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PREFACE

The motion of individual active agents (like e.g. bacteria or ant
colonies, birds flocks, etc.) give rise to fascinating large scale col-
lective behaviours. How does this large-scale emerge from the small-
scale dynamics? How does the large-scale conditions influence the
dynamics of the individuals? There are many fundamental scientific
questions with important practical implications that have attracted
the attention of various scientific communities, ranging from logis-
tics, theoretical biology, ecology, statistical physics and mathematics.
On the one hand, one would like to understand the formation of large-
scale patterns in large colonies, this may be relevant to fisheries and
fishing strategies optimization. On the other hand, in crowded pedes-
trian flows, the behaviour of individuals display significant differences
from that of undisturbed free walking. Furthermore, when panic sit-
uations occur, small microscopic (i.e. individual-level) interactions
can amplify leading to macroscopic patterns (e.g. shock-like waves)
that can cause jamming during evacuation but also losses of human
lives.

Multiscale models in social applications combine mean-field and
kinetic equations with either microscopic or macroscopic level de-
scriptions. These are approaches of strongly increasing importance
with high potential for quantitative research. Typically, individual-
based models need to be accurately coarse-grained to translate the rel-
evant microstructure information to a mesoscopic (Boltzmann-level)
or to a macroscopic (continuum) level. Relevant questions include:
What is the natural scaling for the averaging? How much micro-
level information needs to be retained in order to capture the specific
individual-level interaction responsible for the formation and prop-
agation of the macroscopically-observed patterns (for instance, lane
formation in pedestrian counterflow). What are the main microscopic
interactions responsible for the macroscopic transport mechanism dis-
placing pedestrian flows?

Within this book an attempt is made to cover a limited number
of these questions with an eye on multidisciplinary approach to the
topics:

J.-A. Carrillo, Y.-P. Choi and M. Hauray focus on the deriva-
tion of mean-field models for swarming proving, by means of con-



verging Wasserstein distances of empirical measures, the discrete-to-
continuum passage from a first-order system of interacting particles
to a continuity-like equation with nonlocal kernel. Their technique is
applicable to a large class of first-order interaction models.

B. Maury treats hard congestions in models for crowd motion.
The hard-core part of the interactions naturally leads to non-smooth
evolution systems. The handling of the contacts translates here into
suitable (quasi-)variational inequalities. Rigorous numerics show that
such contacts can be quantitatively evaluated.

Pedestrians moving in the dark are modeled by A. Muntean, E.
Cirillo, O. Krehel, and M. Böhm in terms of Becker-Döring interac-
tion rules for two possible kinds of scenarios: (i) a continuum PDE
model in term of measures and (ii) a lattice automaton. They show
that adhering to large groups is not necessarily the right thing to do
if one wishes to find invisible exits.

S. Pigolotti, R. Benzi, M. Jensen, P. Perlekar, F. Toschi discuss
a model for stochastic competitions of biological species in space focus-
ing on how the macroscopic equations for individual species density
can be derived within the formalism of master equations.

F. Tesser and Ch. Doering review the non-equilibrium statisti-
cal mechanics models of reaction and interaction kinetics. Among
others, they show that traditional mean-field or ”mass-action” reac-
tion kinetics theories are useful but that there are also limits to their
validity.

A. Tosin reviews multiscale crowd dynamics scenarios posed in
terms of conservation laws for (discrete and absolutely continuous)
mass measures from a threefold perspective: modeling, solvability, and
approximation.

The multiscale nature of interacting particle systems gives rise
to many interesting and challenging mathematical problems. In this
book, the reader will find not only a wide spectrum of multiscale anal-
ysis results (like convergence proofs), but also practically important
information such as derivations of mean-field equations, methods to
handle hard contacts numerically, to model group behavior, to quan-
titative estimate microscopic/macroscopic segregation of competing
species, to quantitative understand the limits of validity of mass-
action kinetics for simple reactions.

Adrian Muntean and Federico Toschi
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The derivation of swarming models:
Mean-field limit and Wasserstein distances

José Antonio Carrillo†, Young-Pil Choi†, and Maxime Hauray‡
† Department of Mathematics, Imperial College London,

SW7 2AZ London, United Kingdom
‡ Centre de Mathématiques et Informatique, Université d’Aix-Marseille,

Technopôle Château-Gombert, Marseille, France

Abstract These notes are devoted to a summary on the mean-field
limit of large ensembles of interacting particles with applications in
swarming models. We first make a summary of the kinetic models
derived as continuum versions of second order models for swarm-
ing. We focus on the question of passing from the discrete to the
continuum model in the Dobrushin framework. We show how to
use related techniques from fluid mechanics equations applied to
first order models for swarming, also called the aggregation equa-
tion. We give qualitative bounds on the approximation of initial
data by particles to obtain the mean-field limit for radial singular
(at the origin) potentials up to the Newtonian singularity. We also
show the propagation of chaos for more restricted set of singular
potentials.

1 Introduction

In the last years, we have seen the development of a great deal of different
models in the biology, applied mathematics, and physics literature to de-
scribe the collective behavior of individuals. Here, individuals may mean
animals (insects, fish, birds,...), bacteria, and even robots. Most of these
models involve the nonlocal character of the interaction as a basic modelling
pillar, see for instance Camazine, Deneubourg, Franks, Sneyd, Theraulaz,
and Bonabeau (2003); Couzin, Krause, Franks, and Levin (2005); Li, Luke-
man, and Edelstein-Keshet (2008); Vicsek, Czirok, Ben-Jacob, Cohen, and
Shochet (1995). In fact, one of largest source of collective behavior models
comes from control engineering. There, the aim is to produce a suitable
control of the movement of small squads of robots in order to perform un-
manned vehicle operations, for instance Perea, Gómez, and Elosequi (2009).
These ideas even have been proposed to model crowd motion, including

A. Muntean, F. Toschi (Eds.), Collective Dynamics from Bacteria to Crowds, CISM International  
Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1785-9_1, © CISM, Udine 2014 



2 J.A. Carillo, Y.P. Choi and M. Hauray

more “intelligent” particles deciding their movement based on optimization
of certain quantities: time to exit from a room or a stadium, for instance
Burger, Markowich, and Pietschmann (2011).

Either in social or in biological sciences, these models encounter many
interesting features such as the spontaneous formation of different pattern
behaviors. When we talk about patterns, we do not mean static patterns
like in the study of crystals but rather dynamic patterns leading to the col-
lective motion of the individual ensemble. For instance, two of the main
collective motion patterns studied in different models are the flock and the
milling behavior, see D’Orsogna, Chuang, Bertozzi, and Chayes (2006); Car-
rillo, D’Orsogna, and Panferov (2009); Cañizo, Carrillo, and Rosado (2010);
Carrillo, Klar, Martin, and Tiwari (2010); Carrillo, Panferov, and Martin
(2013). In the flock pattern, individuals achieve a consensus on the direction
or orientation towards some objective, producing as a consequence a par-
ticular spatial shape showing their preferred comfort structure. This kind
of swiftly moving flocks have been reported in many species although the
most spectacular or bucolic ones are the bird flocks, starlings for instance.
In the mill pattern, individuals arrange into a kind of vortex like motion
around some point. This particular moving pattern has been observed in
fish schools. Hundreds of movies can be easily accessed through internet
search showing them.

There are many reasons one can argue, why such a large number of
individuals react to external stimuli producing these macroscopic patterns
without seemingly the presence of a leader in the swarm. Hydrodynamic en-
hancement, predators avoidance, social interactions, spawning survival rate,
and many others have been proposed to explain this behavior in different
species, see Parrish, and Edelstein-Keshet (1999).

One of the main question in describing this behavior by mathematical
models is how to include the interaction between individuals. In any case,
there is a consensus that the modelling starts from particle-like models as in
statistical physics. These particle models are also called Individual-Based
Models (IBMs) in the community. They are usually formed by a set of differ-
ential equations of Newton type (called 2nd order models) or by kinematic
equations where the inertia terms are neglected (called first order models).
Essentially, by assuming that the inertia term is negligible, we assume that
individuals can adjust to the velocity field instantaneously, an approxima-
tion valid when their speed is not too large. In any case, these first order
models were proposed in the literature derived in a phenomenological man-
ner; see Mogilner, Edelstein-Keshet, Bent, and Spiros (2003); Mogilner and
Edelstein-Keshet (1999); Parrish, and Edelstein-Keshet (1999); Topaz and
Bertozzi (2004); Topaz, Bertozzi, and Lewis (2006); Eftimie, de Vries, and
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Lewis (2007). The literature on first and second order models for swarm-
ing has increased exponentially fast in the last few years. Many of these
models find also their origin in social sciences, where consensus or opinion
formation was also described in similar grounds. Another typical ingredient
in these models is some kind of noise leading to systems of SDEs. In this
work, we will not discuss how to incorporate noise in these models, we refer
to Bolley, Cañizo, and Carrillo (2011) and the references therein.

Most of these models are based on discrete approaches incorporating cer-
tain effects that we like to call the “first principles” of swarming. These first
principles are based on modelling the “sociological behavior” of animals with
very simple rules such as the social tendency to produce grouping (attrac-
tion/aggregation), the inherent minimal space they need to move without
problems and feel comfortably inside the group (repulsion/collisional avoid-
ance) and the mimetic adaptation or synchronization to a group (orienta-
tion/alignment). Even if these minimal models contain very basic rules, the
patterns observed in their simulation and their complex asymptotic behavior
are already very challenging from the mathematical viewpoint. The 3-zone
models including attraction, repulsion, and alignment effects are classical in
fish modelling; see Aoki (1982); Huth and Wissel (1992) for instance. Based
on them, one can incorporate may other effects to render more realistic the
outputs of the simulations and the models, see Barbaro, Taylor, Trethewey,
Youseff, and Birnir (2009) for fish schools or Hemelrijk and Hildenbrandt
(2008) for birds flocks. We also refer to the reader to the recent review
Carrillo, Fornasier, Toscani, and Vecil (2010) about the kinetic modelling
of swarming.

To the eyes of a kinetic theorist or a statistical physicist, studying such
systems of ODEs when the number of individuals becomes large is doomed
to fail. Dynamical system approaches are quite useful but they typically
have huge problems to describe large systems of particles. A classical ap-
proach to attack the problem is to pass to a continuous description of the
system. This means to go from particle descriptions to kinetic descriptions
where the unknown is the particle density distribution in position-velocity
(phase) space for 2nd order models or in position space for 1st order models.

Going from particle to continuum descriptions is one of the most clas-
sical problems in kinetic theory. It is at the basis of the derivation of the
mother and father kinetic equations, namely: the Vlasov and the Boltz-
mann equations. A rigorous derivation of the Boltzmann equation from the
Newtonian dynamics has only been given for short times (of the order of the
average time of first collision), see Lanford (1974) Gallagher, St-Raymond,
and Texier (2012). In that case, interactions between the particles are mod-
elled by short-range potentials leading to collision kernels. The question
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of the derivation of the Boltzmann equation from particles with jump pro-
cesses was also raised and solved by Kac (1956), and further results are
given in the recent important work by Mischler and Mouhot (2013). The
derivation of the Vlasov equation is well understood only for regular or
not too singular potentials; see Braun and Hepp (1977); Neunzert (1984);
Dobrushin (1979); Hauray and Jabin (2012). In fact, a full derivation of
the Vlasov-Poisson system in 3D is also lacking. The problem of passing
to the limit from particle to continuum models like the Vlasov equation is
called the mean-field limit. This name just comes from the fact that the
resulting equation is a kind of averaged version of the interaction between
the large number of individuals. Moreover, the resulting equation gives the
typical behavior of one isolated individual among all the others since they
are assumed to be completely indistinguishable.

Finally, there are other famous mean-field limit equations, such as the
Euler and the Navier-Stokes equations for incompressible fluids, see Mar-
chioro and Pulvirenti (1994); Majda and Bertozzi (2002). It has been exten-
sively used for numerical purposes that both equations in the 2D incompress-
ible case can be derived from particle approximations, called vortex point
approximations. The convergence in the viscous case has been rigorously
proved for very general initial data; see Osada (1985); Founier, Hauray, and
Mischler (2012). In the non-viscous case Schochet (1996) proves that par-
ticle approximations converge towards solutions of the Euler equation, but
they may not converge to the good solution because of the lack of uniqueness
in the Euler equation, see De Lellis and L. Székelyhidi (2009). However, in
the case where the initial particles are equally spaced on a grid to approxi-
mate a smooth solution of the Euler equation, the convergence was shown in
Goodman, Hou, and Lowengrub (1990). These vortex methods have been
proven to be convergent and estimates of the error committed have been ob-
tained in recent works using optimal transport techniques (Hauray (2009))
but not for the real Euler equation in 2D.

The aim of this work is to show in detail a particular example of the
mean field limit in the case of first order models not covered in the previous
literature. Nevertheless, we will first discuss some of these issues for 2nd
order models summarizing results in Cañizo, Carrillo, and Rosado (2011);
Bolley, Cañizo, and Carrillo (2011). We will also discuss that the spatial
shape of the main patterns, flock and mills, are given by stationary solutions
of the 1st order models. This gives another reason from a more conceptual
mathematical viewpoint of reducing to 1st order models. Section 3 will be
devoted to obtain the mean field limit to the so-called aggregation equation
for singular potentials recovering some of the models studied in Bertozzi,
Carrillo, and Laurent (2009); Bertozzi, Laurent, and Rosado (2010). Here,
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the idea is to assume that we have solutions of the model in better func-
tional spaces due to the singularity of the potential, but we have to pay
in terms of conditions on the initial distribution of particles (how they are
distributed) in such a way that the particle solution converges to the con-
tinuum solution of the aggregation equation as N → ∞. We will make
use of similar arguments to Hauray (2009) to show the mean-field limit for
first order swarming models with singular potentials up to the Newtonian
singularity. In Section 4, we study a local existence of a unique Lp-solution
for the aggregation equation. This complements the well-posedness theory
in Bertozzi, Laurent, and Rosado (2010). Finally, Section 5 is devoted to
show the propagation of chaos property for the aggregation equation. This
property is very important from the physical relevance of the kinetic and
aggregation models, since it states that one can derive the mean-field equa-
tions under quite generic randomly generated initial location of the particles.
We are only able to show it for a more restricted set of singular potentials
with respect to the mean-field limit.

2 The Dobrushin approach

2.1 Some Individual Based Models

As we described in the introduction, the modelling in swarming starts
by introducing some particle models, IBMs in the jargon of this community,
incorporating some of the basic effects: repulsion, attraction, and alignment.
Let us discuss briefly some of these models, starting with the ones that
have recently attracted more attention due to their simplicity while having
a rich mathematical structure and pattern formation. One of these models
was introduced by the UCLA group in D’Orsogna, Chuang, Bertozzi, and
Chayes (2006) and it consists of Newton-like equations where all the effect of
repulsion and attraction is encoded via a pairwise potential W : Rd → R. A
popular choice for the interaction potential W is the Morse potential given
by

W (x) = −CAe
−|x|/�A + CRe

−|x|/�R , (2.1)

where CA, CR and �A, �R are the strengths and the typical lengths of at-
traction and repulsion, respectively. They are chosen for having biologically
reasonable potentials with C = CR/CA > 1 and �R/�A < 1, see Carrillo,
Panferov, and Martin (2013) for other nice choices of the interaction poten-
tials and a deeper discussion on the issue of biologically relevant interaction
potentials. Apart from this, the other effect included is the tendency of
the particles to travel asymptotically at a fixed speed as in Levine, Rap-
pel, and Cohen (2000). Consequently, a term producing a balance between
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self-propulsion and friction is introduced imposing an asymptotic speed to
the particles (if other effects are ignored), but it does not influence the
orientation vector. The resulting ODE system reads as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxi

dt
= vi, (i = 1, . . . , N),

dvi
dt

= (α− β |vi|2)vi −
1

N

∑
j �=i

∇W (|xi − xj |), (i = 1, . . . , N).

where α, β are nonnegative parameters, determining the asymptotic speed of
particles given by

√
α/β. Here, the potential has been scaled depending on

the mass of each particle as in Carrillo, D’Orsogna, and Panferov (2009) and
in such a way that the effect of the potential per particle diminishes while
the energy is of constant order as the number of particles N diverges. This
scaling is the so-called mean-field scaling, see the introduction of Bodnar
and Velazquez (2012) for a nice discussion of the different scalings in first
order models.

Another popular IBM including only the alignment effect is the so-called
Cucker and Smale (2007) model. Each individual in the swarm changes its
velocity vector based on the other individuals by adjusting/averaging their
relative velocity with all the others. This averaging is weighted in such a
way that closer individuals have more influence than further ones. For a
system with N individuals the Cucker-Smale model reads as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dxi

dt
= vi,

dvi
dt

=
1

N

N∑
j=1

wij (vj − vi) ,

with the communication rate w(x) given by:

wij = w(xi − xj) =
1

(1 + |xi − xj |2)γ
,

for some γ ≥ 0.
Associated to the above models, one can formally write the expected

Vlasov-like kinetic equations asN →∞, see for instance Carrillo, D’Orsogna,
and Panferov (2009), leading to

∂tf + v · ∇xf − (∇W ∗ ρ) · ∇vf + divv((α− β|v|2)vf) = 0, (2.2)

where ρ represents the macroscopic density of f :

ρ(t, x) :=

∫
Rd

f(t, x, v) dv for t ≥ 0, x ∈ R
d.
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The Cucker-Smale particle model leads to the following kinetic equation:

∂f

∂t
+ v · ∇xf = ∇v · [ξ[f ] f ] , (2.3)

where ξ[f ](x, v, t) = (H ∗ f) (x, v, t), with H(x, v) = w(x)v and ∗ stand-
ing for the convolution in both position and velocity (x and v). We refer
to Cucker and Smale (2007); Ha and Tadmor (2008); Ha and Liu (2009);
Carrillo, Fornasier, Rosado, and Toscani (2010) for further discussion about
this model and qualitative properties.

Moreover, quite general models incorporating the three effects previ-
ously discussed with additional ingredients, such as vision cones or topo-
logical interactions, have been considered in Carrillo, Fornasier, Toscani,
and Vecil (2010); Li, Lukeman, and Edelstein-Keshet (2008); Agueh, Illner,
and Richardson (2011); Albi and Pareschi (2013); Haskovec (2013). In
particular Li, Lukeman, and Edelstein-Keshet (2008) consider that the N
individuals follow the system:⎧⎪⎪⎨

⎪⎪⎩
dxi

dt
= vi,

dvi
dt

= FA
i + F I

i ,

(2.4)

where FA
i is the self-propulsion generated by the ith-individual, while F I

i is
due to interaction with the others. The interaction with other individuals
can be generally modeled as:

F I
i = F I,x

i + F I,v
i =

N∑
j=1

g±(|xi − xj |)
xj − xi

|xi − xj |
+

N∑
j=1

h±(|vi − vj |)
vj − vi
|vi − vj |

.

Here, g+ and h+ (g− and h−) are chosen when the influence comes from
the front (behind), i.e., if (xj − xi) · vi > 0 (< 0); choosing g+ �= g− and
h+ �= h− means that the forces from particles in front and those from
particles behind are different. The sign of the functions g±(r) encodes the
short-range repulsion and long-range attraction for particles in front of (+)
and behind (-) the ith-particle. Similarly, h+ > 0 (< 0) implies that the
velocity-dependent force makes the velocity of particle i get closer to (away
from) that of particle j.

Some of these models, for instance Agueh, Illner, and Richardson (2011);
Albi and Pareschi (2013); Haskovec (2013), include sharp boundaries for the
vision cone or for the interaction with the nearest neighbors. As we shall see
later, these are typical situations in which the mean-field limit for general
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measures will not work. By sharp boundaries we mean that the functions
involved in the kernels such as w(x), g±, or h± are given by characteristic
functions on sets depending on the location/velocity of the agent.

2.2 First-order models: Aggregation Equation

In this work, the objective is to show how to obtain the continuum
limits of these particle models in a simpler situation than the ones in the
previous section. However, at the same time we will allow for more singular
kernels. We will showcase these tools in the case of the so-called aggregation
equation. Let us assume that we have just particles interacting through the
pairwise potential W (x). Assuming that the variations of the velocity and
speed are much smaller than spatial variations, see Mogilner and Edelstein-
Keshet (1999), then one can neglect the inertia term in Newton’s equation
to deduce that

dXi

dt
= −

∑
j �=i

∇W (Xi−Xj) in the N →∞ limit �

⎧⎨
⎩

∂ρ

∂t
+ div (ρu) = 0

u = −∇W ∗ ρ
.

(2.5)
Another reason to study this first order equation is that the stationary states
of the first order model determine the spatial shape of the flock solutions to
the second order models, see Carrillo, Panferov, and Martin (2013).

Let us note that some of the difficulties to overcome are already in
this model. Next subsection is devoted to review the classical Dobrushin
strategy for the mean-field limit when all functions involved in the model
are smooth enough. This strategy applies to the aggregation equation for
C2(Rd) smooth potential with at most quadratic growth at infinity by fol-
lowing the same argument as in Theorem 2.4 below. This argument was
detailed in a nice summer school notes in Golse (2003). The goal of this
chapter is to show how to deal with more singular potentials. The main mes-
sage is that in order to obtain the mean-field limit, whose precise statement
is given later on, you need to impose certain conditions on the approxi-
mation of the initial data avoiding the possible singularities (collisions) in
finite time of the particles. We will elaborate on this at the begining of
next section. In order to deal with these questions, it is quite convenient to
work with transport distances between probability measures that we quickly
review next.

2.3 Basic tools in transport distances

In this subsection, we present several definitions of Wasserstein distances
and their properties.
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Definition 2.1. (Wasserstein p-distance) Let ρ1, ρ2 be two Borel proba-
bility measures on R

d. Then the Euclidean Wasserstein distance of order
1 ≤ p <∞ between ρ1 and ρ2 is defined as

dp(ρ1, ρ2) := inf
γ

(∫
Rd×Rd

|x− y|p dγ(x, y)
)1/p

,

and, for p =∞ (this is the limiting case, as p→∞),

d∞(ρ1, ρ2) := inf
γ

(
sup

(x,y)∈supp(γ)
|x− y|

)
,

where the infimum runs over all transference plans, i.e., all probability mea-
sures γ on R

d × R
d with marginals ρ1 and ρ2 respectively,∫
Rd×Rd

φ(x)dγ(x, y) =

∫
Rd

φ(x)ρ1(x)dx,

and ∫
Rd×Rd

φ(y)dγ(x, y) =

∫
Rd

φ(y)ρ2(y)dy,

for all φ ∈ Cb(Rd).

We also remind the definition of the push-forward of a measure by a
mapping in order to give the relation between Wasserstein distances and
optimal transportation.

Definition 2.2. Let ρ1 be a Borel measure on R
d and T : Rd → R

d be a
measurable mapping. Then the push-forward of ρ1 by T is the measure ρ2
defined by

ρ2(B) = ρ1(T −1(B)) for B ⊂ R
d,

and denoted as ρ2 = T #ρ1.

The set of probability measures with bounded moments of order p, de-
noted by Pp(R

d), 1 ≤ p <∞, is a complete metric space endowed with the
p-Wassertein distance dp, see Villani (2003). We refer to Givens and Shortt
(1984); McCann (2006) for more details in the case of the d∞ distance.

Remark 2.3. The definition of ρ2 = T #ρ1 is equivalent to∫
Rd

φ(x) dρ2(x) =

∫
Rd

φ(T (x)) dρ1(x) ,
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for all φ ∈ Cb(Rd). Given a probability measure with bounded p-th moment
ρ0, consider two measurable mappings X1, X2 : Rd → R

d, then the following
inequality holds.

dpp(X1#ρ0, X2#ρ0) ≤
∫
Rd×Rd

|x−y|pdγ(x, y) =
∫
Rd

|X1(x)−X2(x)|pdρ0(x).

Here, we used as transference plan γ = (X1 ×X2)#ρ0 in Definition 2.1.

2.4 A quick review of the classical Dobrushin result

Under smoothness assumptions on the ingredient functions of the swarm-
ing models, one can use adaptations of the classical result of Dobrushin
(1979) to obtain what is called the mean-field limit equation for general
particle approximations of any initial measure. These arguments are clas-
sical in kinetic theory and were also introduced in Braun and Hepp (1977);
Neunzert (1984), making use of the bounded Lipschitz distance, and re-
viewed in Spohn (1991); Villani (2002), see also Sznitman (1991); Méléard
(1996) for the case with noise. The bounded Lipschitz distance or dual
W 1,∞-norm is equivalent to the Wasserstein distance d1 for compactly sup-
ported measures. This strategy works as soon as the velocity field defining
the characteristics of the model is a bounded and globally Lipschitz func-
tion whose dependence on the measure itself is Lipschitz continuous in the
d1 sense. These ideas were improved to allow for locally Lipschitz veloc-
ity fields for compactly supported initial measures in Cañizo, Carrillo, and
Rosado (2011) and for suitable decay conditions at infinity and with noise in
Bolley, Cañizo, and Carrillo (2011). With these techniques one can include
quite general kinetic models for swarming in this well-posedness theory.

Let us introduce some notation for this section: A = Pc(R
d×Rd) denotes

the subset of P(Rd×R
d) consisting of measures of compact support in R

d×
R

d. On the other hand, we consider the set of functions B := Liploc(R
d ×

R
d,Rd), which in particular are locally Lipschitz with respect to (x, v). BR

will denote the ball centered at 0 of radius R in R× R.
Let us consider general operators from measures to vector fields, H[·] :

A → B, satisfying the following hypotheses: for any R0 > 0 and f, g ∈ A
such that supp f ∪ supp g ⊆ BR0

, there exists some ball BR ⊂ R
d ×R

d and
a constant C = C(R,R0) > 0, such that

‖H[f ]−H[g]‖L∞(BR) ≤ C d1(f, g), (2.6)

LipR(H[f ]) ≤ C, ‖H[f ]‖L∞(BR) ≤ C. (2.7)

Here, LipR(·) denotes the Lipschitz constant of a function in BR.
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Given f ∈ C([0, T ],Pc(BR0
)), and for any initial condition (X0, V 0) ∈

R
d×R

d, the following system of ordinary differential equations has a unique
locally defined solution

d

dt
X = V, X(0) = X0 (2.8a)

d

dt
V = H[f(t)](X,V ), V (0) = V 0 . (2.8b)

We will additionally require that the solutions to that system are “global”.
More precisely, we assume that for any R0, T > 0, there exists R > 0 such
that (X(t), V (t)) ∈ BR for all t ∈ [0, T ] and all (X0, V 0) ∈ BR0

. Of course,
this is a requirement that has to be checked for every particular model. We
prefer to give a general condition which reduces the problem of existence
and stability to the simpler one of existence of the ODEs. Under the above
conditions, the existence and uniqueness of associated transport equation

∂tf + v · ∇xf −∇v · [H[f ]f ] = 0. (2.9)

was obtained in Cañizo, Carrillo, and Rosado (2011) to which we refer
for full details. In Cañizo, Carrillo, and Rosado (2011), the interactions
H[f ] = (α− β|v|2)v−∇W ∗ ρ and H[f ] = H ∗ f corresponding to (2.2) and
(2.3), respectively, and

H[f ] = FA(x, v) +G(x) ∗ ρ+H(x, v) ∗ f,

with FA, G and H given functions satisfying suitable hypotheses, such that
the kinetic equation (2.9) corresponds to the model (2.4) are investigated.

Theorem 2.4. Given an operator H[·] : A → B satisfying Hypotheses
(2.6) and (2.7) for which the characteristics (2.8a)-(2.8b) are globally well-
defined, and f0 a measure on R

d × R
d with compact support. There exists

a solution f on [0,+∞) to equation (2.9) with initial condition f0. In
addition,

f ∈ C([0,+∞);Pc(R
d × R

d)) (2.10)

and there is some increasing function R = R(T ) such that for all T > 0,

supp ft ⊆ BR(T ) ⊆ R
d × R

d for all t ∈ [0, T ]. (2.11)

This solution is unique among the family of solutions satisfying (2.10) and
(2.11). Moreover, given any other initial data g0 ∈ Pc(R

d × R
d) and g

its corresponding solution, there exists a strictly increasing function r(t) :


