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Chapter 1
Introduction

Analog-to-digital converter developments are driven by the increasing demand for
signal bandwidth and dynamic range in applications such as medical imaging,
high-definition video processing and, in particular, wireline and wireless commu-
nications. Figure 1.1 shows a block diagram of a basic wireless receiver. It has
three main building blocks: an RF front-end, an analog-to-digital converter (ADC)
and a digital baseband processor. The role of the RF front-end is to filter, amplify
the signals present at the antenna input and down-convert them to baseband. The
ADC samples and digitizes the analog signals at the output of the RF front-
end and outputs the results to the baseband processor. To achieve high data
rates, wireless standards rely on advanced digital modulation techniques that can
be advantageously implemented in baseband processors fabricated in nanometer-
CMOS, which also motivates the development of ADCs in these technologies.

In modern wireless applications such as digital FM and LTE-advanced, the ADC
receives a signal whose bandwidth can be as large as 100 MHz [1-3]. A wideband
ADC which can capture such signals simplifies the design of the RF front-end, since
the channel selection filters can then be implemented in the baseband processor.
However, due to the limited filtering characteristic of the RF front-end, large
unwanted signals (blockers) are often present at the input of the ADC. Therefore, the
ADC should have a high dynamic range, often more than 70 dB. Wide bandwidth
and high dynamic range (DR) are thus important attributes of ADCs intended for
high data-rate next-generation wireless applications.

Practically, Nyquist ADCs have been preferred for applications which target wide
bandwidth, since the sampling frequency ( f;) only has to be slightly higher than
2 x BW, where BW is the bandwidth of the desired signal. A plot of dynamic
range vs. bandwidth for various state-of-the-art ADCs with energy efficiency less
than 1pJ/conv.-step. is shown in Fig.1.2. As can be seen, many Nyquist ADCs
achieve both wide bandwidths and high DR. A Nyquist ADC requires an input
sampling circuit which is often implemented with a switched-capacitor network.
Achieving high DR, then requires low thermal noise, which in turn, leads to a large
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Fig. 1.1 A basic block diagram of a wireless receiver
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Fig. 1.2 Dynamic range vs. bandwidth of state-of-the-art ADCs with power efficiency less than
1 pJ/conv.-step. The high speed CTAX ADCs implemented in nm-CMOS that have recently gained
popularity are included to emphasize the developments in oversampled converters [5]

input capacitance. However, this must be preceded by an anti-aliasing filter and an
input buffer capable of driving a large capacitance, which increases the complexity
and power of the RF front-end.

Oversampled converters are very well suited for applications which require high
dynamic range. In particular, a delta-sigma modulator (AXM), which trades time
resolution for amplitude resolution, can achieve a high dynamic range with very
good power efficiency (Fig. 1.2). The AXM is one of the most promising converter
architectures for exploiting the speed advantage of CMOS process technology.
However, achieving a wide bandwidth with a AXM requires a high-speed sampling
frequency due to the large OSR (f; = 2 x OSR x BW, where OSR is the
oversampling ratio). The stability and power efficiency of the modulator at a high
sampling rate, together with achieving a high dynamic range at the low supply
voltages required by the nanometer-CMOS fabrication process, are important
challenges that face the next generation of oversampled converters.
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This book focuses on the design of wide-bandwidth and high dynamic range
AXMs that can bridge the bandwidth gap between Nyquist and oversampled
converters. More specifically, this book describes the stability, the power efficiency
and the linearity limits of AXMs aiming at a GHz sampling frequency.

1.1 Trends in Wide Bandwidth and High Dynamic
Range ADCs

As shown in Fig. 1.2, Nyquist ADCs based on the pipeline architecture have
achieved sampling speeds of up to 125 MHz and dynamic ranges greater than 70 dB
in standard CMOS [6-8]. To achieve higher sampling rates, a Bi-CMOS or SiGe
Bi-CMOS process can be used at the cost of higher power consumption due to their
higher supply voltages (1.8-3.0V) [9, 10]. A further drawback of pipeline ADCs is
that they typically rely on high-gain wideband residue amplifiers and/or complex
calibration techniques to reduce gain errors [7-9], thus increasing their area and
complexity.

Recently, Nyquist ADCs based on the successive approximation register (SAR)
architecture have achieved signal bandwidths of up to 50 MHz with 56-65dB DR
and excellent power efficiency (<80 fJ/conv.-step) [11-14]. Greater bandwidth can
be achieved by using time-interleaving. However, the linearity of time-interleaved
SAR ADCs is limited by gain, offset, and timing errors and so such ADCs also
require extensive calibration [15]. Furthermore, time interleaving increases input
capacitance and chip area, and thus places more demands on the input buffer [16].

By contrast, CTAX ADCs can have a simple resistive input that does not require
the use of a power-hungry input buffer or an anti-aliasing filter, which further relaxes
the requirements of the RF front-end. When implemented in CMOS, such ADCs
have achieved signal bandwidths of up to 25 MHz with a 70-80 dB dynamic range
and good power efficiency (<350 fJ/conv.-step) [17-19]. Typical CTA X modulators
employ a high-order loop filter with a multi-bit quantizer, which, for a 20 MHz
bandwidth, require sampling frequencies of 0.5-1 GHz to achieve more than 70 dB
of dynamic range. Assuming that the sampling frequency is proportional to the
bandwidth, sampling frequencies of 2.5-5GHz will be then required to achieve
bandwidths greater than 100 MHz. However, at GHz sampling rates, parasitic poles
and quantizer latency can easily cause modulator instability.

CTAX modulators with signal bandwidths up to 20-25 MHz have been imple-
mented in 90-130nm CMOS. The switching speed of an NMOS transistor in 45 nm
CMOS is approximately 1.6x faster than in 90 nm CMOS and 2.7x faster than in
130nm CMOS[20]. Implementing a AX modulator in 45nm LP CMOS is thus
advantageous for circuits such as quantizers and DACs whose delay is important
for stability. However, the dynamic range of circuits in 45nm CMOS is limited
by the low intrinsic gain and poor matching of the transistors [21, 22]. The low
operating supply (1.1-1.0 V) furthermore implies that cascaded stages are required
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to make gain in blocks such as an OTA or a quantizer. Therefore, the intrinsic
speed of 45nm LP CMOS cannot be fully utilized. To realize CTA Y modulators
with bandwidths greater than 100 MHz in CMOS, innovations are still required
at the system-level design. A comparison of ADC architectures targeting wide
bandwidth (BW > 100 MHz) and high dynamic range (DR > 70dB) is presented
in Appendix A.

1.2 Motivation and Objectives

The AXM is an architecture which trades time resolution (signal bandwidth) for
amplitude resolution, or in other words, dynamic range. Wide bandwidth and high
dynamic range AXMs have received much attention since every new generation of
CMOS process technology brings a speed advantage.' The fundamental limitations
of a single-loop CTAX modulator targeting a wide bandwidth and a high dynamic
range define the scope of this book.

The aim of the research described in this book is to develop a wideband,
high dynamic range AXM which demonstrates that an oversampled converter can
also cover the application space where Nyquist ADCs are currently preferred.
Furthermore, such a AXM should also achieve state-of-the-art power efficiency.
This quest is achieved by tackling the research question both at the system and
circuit level.

A AXM is a non-linear system, and often the design trade-offs are hidden
behind complex system-level simulations. Therefore, system-level understanding
of the modulator is required to find architectural solutions. The stability of a AXM
is a very important aspect of its design. As the sampling speed of the modulator
increases to achieve more bandwidth, second order effects such as the limited unity
gain bandwidth of amplifiers and the limited switching speed of the transistors start
effecting the modulator’s stability. One of the main research goals of this book is to
find system level solutions that enable the design of a wide bandwidth, high dynamic
range modulator with state-of-the-art power efficiency.

Theoretically, it is possible to design a stable AXM for any given specifica-
tion [30]. However, practical limitations at the circuit level define the possible
solutions that can be implemented. For example, the limited speed of the transistors
introduces excess loop delay (ELD) which degrades the stability of the modulator,
and at GHz sampling frequencies, ELD limits the performance. Such practical
limitations might be solved by dissipating more power, although this does not prove
that a stable AXM with desired specifications can be implemented. As a second
objective of this book, we explore the circuit-level design techniques to assist
the proposed system-level design solutions and push the design boundary of the
oversampled converters in terms of dynamic range, bandwidth, linearity, and power
efficiency.

'Recently, high speed CTAY. ADCs implemented in nm-CMOS have gained popularity [23-29].
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To demonstrate the feasibility of the ideas and approaches presented in this book,
we have designed and implemented a CTAY with a bandwidth (BW) greater than
100 MHz and a dynamic range above 70 dB in nm-CMOS. This is achieved by using
a low oversampling ratio and multi-bit architecture. The performance of a multi-
bit CTAX is often limited by the dynamic errors at GHz sampling rates, and the
correction/calibration techniques that are applicable are bounded by the stability
requirements. To overcome these limitations, we have implemented a dynamic error
correction technique which not only experimentally quantifies the level of dynamic
errors but also improves the dynamic performance of the modulator.

1.3 Organization of the Book

Chapter 2 starts with a brief description of an ideal single-loop AXM. The
building blocks of the modulator are analyzed and their characteristic properties
are discussed to provide a basic understanding of the modulator’s operation. The
stability of the AXM is discussed and the relation between this and the main
building blocks is presented. Moreover, this chapter discusses the system-level
non-idealities in a AXM such as noise, nonlinearity, metastability and ELD. The
understanding of the system-level non-idealities is especially important to achieve
the optimum performance for a given A XM architecture.

Chapter 3 focuses on the design of CTAX modulators aiming at GHz sampling
frequencies. The system-level non-idealities discussed in Chap.2 pose a major
limitation at these frequencies, and limit the possible architectural implementations.
In this chapter, we present the system-level trade-offs in a single-loop AXM
and propose a 3™ order multi-bit AXM which can achieve an 80dB signal-
to-quantization noise ratio (SQNR) in a 125MHz BW with a sampling rate of
4 GHz. Mitigating ELD and metastability are crucial to meet the target sampling
rate, therefore we present a high speed modulator architecture which overcomes
the limitation of the summation amplifier present in high speed modulators, and
improves its power efficiency. Furthermore, we present the block-level design
requirements of the proposed architecture. Each building block is analyzed based
on its most important non-ideality and block-level specifications are listed.

Chapter 4 describes the implementation details of a 4 GHz CTAX ADC which
uses the high-speed modulator architecture proposed in Chap.3. The ADC is
implemented in 45 nm-LP CMOS and achieves a 70dB DR and —74 dBFS total
harmonic distortion (THD) in a 125MHz BW. Since the clocking scheme of
the quantizer and feedback DACs is crucially important for the stability of the
modulator, this chapter presents a detailed timing diagram of the modulator. The
implemented ADC is characterized by using a custom measurement setup, and
the detailed measurement results are presented particularly focusing on the jitter
performance of the ADC.

Chapter 5 explains a 2 GHz CTAX ADC where dynamic errors of its multi-
bit digital-to-analog converter (DAC) are masked by using an error switching
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(ES) scheme at the virtual ground node of the first integrator. This technique
prevents the loop filter from processing the dynamic errors in the feedback DAC
and improves the signal-to-noise ratio (SNR), signal-to-noise-and-distortion ratio
(SNDR), and THD of the modulator. This chapter also explains the design and
implementation of a multi-mode version of the high-speed architecture presented
in Chap. 4. Furthermore, a high-speed error sampling switch driver is discussed and
detailed measurement results are presented.

Finally, Chap. 6 concludes this work and suggests future research directions

based on the insight gained during this research.

References

1.

10.

11.

12.

13.

14.

15.

16.

L. Breems, R. Rutten, R. van Veldhoven, G. van der Weide, A 56 mW continuous-time
quadrature cascaded XA modulator with 77dB DR in a near zero-IF 20 MHz band. IEEE
J. Solid-State Circuits 42(12), 2696-2705 (2007)

. S. Abeta, Toward LTE commercial launch and future plan for LTE enhancements (LTE-

advanced), in 2010 IEEE International Conference on Communication Systems (ICCS),
Singapore, Nov 2010, pp. 146-150

. S. Parkvall, A. Furuskiir, E. Dahlman, Evolution of LTE toward IMT-advanced. IEEE Commun.

Mag. 49(2), 84-91 (2011)

. M. Bolatkale, L. Breems, R. Rutten, K. Makinwa, A 4GHz CT AX ADC with 70dB DR

and —74dBFS THD in 125MHz BW, in IEEE International Solid-State Circuits Conference.
Digest of Technical Papers (ISSCC 2011), San Francisco, Feb 2011, pp. 470-472

. B. Murmann, ADC Performance Survey 1997-2012 [Online]. Available: http://www.stanford.

edu/~murmann/adcsurvey.html

. B.-G. Lee, B.-M. Min, G. Manganaro, J. Valvano, A 14-b 100-MS/s pipelined ADC with a

merged SHA and first MDAC. IEEE J. Solid-State Circuits 43(12), 2613-2619 (2008)

. H. Van de Vel et al., A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC in

90-nm CMOS. IEEE J. Solid-State Circuits 44(4), 1047-1056 (2009)

. S. Devarajan et al., A 16-bit, 125 MS/s, 385 mW, 78.7dB SNR CMOS pipeline ADC. IEEE J.

Solid-State Circuits 44(12), 3305 (2009)

. A. Alietal., A 16-bit 250-MS/s IF sampling pipelined ADC with background calibration. IEEE

J. Solid-State Circuits 45(12), 2602-2612 (2010)

R. Payne et al., A 16-Bit 100 to 160 MS/s SiGe BiCMOS pipelined ADC with 100 dBFS
SFDR. IEEE J. Solid-State Circuits 45(12), 2613-2622 (2010)

C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic
capacitor switching procedure. IEEE J. Solid-State Circuits 45(4), 731-740 (2010)

C. Lee, M. Flynn, A 12b 50MS/s 3.5mW SAR assisted 2-stage pipeline ADC, in 2010 IEEE
Symposium on VLSI Circuits (VLSIC), Honolulu, June 2010, pp. 239-240

Y. Zhu et al., A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State
Circuits 45(6), 1111-1121 (2010)

M. Yoshioka, K. Ishikawa, T. Takayama, S. Tsukamoto, A 10b 50MS/s 820 uW SAR ADC
with on-chip digital calibration, in I[EEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC 2010), San Francisco, Feb 2010, pp. 384-385

S. Louwsma, A. van Tuijl, M. Vertregt, B. Nauta, A 1.35GS/s, 10b, 175 mW time-interleaved
AD converter in 0.13 um CMOS. IEEE J. Solid-State Circuits 43(4), 778-786 (2008)

B. Ginsburg, A. Chandrakasan, Highly interleaved 5-bit, 250-MSample/s, 1.2-mW ADC with
redundant channels in 65-nm CMOS. IEEE J. Solid-State Circuits 43(12), 2641-2650 (2008)


http://www.stanford.edu/~murmann/adcsurvey.html
http://www.stanford.edu/~murmann/adcsurvey.html

References 7

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

G. Mitteregger et al., A 20-mW 640-MHz CMOS continuous-time ADC with 20-MHz signal
bandwidth, 80-dB dynamic range and 12-bit ENOB. IEEE J. Solid-State Circuits 41(12),
2641-2649 (2006)

M. Park, M. Perrott, A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time AYX ADC
with VCO-based integrator and quantizer implemented in 0.13 um CMOS. IEEE J. Solid-State
Circuits 44(12), 3344-3358 (2009)

J. Kauffman, P. Witte, J. Becker, M. Ortmanns, An 8mW 50MS/s CTA ¥ modulator with 81dB
SFDR and digital background DAC linearization, in /EEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC 2011), San Francisco, Feb 2011, pp. 472474
International Technology Roadmap for Semiconsuctors (ITRS) 2001, 2003, 2007, 2009
Editions. Available: http://www.itrs.net/reports.html. [Online]

M. Pelgrom, H. Tuinhout, M. Vertregt, Transistor matching in analog CMOS applications, in
International Electron Devices Meeting. Technical Digest (IEDM °98), San Francisco, Dec
1998

M. Vertregt, The analog challenge of nanometer CMOS, in International Electron Devices
Meeting (IEDM ’06), San Francisco, Dec 2006

J. Harrison et al., An LC bandpass AX ADC with 70dB SNDR over 20MHz bandwidth using
CMOS DAGCs, in IEEE International Solid-State Circuits Conference. Digest of Technical
Papers (ISSCC 2012), San Francisco, Feb 2012, pp. 146147

J. Chae, H. Jeong, G. Manganaro, M. Flynn, A 12mW low-power continuous-time bandpass
AY with 58dB SNDR and 24MHz bandwidth at 200MHz IF, in [EEE International Solid-
State Circuits Conference. Digest of Technical Papers (ISSCC 2012), San Francisco, Feb 2012,
pp. 148-149

H. Shibata et al., A DC-to-1GHz tunable RF A ¥ ADC achieving DR=74dB and BW=150MHz
at fo=450MHz using 550mW, in IEEE International Solid-State Circuits Conference. Digest
of Technical Papers (ISSCC 2012), San Francisco, Feb 2012, pp. 150-151

K. Reddy et al., A 16mW 78dB-SNDR 10MHz-BW CT-AX ADC using residue-canceling
VCO-based quantizer, in IEEE International Solid-State Circuits Conference . Digest of
Technical Papers (ISSCC 2012), San Francisco, Feb 2012, pp. 152-153

P. Witte et al., A 72dB-DR AX¥ CT modulator using digitally estimated auxiliary DAC
linearization achieving 88fJ/conv in a 25MHz BW, in IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (ISSCC 2012), San Francisco, Feb 2012, pp. 154155
P. Shettigar, S. Pavan, A 15mW 3.6GS/s CT-AX ADC with 36MHz bandwidth and 83 DR
in 90nm CMOS, in IEEE International Solid-State Circuits Conference. Digest of Technical
Papers (ISSCC 2012), San Francisco, Feb 2012, pp. 156-157

V. Srinivasan et al., A 20mW 61dB SNDR (60MHz BW) 1b 3"-order continuous-time
bandpass delta-sigma modulator clocked at 6GHz in 45nm CMOS, in IEEE International
Solid-State Circuits Conference. Digest of Technical Papers (ISSCC 2012), San Francisco, Feb
2012, pp. 158-159

S. Norsworthy, R. Schreier, G. Temes, Delta-Sigma Data Converters (Theory, Design, and
Simulation) (Wiley, New York, 1996)


http://www.itrs.net/reports.html

