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Preface

This book stems from the author’s interest in and experience of using computing 
technology in K-12 mathematics teacher education. In particular, two decades of 
teaching prospective secondary mathematics teachers in technology-rich environ-
ments have led the author to believe that one of the most productive ways to teach 
mathematics in the digital era is through experimentation with mathematical con-
cepts that takes advantage of computers’ capability to plot sophisticated graphs, 
construct dynamic geometric shapes, generate interactive arrays of numbers, and 
perform symbolic computations. Whereas the notion of experiment in mathemat-
ics has several meanings (Baker 2008; Van Bendegem 1998), assigning the adjec-
tive computational to the word experiment implies that the meaning of the latter is 
narrowed down to the use of electronic computers as the means of mathematical 
experimentation.

The book utilizes a number of commonly available computer applications that 
allow for lucid presentation of advanced, though grade-appropriate, mathematical 
ideas. One application is the Graphing Calculator 4.0 produced by Pacific Tech 
(Avitzur 2001) that facilitates experimentation in algebra through the software’s 
capability of constructing graphs from any two-variable equation, inequality, or 
a combination of those. Another application is an electronic spreadsheet used to 
support numerical experimentation, in particular, when carrying out probability 
simulations and modeling elementary number theory concepts. The book also takes 
advantage of Maple (Char et al. 1991) and Wolfram Alpha developed by Wolfram 
Research—software tools that allow for different types of experimentation with 
mathematical concepts, including the construction of graphs of functions and rela-
tions and carrying out complicated symbolic computations. Also, the book uses 
The Geometer’s Sketchpad (GSP) created by Nicholas Jackiw in the late 1980s. 
Yet this dynamic geometry program is used more as a technical tool rather than as 
an experimental device. This lesser focus on experimentation with GSP is due to 
the book’s stronger focus on algebra in comparison to geometry. Nevertheless, the 
idea of geometrization of algebraic concepts is one of the major mathematical ideas 
used in the book.

Throughout the book, a number of the modern day secondary mathematics ed-
ucation documents developed throughout the world are reviewed as appropriate. 
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These include Common Core State Standards (2010) for mathematical practice and 
the Conference Board of the Mathematical Sciences1 (2001, 2012) recommenda-
tions for the preparation of mathematics teachers—the United States (the context 
in which the author prepares teachers); National mathematics curriculum (National 
Curriculum Board 2008)—Australia; Ontario mathematics curriculum (Ontario 
Ministry of Education 2005) and British Columbia mathematics curriculum (West-
ern and Northern Canadian Protocol 2008)—Canada; Programs of mathematics 
study (Department for Education 2013a, b)—England; A secondary school teaching 
guide for the study of mathematics (Takahashi et al. 2006)—Japan; and Secondary 
mathematics syllabi (Ministry of Education, Singapore 2006)—Singapore.

The book consists of eight chapters. The first chapter provides theoretical under-
pinning of computational experiment approach to advanced secondary mathematics 
curriculum. In the focus are mathematics education research publications that started 
appearing in the second half of the twentieth century with the advent of computers 
as tools for the teaching of mathematics. The role of mathematics education reform 
in bringing computers first to the undergraduate level and gradually extending their 
use to include experimentation at the primary level is highlighted. Several theo-
retical frameworks leading to the development of the notion of technology-enabled 
mathematics pedagogy referred to as TEMP throughout the book are discussed. It 
is suggested that TEMP can become a major pillar of modern signature pedagogy 
of mathematics as it can focus on the unity of computational experiment and formal 
mathematical demonstration. The relationship between technology-enabled experi-
ment and solution-enabled experiment is introduced as a structure that makes com-
putational experiment a meaning making process. It is shown how visual imagery 
can support deductive reasoning leading to an error-free computational experiment.

One of the major differences between TEMP and a mathematics pedagogy (MP) 
that does not incorporate technology pertains to the interplay between mathemati-
cal content under study and the scope of student population to which this content 
can be made available. Whereas many problems discussed in the book under the 
umbrella of TEMP are fairly complex, using technology as a support system makes 
it possible to develop mathematical insight, facilitate conjecturing, and illuminate 
plausible problem-solving approaches to those problems. To a certain extent, the 
use of TEMP may be comparable to the use of computers in the modern day inves-
tigation of dynamical systems allowing one to carry out numeric/symbolic com-
putations and graphical constructions not possible otherwise, yet being critical for 
understanding the behavior of those systems. In comparison with MP which, in 
particular, lacks empirical support for conjectures, using TEMP has great potential 
to engage a much broader student population in significant mathematical explora-
tions. TEMP provides teachers with tools and ideas conducive to engaging students 
in the project-based, exploratory learning of mathematics by dividing a project in 
several stages—empirical, speculative, formal, and reflective. Even if TEMP helps 

1  The Conference Board of the Mathematical Sciences is an umbrella organization 
consisting of 16 professional societies in the United States.
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a student to reach the level of conjecturing without being able to proceed to the next 
level, its use appears to be justified.

The second chapter is devoted to the use of computational experiment as sup-
port system for solving one-variable equations and inequalities. The importance 
of revealing the meaning of problem-solving techniques frequently considered as 
“tricks” by students and their teachers alike is emphasized. It is demonstrated how 
technology can be used as an agency for mathematical activities associated with for-
mal demonstration of theoretical concepts that underpin commonly used algebraic 
techniques. The idea of parameterization of one-variable equations is explained 
through the lens of problem posing in the digital era, an approach conducive to the 
development of “mathematical reasoning and competence in solving increasingly 
sophisticated problems” (Department for Education 2013b, p. 1). Also, the chapter 
shows how through the integration of technology and historical perspectives the 
secondary mathematics content can be connected to its historical roots.

The third chapter is devoted to the study of quadratic equations and functions 
with parameters. Here, two methods of exploration made possible by computational 
experiment are discussed. One method deals with the possibility of transition from 
the traditional (x, y)-plane typically used to construct the graphs of functions to the 
(variable, parameter)-plane commonly referred to as the phase plane. Using the 
diagrams (loci) constructed in the phase plane, one can discern the most important 
information about a quadratic equation with a parameter, namely, the influence of 
the parameter on the solutions (roots) of the equation. Another method, in the case 
of equations with two parameters, deals with the qualitative study of solutions in 
the plane of parameters. It demonstrates how one can make a transition from rep-
resentations in the plane of variables to representations in the plane of parameters 
when investigating the properties of quadratic functions and associated equations 
depending on parameters. In particular, qualitative methods for deciding the loca-
tion of roots of quadratic equations with parameters about a point as well as about 
an interval are discussed. These methods make it possible to determine the location 
of the roots without finding their exact values. The need for such methods proved 
to be very useful in the context of the “S” and “E” components of STEM (science, 
technology, engineering, mathematics) where qualitative techniques are commonly 
used in exploring the corresponding mathematical models.

The fourth chapter is devoted to the systematic study of algebraic equations with 
parameters (including simultaneous equations) using the computationally support-
ed locus approach when explorations take place in the (variable, parameter)-plane. 
Here, the computational experiment approach is applied to “make use of structure” 
(Common Core State Standards 2010) of a complicated mathematical situation and 
to develop its deep understanding by using locus as a thinking device. In doing so, 
one can come across various extensions of the situation to include new concepts, 
representations, and lines of reasoning that connect different grade appropriate 
mathematical ideas. The notion of collateral learning in the spirit of Dewey (1938) 
is highlighted. In the case of two-variable simultaneous equations with parameters it 
is shown how the parameter can be given a proper geometric interpretation enabling 
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the computational experiment to be carried out in a two-dimensional context, that 
is, in the plane of variables.

Inequalities are the major means of investigation in mathematics, both pure and 
applied. The fifth chapter is devoted to the systematic study of inequalities, includ-
ing systems of inequalities, with parameters. In this context, it is demonstrated how 
computational experiment approach facilitates solving traditionally difficult prob-
lems not typically considered in the secondary school mathematics curriculum. The 
idea of extending an original exploration of an inequality with a parameter to allow 
for a deep inquiry into closely related ideas is discussed. One of the aspects associ-
ated with the dependence of solution to an inequality on a parameter is a possibility 
of using locus of an inequality with a parameter as a tool for posing one-variable 
inequalities with no parameter. In the digital era, such pedagogical perspective 
makes it possible to present problem solving and problem posing as two sides of the 
same coin. Also, the chapter focuses on the so-called technology-enabled/technol-
ogy-immune tasks in the sense that whereas technology may be used in support of 
problem solving, its direct application is not sufficient for achieving the end result. 
It is shown that such tasks can be developed in the context of inequalities with 
parameters. A point is made that the computational experiment approach may be 
inconclusive, thereby requiring an analytic clarification of the experiment to make 
sense of the structure of a situation. A two-dimensional sign-chart method that can 
be used for solving inequalities with parameters is presented. Finally, the applied 
character of problem-solving techniques developed for solving inequalities with 
parameters is illustrated through their application to quadratic equations when the 
location of roots about a given point can be determined without solving an equation.

Trigonometry is known as a subject matter of great importance for the study 
of engineering disciplines. The sixth chapter shows how concepts in trigonometry 
can be approached from a computational perspective. Here, a single trigonometric 
equation with parameters is used as a springboard into several geometric ideas, 
thereby, demonstrating a closed connection of the two contexts. Technology such 
as Wolfram Alpha with its own unique algorithm of solving trigonometric equa-
tions and inequalities is presented as an agent of rather sophisticated mathematical 
activities stemming from the need to justify the equivalence of different forms of 
solution expressed through inverse circular functions. Whereas in the presence of 
technology (including just a calculator) such equivalence can be easily established 
numerically, the appropriate use of technology should motivate learners of mathe-
matics to appreciate rigor and to enable the development of formal reasoning skills. 
Having experience with proving the equivalence of two solutions obtained through 
different methods can be construed as support system for research-like experience 
that prospective secondary mathematics teachers need for the successful teaching of 
the subject matter. This further provides experience with STEM-related techniques, 
something that can contribute to the efforts of introducing secondary mathematics 
teacher candidates and their future students alike to the ideas that develop the foun-
dation of engineering profession.

The seventh chapter deals with geometric probabilities. It shows how the computa-
tional experiment approach can work in calculating probabilities of events associated 
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with the behavior of solutions of algebraic equations with parameters. In particular, 
both theoretical and experimental probabilities are computed in the space of param-
eters and compared within a spreadsheet. Here, most of the explorations extend the 
ideas considered in the previous chapters and developed in the context of making a 
transition from the plane of variables to the plane of parameters. The material of this 
chapter is aimed at providing teacher candidates with experience important for ap-
plying mathematics to science and engineering the models of which typically depend 
on parameters. Whereas the construction of spreadsheet-based computational envi-
ronments for computing geometric probabilities experimentally does not require any 
mathematical or technological sophistication, the skills in using such environments 
are important for understanding how to do explorations of mathematical models in 
engineering and science.

The last chapter illustrates how the computational experiment approach can make 
concepts of number theory more accessible to prospective teachers and their stu-
dents alike. It provides a number of illustrations of using modern technology tools 
in exploring classic topics in elementary theory of numbers through a computational 
experiment. Here, one can learn how technology can be used to develop theoreti-
cal knowledge on the basis of a simple experiment so that, in turn, the knowledge 
so developed can inform and facilitate similar yet more complicated experiments. 
The chapter highlights the duality of computational experiment and formal dem-
onstration in the sense that whereas one needs theory to validate experimental re-
sults, once can benefit from computing when discovering and correcting unexpected 
flaws that theory may sometimes comprise. The chapter demonstrates how TEMP 
that encourages collateral learning can be brought to bear by emphasizing geometri-
zation of algebraic concepts and the appropriate use of digital tools. The deficiency 
of reasoning by induction in the context of basic summation formulas that can result 
in overgeneralization is discussed. The topic of Pythagorean triples is explored in 
depth using jointly a spreadsheet and Wolfram Alpha. Within this topic, it is demon-
strated how computational experiment approach can motivate mathematical insight 
and encourage natural curiosity of the learners of mathematics.
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1.1 � Introduction

This chapter provides theoretical underpinning of computational experiment ap-
proach to pre-college mathematics curriculum. It reviews mathematics education re-
search publications and (available in English) educational reform documents from 
Australia, Canada, England, Japan, Singapore and the United States related to the use 
of computers as tools for experimenting with mathematical ideas. The chapter links 
pioneering ideas by Euler about experimentation with mathematical ideas to the use 
of the word experiment in the modern context of pre-college mathematics curricula. 
It emphasizes the role of mathematics education reform in bringing computers first to 
the undergraduate level and gradually extending their use to include experimentation 
at the primary level. Several theoretical frameworks including signature pedagogy, 
Type I/Type II technology applications, parallel structures of teaching and learning, 
agent-consumer-amplifier framework, and collateral learning in the digital era are 
highlighted leading to the development of the notion of technology-enabled math-
ematics pedagogy (TEMP). One of the major characteristics of TEMP is its focus on 
the idea with ancient roots—the unity of computational experiment and formal math-
ematical demonstration. The relationship between technology-enabled experiment 
and solution-enabled experiment is introduced as a structure that makes computation-
al experiment a meaning making process. It will be demonstrated how visual imagery 
can support deductive reasoning leading to an error-free computational experiment.

1.2 � Experiment in Mathematics Education

In this book, the word experiment is connected to the use of electronic computers in 
the context of advanced secondary mathematics curriculum and, in particular, math-
ematics teacher education. These modern tools when used in mathematics instruc-
tion create and enhance conditions for one’s inquiry into mathematical structures, 
which may include interactive graphs, dynamic geometric shapes, and electroni-
cally generated and controlled arrays of numbers. That is, the modern experiment in 
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mathematics can be a computational one. In the context of mathematical education 
in general, a computational experiment approach to mathematics makes use of such 
computer-enabled experiments designed by a teacher and carried out by students, 
or jointly by teacher and students. Hereafter, the words teacher and student are un-
derstood broadly: the former is one who teaches and the latter is one who is taught. 
Because through such interaction, both parties can learn, the word learner will be 
applied to any individual engaged in the learning of mathematics.

Whereas the notion of experiment in the context of education has multiple mean-
ings, learning as the goal of experiment is what all the meanings have in common. In a 
seminal book on experiment in education, McCall (1923) recognized the power of ex-
periment as a milieu where “teachers join their pupils [i.e., students] in becoming ques-
tion askers” (p. 3). Similarly, about a century later, Hiebert et al. (2003) emphasized 
the importance for teachers to treat lessons as experiments towards the end “of mak-
ing some aspects of teachers’ routine, natural activity more systematic and intensive” 
(p. 207). In other words, by treating lessons as experiments, teachers, “by focusing 
attention on, and making more explicit, the process of forming and testing hypotheses” 
(ibid, p. 207), are expected to learn both about and from teaching. Mathematics is espe-
cially conducive to the development of an environment in which reflective inquiry—a 
problem-solving method that blurs the distinction between knowing and doing by in-
tegrating knowledge with experience (Dewey 1933)—is the major learning strategy.

There is an interesting connection between the notions of experiment in mathemat-
ics and experiment in education. This connection can be revealed through the concept 
of Latin square. The latter is a square matrix each row and column of which contains 
any element one and only one time (Fig. 1.1). Latin squares have been commonly 
utilized in the design of educational experiments (Fisher 1935; Campbell and Stanley 
1963) in different disciplines where it is required to construct a matrix under specific 
conditions on the location of its entries. For example, in the study by Gall et al. (1978) 
involving 12 teachers from 12 classrooms (experimental units), three recitation treat-
ments (Probing and Redirection, No Probing and Redirection, Filler Activity) and one 
control treatment (Art Activity) were arranged in three 4 4×  Latin squares (with each 
treatment, randomly assigned to the experimental units, appearing only once in a row 
and once in a column), provided that each teacher taught all four treatments. Another 
major application of Latin squares is in agriculture (Lakić 2001). Here, a field can 
be divided into sections and different seeds sown or treatments applied are recorded 
in the form of a Latin square with the goal to diminish the influence of other factors. 
In sum, Latin squares are great tools within which data can be conveniently stored, 
meaningfully observed, and appropriately analyzed.

Fig. 1.1   One out of 12 Latin 
squares of order 3
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In mathematics Latin squares were used by Euler, the great Swiss mathematician of 
the eighteenth century considered the father of all modern mathematics. In particular, 
Euler’s name is associated with the so-called Officers Problem of placing 36 officers 
of six ranks and six regiments in a Latin square so that no officer of the same rank or of 
the same regiment would be in the same row or in the same column (MacNeish 1922). 
In his insightful approaches to mathematics, especially to number theory, Euler em-
phasized the importance of observations and so-called quasi-experiments or thought 
processes (experiments) that stem from observations: “the properties of the numbers 
known today have been mostly discovered by observation, and discovered long before 
their truth has been confirmed by rigid demonstration” (Pólya 1954, p. 3; according to 
Lakatos (1976), Pólya, who made the translation, “mistakenly attributes the quotation 
to Euler” (p. 9) instead of crediting it to the Editor of Euler’s work). So, quite unex-
pectedly, a mathematical tool used by a pioneer of experimentation with mathematics, 
nowadays is utilized for the rigorous description of educational experiments.

The ideas about making numeric quasi-experiments as part of pre-college 
mathematics curricula with an emphasis on discovery learning, mathematical in-
vestigations, and drawing conclusions informed by inductive reasoning have begun 
gaining popularity around the world in the second part of the twentieth century. 
This is evidenced by a number of publications on and standards for mathemat-
ics teaching and learning (Cambridge Conference on School Mathematics 1963; 
Fletcher 1964; National Council of Teachers of Mathematics 1970, 1989; Peter-
son 1973; Wheeler 1967). According to Mason (2001), in England, this approach 
to mathematics can be traced back to the writings of Wallis1 (1685) who used 
the word investigation to refer to ‘my method of investigation’ which, however, 
when supported by (empirical) induction alone can lead to erroneous conjectures 
(see Chap. 8 for examples). Therefore, it has been cautioned, “we should take great 
care not to accept as true such properties of the numbers which we have discovered 
by observation and… should use such a discovery as an opportunity to investigate 
more exactly the properties discovered and to prove or disprove them; in both cases 
we may learn something useful” (Pólya 1954, p. 3). In that, the importance of theory 
that augments mathematical experimentation by appropriate demonstration and for-
mal justification was equally emphasized. Therefore, as an experiment provides 
basis for insight, one can conclude that observation is at the core of any experiment. 
By the same token, experiment leads to the development of theory, which, in turn, 
can inform experiment as its conditions grow in complexity. All this is true for a 
modern day computational experiment.

1.3 � Computational Experiment and its Validation

In education, any experiment can be associated with two types of validity: inter-
nal and external (Campbell and Stanley 1963). Internal validity of experiment is 
characterized by the basic set of skills and abilities without which any experiment 

1  John Wallis (1616–1703)—an English mathematician whose work, in particular, provided foun-
dation for the development of integral calculus.




