)

In the case of a non 1-1 electrolyte, where z zc aand  are the ionic charges; 
D Dc aand  are the diffusion coefficients, of the cation and anion, respectively. In 
the case of a 1-1 electrolyte, where z zc a= , we have:

D

D Dc a

1

2
1 1

=
+

.

�

(1.40)
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Fig. 1.3   a Effect of surface contact area on release time with pH. b Effect of association constant 
of electrolyte nutrient on release time with pH
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In an isodesmic model [85]

C KC2 1
2= ,� (1.41)

where K  is an association constant for the diffusing species, which is independent 
of the size of the aggregate. The total concentration, Cw  for weak electrolyte may 
be written [85] as:

C C Cw = +1 22 .� (1.42)

Using these equations the diffusion equation in terms of one dependent variable, C1
 

may be written as:
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This is a nonlinear partial differential equation. It suggests strong dependence of the 
apparent diffusion coefficient of the diffusing substance on the ionic or molecular 
concentration due to significant interactions among the diffusing species. The lin-
ear diffusion equation for a nonelectrolytic substance for diffusion parameter, i.e. 
D C D( ) = , in spherical coordinate system may be written as:
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A strong 1-1 electrolyte ionizes completely producing equal number of cations and 
anions. Although the concentrations of cations and anions Cc

and Ca ,  respectively, 
may vary through the solution, the concentrations and the concentration gradients of 
these species are equal everywhere because of electro-neutrality, that is:

C C C Cc a c a= ∇ = ∇and .� (1.45)

In the case of strong non 1-1 electrolyte, constraints on the concentration and flux 
at zero current are:

z C z C z C z Cc c a a c c a a+ = ∇ + ∇ =0 0and .� (1.46)

In the case of 1-1 electrolyte, z zc a= − .  The total concentration of strong electro-
lyte, Cs

 is

C C z C zs c a a c= =/ / .
�

(1.47)

The diffusion equation of a strong electrolyte is
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where the diffusion coefficient, Ds
 has either of the two expressions of Eq. 1.39 

or Eq. 1.40, depending on whether the electrolyte is a non 1-1 or a 1-1 electrolyte. 
The diffusion equation for a nonelectrolyte is the same as Eq. 1.44 with appropriate 
meaning of the variables.

Diffusion coefficients of cation and anion depend upon the pH of the soil water. 
As a result, release time of an electrolytic nutrient depends upon pH. The authors 
have studied the effects of different parameters such as radius of the granule, its 
surface area in contact with the soil determined by h,  association constant ( ),K  pH 
on the release time in their recent work [86]. The two figures from this work are be-
ing given here as Figs. 1.3a and 1.3b for the readers understanding about the ionic 
diffusion. In Fig. 1.3a. h = 1  represents the basal form of granule application (the 
granule is totally below the soil surface); hence, the release time is the minimum, 
while h = 120  corresponds to the almost point contact of the granule with the soil.

1.6 � Summary

Diffusion is not confined to a particular discipline. Its various forms in different 
disciplines are explained. The derivation of advection–diffusion equation describ-
ing the mass transport through a medium is given. Its forms in different coordinate 
systems are also given. Different transformations being used by various workers in 
a variety of disciplines are mentioned. How the heterogeneity of the medium and 
unsteadiness of advection are addressed by the two parameters of the ADE for reac-
tive and nonreactive solute mass, using the different dispersion theories with dif-
ferent analytical and numerical methods are explained. Most importantly, the effect 
of fractional order space derivative with skewness on the mass transport, have been 
explained through the wound healing problem. Lastly, the effect of ionic diffusion 
on the controlled release of nutrients from a coated spherical fertilizer granule is 
given.
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