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PREFACE

Pre-stressed bodies are ubiquitous in technical applications and in several fields
of science. For instance in biomechanics, the mechanical behaviour in service of
many soft biological tissues (such as arterial walls, veins, skin, tendons, etc.)
can be explained by modelling them as pre-stressed viscoelastic materials. In civil
engineering, bridge bearings or seismic shock absorbers under a building are clear
examples of devices operating in conditions of pre-stress, and sometimes subject
to dramatically large strains. Other examples can be found in the automotive in-
dustry, in seismology, in ol prospecting, in non-destructive ultrasonic evaluation,
in high frequency signal processing for electronic devices, in fibers optics, etc.

The study of wave motion is a natural and revealing approach to the proper-
ties of a pre-stressed body. Indeed, acoustic waves may be used to evaluate the
material parameters of a given elastic body or, if these are known, to evaluate
the state of induced anisotropy or of residual stress (in fact, they may well be
the only way to evaluate the mechanical characteristics of soft tissues in vivo).
They may also be used to detect structural defects. Other major interests include
the study of standing waves, with applications to stability and bifurcation analy-
ses, and the study of nonlinear waves, with applications to shock formations and
solitary waves generation. Hence, the understanding of the mathematics and of
the mechanics of dynamical problems in pre-stressed elastic and viscoelastic ma-
terials is of paramount importance to many applications. Nevertheless, a recent
comprehensive synthetic textbook is lacking in this field.

The aim of these lecture notes is to take a first step toward the eventual elab-
oration of such a reference volume, by providing a unique, state-of-the-art, multi-
disciplinary overview on the subject of linear, linearized, and nonlinear waves
in pre-stressed materials. This is achieved through the interaction of several
topics, ranging from the mathematical modelling of incremental material elas-
tic response, to the analysis of the governing differential equations and related
boundary-value problems, and to computational methods for the numerical solu-
tion to these problems, with particular reference to industrial, geophysical, and
bitomechanical applications. We have tried to achieve this goal by including:

e A unified introduction to wave propagation (small-on-large and large-on-

large);

e The basic and fundamental theoretical issues (mechanical modelling, exact

solutions, asymptotic methods, numerical treatment);

e A perspective on classical (such as geophysics), current (such as the me-

chanics of rubber-like solids), and emergent (such as nonlinear solid biome-
chanics) applications.
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Incremental Statics and Dynamics of
Pre-Stressed Elastic Materials

Ray W. Ogden
Department of Mathematics, University of Glasgow, Glasgow, United Kingdom

Abstract. In this chapter we provide a summary of the equations governing the
incremental deformations superimposed on a finite deformation of an elastic solid.
For the equilibrium equations the incremental theory is built on top of the under-
lying finite deformation theory, which includes discussion of constitutive laws for
isotropic materials and for anisotropy associated with one or two preferred direc-
tions. Following the static theory the corresponding dynamic equations are sum-
marized. The resulting equations for incremental motions superimposed on a static
finite deformation are then used to examine some basic problems in the propaga-
tion of incremental plane waves in pre-stressed elastic solids in order to illustrate
the influence of the pre-stress and the associated finite deformation on the wave
propagation characteristics.

1 Introduction

This chapter provides the basic equations of nonlinear elasticity theory, both static and
dynamic, that underpin the applications examined in the other chapters of this volume.
More general and detailed treatments of this background material can be found in, for
example, Ogden (1997) and Holzapfel (2001). In Section 2 the basic equations for
nonlinear elastostatics are reviewed, including a discussion of the constitutive laws for
isotropic elastic solids, both incompressible and unconstrained, and of corresponding
constitutive laws for elastic solids with one or two preferred directions in their reference
configuration. The concept of strong ellipticity is introduced in this section. Section 3 is
concerned with the derivation of the (linearized) incremental equations for elastostatics;
it furnishes, in particular, expressions for the components of the elasticity tensor for the
materials examined in Section 2. These expression are required for the analysis of the
incremental equations of motion, which are summarized in Section 4. Also in Section 4
is a short account of the interpretation of the strong ellipticity condition in the context
of homogeneous plane wave propagation. As a simple application of the incremental
equations of motion some aspects of plane wave propagation are examined in Section 5.
In particular, the influence of a pure homogeneous strain on the reflection of plane waves
at the boundary of a half-space is analyzed briefly in Section 5 along with a corresponding
analysis of the reflection and transmission of plane waves at the interface between two
pure homogeneously strained half-spaces. Finally, Section 6 contains some concluding
remarks.
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2 Basic equations of finite deformation elastostatics

2.1 Kinematics

Consider a continuous body occupying a connected open subset of a three-dimensional
Euclidean point space. Such a subset is referred to as a configuration of the body. A
specific, but arbitrarily chosen, configuration is identified as a reference configuration,
which is denoted B,., points of which are labelled by their position vectors X relative to
some origin O (see Figure 1). The boundary of B, is denoted 98,..

@)

Figure 1. Depiction of the reference configuration B, and the deformed configuration B
under the deformation mapping x. Material particles are labelled by the position vector
X in B, and located at position vector x in B.

The body is deformed quasi-statically from B, so that it occupies a new configuration,
denoted B, with boundary dB. We refer to B as the deformed configuration of the body,
and the deformation is represented by the mapping x: B, — B which takes points X in
B, to points x in B. Thus,

x=x(X), Xeb, (2.1)

x being the position vector in B (relative to some origin o) of the material point X.
The deformation x and its inverse x ' are required to be one-to-one and to satisfy
appropriate regularity conditions.

Let X and x have rectangular Cartesian coordinates X, and z;, respectively, where
a, i € {1,2,3}, so that x; = x;(X.), and we emphasize that Greek and Roman indices
refer, respectively, to B, and B. The usual summation convention for repeated indices
is also adopted. Throughout this chapter the word ‘components’ will always signify
‘Cartesian components’ (of vectors and tensors).

The deformation gradient tensor is

F = Gradx = Grad x(X) (2.2)

with components F;, = 0z;/0X,, where Grad is the gradient operator in B,, and we
adopt the usual convention that J = detF > 0, thereby defining the notation J. The
important role of J is that it is a local measure of change in material volume and it
features in the mass conservation equation in the form p, = Jp, where p, and p are the
mass densities of the material in B, and B, respectively.

For an isochoric (volume preserving) deformation,

J=detF = 1. (2.3)
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For an incompressible material all deformations are constrained to be isochoric and (2.3)
then forms the incompressibility constraint.
We record here the polar decompositions

F =RU = VR, (2.4)
of F, where R is a proper orthogonal tensor and U and V are positive definite, symmetric

tensors, the latter two referred to, respectively, as the right and left stretch tensors. In
spectral form U and V can be decomposed as

3 3
U= 2 eu®, V=3 av®av, (25)
i=1 i=1
where \; > 0, i € {1,2, 3}, are the principal stretches, and u® and v(¥, respectively, the
(unit) eigenvectors of U and V, are the Lagrangian and Eulerian principal azes, and ®
denotes the tensor product. We also note the connection

v =Ru", ie{1,2,3} (2.6)

and that alternative expressions for J = det F are provided by
J=detU =det V = A1 A2)3. (2.7)

The right and left Cauchy-Green deformation tensors, defined by

C=FT'F=U? B=FF =V? (2.8)

have important roles to play in the formation of constitutive laws, in particular through
their principal invariants, defined by (for either C or B)

I =trC, Iy =3[} —tr(C?)], I3=detC. (2.9)
In terms of the stretches, these are
L=X 4+ 4+, L=+ + A3, =23\ (2.10)
A useful alternative choice of invariants is provided by
i1 =trU, iy =istr(U™Y), i3 =detU, (2.11)
or, equivalently, in terms of the stretches

i1 = A1+ Ao+ A3, o = XAz + A3A + Ao, i3 = AjAgAs. (212)
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2.2 Stress tensors and equilibrium equations
In this chapter we use three stress tensors: the Cauchy stress o (symmetric), the
nominal stress tensor, denoted S (not in general symmetric) and related to o by
S=JFlo, (2.13)
and the Biot stress tensor (symmetric), denoted T and given by
T = 1(SR+R"8"). (2.14)
The symmetry
STFT = FS (2.15)

is also noted.
In the present work we shall not be concerned with body forces, in which case the
equilibrium equation can be written in either of the two equivalent forms

dive =0, DivS =0, (2.16)

where div and Div signify the divergence operator with respect to B and B,., respectively.
In component form these are

8015 aSm»

=0
T 0X,

frd frd . .1
T 0 (2.17)

2.3 Elasticity

Here we consider the properties of an elastic material to be characterized by a strain-
energy function, denoted W = W (F'), defined per unit volume on the space of deformation
gradients. For an unconstrained material the nominal and Cauchy stress tensors are given
by

ow 1, OW
and in components by
ow 1 ow
@i = v 0y =J Fago—- 2.1
Sai = g O =7 oF; (2.19)
We assume that W vanishes in B, and that B, is stress free, so that
ow
Wl =0 —1I)=0 2.20
M=o Srm=o, (220)
where I is the identity tensor.
On use of (2.19); the equilibrium equation (2.17); may be written as
2.0
Ay T8 (2.21)

I 9X00Xs
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where A,;g; are the components of the elasticity tensor A and defined by

PwW

TFF (2.22)

Aaipj = Apjai =

Equations (2.21) form a quasi-linear system with the coefficients Aq;3; being in general
nonlinear functions of the components of F. The system is strongly elliptic if the strong
ellipticity condition

.AmgjmiijaNg >0 (2.23)

holds for all non-zero vectors m and N, m being Eulerian with components m;, i €
{1,2,3}, and N Lagrangian with components N,, a € {1,2,3}.

For later reference we define n by n = F~TN and Ay to be the Eulerian elasticity
tensor (the push forward of \A) with components defined by

.Aopiqj = JlepanﬁAaw]’, F'n= N, (2.24)
so that the strong ellipticity condition (2.23) may also be expressed as
Aopiqjmimjnpnq >0 (225)

for all non-zero vectors m and n.
We now record the counterparts of the above equations for the case of an incompress-
ible material. The modifications of (2.18) appropriate for incompressibility are

ow
S=— —pF ! =F— — I, 2.26
P o=Fos —p (2.26)
coupled with det F = 1, where p is a Lagrange multiplier associated with the incompress-
ibility constraint and referred to as an arbitrary hydrostatic pressure.
The equilibrium DivS = 0 now takes on the component form
02z op

The strong ellipticity condition is unchanged in form and, in particular, (2.25) remains
valid except that now m and n are subject to the restriction

m-n =0, (2.28)

which is a consequence of the incompressibility constraint. The strong ellipticity condi-
tion will play an important part in the discussion of wave propagation in later sections.

Finally in this subsection we mention some boundary conditions that are to be ap-
pended to the equilibrium equations in the formulation of boundary-value problems.
Some examples are the placement boundary condition

x=&(X) on 08, (2.29)
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where £ is a prescribed function of X, and the traction boundary condition
SN = 7(F,X) on 9B, (2.30)

where 7 is a prescribed function of in general both X and F. If 7 is independent of F
the traction is said to be of dead-load type. In the case of pressure loading, with pressure
P, 7 has the explicit form 7 = —JPF~TN, where N is the unit outward normal to 91,..
We recall here Nanson’s formula nda = JF~TNdA connecting surface area elements d A
and da on 0B, and 0B, respectively, n being the unit outward normal to 9B.

2.4 Objectivity and material symmetry

The strain-energy function is required to be objective, which means that, for an
arbitrary deformation gradient F', it must satisfy

W(QF) = W(F) (2.31)

for all proper orthogonal tensors (rotations) Q. One implication of this follows on use
of the polar decomposition (2.4) and the choice Q = R” in (2.31), leading to

W(F) = W(U). (2.32)

Thus, W may therefore be defined on the class of positive definite symmetric tensors.
Since the associated strain tensor U — I is conjugate to the Biot stress tensor T, we have

ow

T=—— 2.33
50 (2.33)
for an unconstrained material and, for an incompressible material,
ow
T=_——-pU!, detU=1. 2.34
5y ~PUT, de (2.34)

It is worth noting here that U is indifferent to rotations Q in B and hence, when expressed
as a function of U (or, equivalently, C) the strain energy is guaranteed to be objective.

Isotropic elasticity. For definiteness we now consider isotropic elastic materials, for
which the strain-energy function is indifferent to rotations Q prior to deformation, i.e. in
B,.. This means that the symmetry group of the material is the proper orthogonal group

and we have
W(FQ) =W(F) (2.35)

for all rotations Q at any given deformation gradient F. Note that the Q’s in (2.32) and
(2.35) are independent and the combination of these two equations therefore yields

wW(QUQ”) = W(U) (2.36)

for all rotations Q. Thus, W is an isotropic function of U (equivalently of C). It follows
from the spectral decomposition (2.5) that W depends on U only through the principal
stretches A1, Ao, A3 and is a symmetric function, i.e.

W (A1, A2, A3) = W(A1, A3, A2) = W (A2, A1, As). (2.37)
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Equivalently, bearing in mind that the principal invariants of C are themselves symmetric
functions of the stretches, we may regard W as a function of Iy, I, I3.

One consequence of isotropy is that T is coazial with U (and o with V) and hence,
in parallel with (2.5)1, we have

3
T= Z tu® @u®, (2.38)
i=1

where t;, i € {1,2, 3} are the principal Biot stresses. For an unconstrained material,

ow

t; = ay
o\;

(2.39)

where W is treated as a function of the stretches. The corresponding principal Cauchy
stresses o;, i € {1,2,3}, are given by

Jo; = )\i% (no sum over ). (2.40)

If, by contrast, W is treated as a function of the principal invariants I, I, Is then
the Cauchy stress is given by

iy _ap Wy (OW L OWY b OW L,
I 0_2138[31+2(811+118[2 B -2 B (2.41)

This is sometimes referred to as the Rivlin representation. Note that for an isotropic
material we have JRToR = TU = UT, SR is symmetric and we have the decomposition

3
S=TR" =) tu® vl (2.42)
i=1

For an incompressible material equation (2.38) still holds but in this case the principal
stresses are given by

ow _ ow
ti = 87)\7 —p)\Z 1, g; = AZTA,L — D, /\1)\2)\3 = 17 (243)
while (2.41) is replaced by
ow ow ow
= pI+2(—+1,— |B-2—B? 2.44
T=-pit (8[1+18[2) on (244)

with I3 = 1.

Anisotropic elasticity with one or two preferred directions. The simplest form
of anisotropy is that associated with a material that has a single preferred direction in
the reference configuration, which may be associated with fibre reinforcement. Here, we
illustrate the structure of the strain-energy function of an anisotropic elastic solid for
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such a material and also for the case of a material with two preferred directions. Some
of the corresponding stress tensors are also provided.

For a single preferred direction (transverse isotropy) we take the preferred direction
in the reference configuration to be characterized by the unit vector M. The resulting
material response is unaffected by an arbitrary rotation about the direction M or by
reversal of M. Thus, W(QF) = W(F) for all rotations Q such that QM = +M. The
strain-energy function then depends on F and M through the tensors C and M @ M
(see, for example, Spencer (1972, 1984)). More specifically, W is an isotropic function
of C and M ® M. As a result, W depends on just five invariants, namely

I, I, I3, Iy = M- (CM), Is = M - (C*M), (2.45)

where Iy, I, I3 are defined in (2.9).
For an unconstrained material the nominal stress tensor is then given by

S = 2W, FT 4+ 2Wy (1L, I — C)FT + 2, W3F ! 4+ 2W,M @ FM
+2W5(M @ FCM + CM ® FM), (2.46)

where W; = 0W/01;,i = 1,...,5. The corresponding Cauchy stress is calculated via
Jo = FS, while for an incompressible material the dependence on I3 is omitted and the
Cauchy stress tensor is given by

o = —pl+2W,B + 2W5(I;B — B?) + 2W,FM ® FM
+2W5(FM @ BFM + BFM ® FM), (2.47)

wherein B is the left Cauchy-Green tensor.
If there is a second preferred direction, defined by the unit vector field M’, then
further invariants are introduced. These are

Is =M - (CM'), I; = M/ - (C2M'), Iy = M - (CM), (2.48)

where I and I; are the counterparts for M’ of I and I5, and Ig provides a coupling be-
tween the two preferred directions. The strain-energy function should in general depend
on all the above invariants, but to ensure that the material response is indifferent to
reversal of either M or M’ we note that Iy should appear in the combination IgM - M’.
These are the only independent invariants for three-dimensional deformations, and their
number reduces for restrictions to two-dimensional geometries.

For illustration we give here the expansion for the Cauchy stress tensor in the case of
an incompressible material, which is

o = —pl +2W B 4 2W, ([, B — B?) + 2W,FM @ FM
+2W5(FM @ BFM + BFM @ FM) + 2WsFM' @ FM’
+2W7(FM' @ BFM' + BEM' @ FM') + Wg(FM ® FM' + FM' ® FM), (2.49)

where the notation W; = 0W/9I; now applies for i = 1,2,4,...,8.
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2.5 Homogeneous deformations

Homogeneous deformations have an important role in the understanding of basic wave
propagation properties in pre-stressed materials and these are now considered here. A
homogeneous deformation is one for which the deformation gradient F is independent of
X. An example is pure homogeneous strain, which is described by the equations

1 =MX1, 22=MXy, x3=>A3Xj3, (2.50)

where A1, Ao, A3 are the principal stretches, independent of X. The principal axes of U
and V coincide with the Cartesian coordinate directions as the values of the stretches
are varied.

For an unconstrained isotropic elastic material the associated principal Cauchy stresses
are given by (2.40). For an incompressible material we have the constraint

Adods =1 (2.51)

and the principal Cauchy stresses are given by (2.43)5. Since then only two stretches can
be varied independently it is convenient to express the strain energy as a function of two
independent stretches. We therefore define

WAL A2) = WAL A, ATIASY). (2.52)

On elimination of p from equations (2.43)2 we obtain

oW oW
0'1—0'3:)\167)\1, 0'2—0'32)\287)\2. (253)

Another homogeneous deformation of interest is that of simple shear. This may be
defined by
1 = X1 +7Xs, m2=Xs, w3=Xj, (2.54)

where 7 is the amount of shear, which is independent of X. The invariants (2.10) for
this plane deformation reduce to I1 = Iy = 3 +~2, I3 = 1. From (2.44) the components
of o for an incompressible material are then easily calculated as

o1 = —p+ 21+ )W +22+9°)Wa, 022 = —p +2W1 + 4Ws, (2.55)
g12 = 2’)/(W1 + WQ), 033 = —P + 2W1 + 2(2 + ")/2)W2, 013 = 0923 = 0. (256)

For simple shear the orientations of the principal axes of U and V are different and depend
on the magnitude of . In particular, in the (X7, X5)-plane the Eulerian principal axes
v(D v(2) are given by

vl = cospe; +singes, v = sin e + cos ¢ ea, (2.57)
where eg, es are the Cartesian axes and the angle ¢ is given by

tan 2¢ = 2/7. (2.58)
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The associated principal stretches are A = A\;, Ao = A~ A3 = 1, and X is related to 7 by
A=At =+, (2.59)

where we have taken A > 1 to correspond to v > 0.
In view of the dependence of I; and I> on v we may treat W as a function of v and
define
W(y) =W, (2.60)

and it follows that B
012 = W/(’y), 011 — 022 = Y012. (261)

The homogeneous deformations of pure strain and simple shear may also be considered
for the anisotropic materials discussed in Section 2.4. For an incompressible material,
for example, the components of o can be read off from (2.47) or (2.49) for appropriate
choices of M and M. For details we refer to Ogden (2001), for example.

3 Incremental deformations and stresses

Let x, with x = x(X), be a known finite deformation and let x’, with x' = x/(X), be a
second finite deformation that is ‘close’ to x. The displacement, which can be thought
of as a perturbation of x, is written

%= x' —x = X'(X) - x(X) = X(X) (3.1)

and its gradient is .
Gradx = Gradx’ — Grady = F. (3.2)

This expression is exact, no approximation having been made. In order to examine the
incremental constitutive laws and equilibrium equations, however, it will be necessary to
use linear approximations in terms of the incremental deformation x and its gradient F.
Such linear approximations will be indicated by a superposed dot.

For example, for an unconstrained material the associated nominal stress difference
is

. oW oW
= r_ = — A
S=S8-S OF (F") OF (F), (3.3)
which has the linear approximation
S = AF, (3.4)

where A is the elasticity tensor with components defined by (2.22). The component form
of (3.4) is ) )
Sai = Aoﬂﬂijﬂ, (35)

which provides the convention for defining the product appearing in (3.4).
To obtain the corresponding expression for an incompressible material, we take the
increment of equation (2.26); and obtain

S=AF —pF ' 4+ pF 'FF !, (3.6)
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where p is the incremental form of p. This equation is coupled with the incremental form
of the incompressibility constraint (2.3), which has the form

tr(FF~1) = 0. (3.7)

The components of A are again given by (2.22), but now subject to the constraint (2.3).

3.1 Incremental equilibrium equations

From the equilibrium equation (2.16); and its counterpart for x’, we obtain, by using
(3.3),
DivS =0, (3.8)

which does not involve approximation. In its linear approximation S is replaced by either
(3.4), or (3.6) with (3.7), as appropriate.

The incremental versions of the boundary conditions (2.29) and (2.30) are written,
respectively, as

x=¢& on B, (3.9)
STN =+ ondB,, (3.10)

where £ and 7 are the prescribed data for the incremental deformation x.
In component form equation (3.8) may be expanded out for an unconstrained material
as

Aaigjtjap + Aaigjatip =0, (3.11)
and if the underlying finite deformation is homogeneous this reduces to
Awigi®jas = 0. (3.12)
The counterpart of (3.12) for an incompressible material is
Awigitjas — P = 0. (3.13)

In dealing with incremental deformations it is often convenient to use the deformed
configuration B as the reference configuration instead of the initial configuration B, and
to treat all incremental quantities as functions of x instead of X. For this purpose we
define the notations

ux) = x(x '(x)), T=FF! X=J'FS, (3.14)

the latter being the push-forward of S motivated by the connection o = J~'FS.
For an incompressible material the incompressibility constraint then takes the form

trI' = diva = 0, (3.15)
and the updated incremental stress is

¥ = AT + pI — 51, (3.16)
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where the components of Ay are defined as in (2.24); with J = 1.

The equilibrium equation (3.13) updates to divX = 0, or, in components,
Aopiqjtijpg —Pi =0, (3.17)
and p can be eliminated by applying the curl operator:
curl (diV 2) = 0, ErstAOpiqjuj,pqs =0. (318)
In the latter ¢, is the alternating symbol.
If n is the unit outward normal to B then the incremental traction per unit area of
9B is n, or, in components,

Yjin; = (Aojitk + pojrdi)ur,in; — pn;. (3.19)

Components of the elasticity tensor. If W depends on the invariants I, I, ..., Iy,
where N = 2,3,5, or 8 depending on whether it is isotropic or anisotropic with one or
two preferred directions, compressible or incompressible, then we have

N

ow al,
o~ 2 Wigp (320)
and
oI, oI, & 921,
aFaF ;;W” aF CoF T Z WioFar (3.21)

where W; = OW/0I;, W;; = 0*W/dI,01; for i,j € {1,2,...,N}, with the index 3
omitted in the case of an incompressible material. Then o is calculated from (2.18)2 and
the components of Ay from (2.24);.

The above expressions require calculation of the first and second derivatives of the
invariants with respect to F. The components of these derivatives for a selection of
invariants are given as follows. First derivatives:

o, Ol ol
OF . = 2Fja, E = 2(077Ea - CoryFi'y)a E =2I3F, i (322)
ol o,

L — oM, (Fy, M), 2(Fyy MycapMp + FieygMaM,);  (3.23)

6Fia 6on¢ -
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second derivatives:

o921,
95,004, 24
8FiaaFjﬁ jlap (3 )

021,
m = 2(2FiaFj5 — Fija + C,W(Sij(sag — bijéaﬁ — Caﬁ(sij), (3.25)
_ Ol ALF'F — 2L FF, Y (3.26)
anaaF]B ar /8] @J [31 ’

021,
25, Mo M 2
OFiq0F;5 e (3.27)

921,
S = 9[6;j(Cary My Mg + 3y My M,) + 803 Fyy M., Fj5 Mj (3.28)
OF;,0F;5

+ Fyy My Fjo Mg + Fjoy M, Fy3 Mg, + b Mo, Mg). (3.29)

The derivatives of Is and I7; are obtained from those for I and I5, respectively, by
replacing M by M, while the first and second derivatives of Ig are

0lg
OF;

02T
OF,00F; 5

= Fiy (Mg M, + Mo M), = 8ij (Mo Mj + My Mpg). (3.30)

Of course, the resulting expressions for A are quite lengthy in general. However, in
the special case of isotropy, an alternative and somewhat more compact representation
for the components of A referred to the principal axes of U and V can be given. The
only non-zero components are

Aiij; = Wij, (3.31)
W+ W, . .
Aigis = Aigji = 37537 )\jj i # J, (3.32)
W, —-w; .,
Aigij + Aijji = —— 1#F 5, N # N, (3.33)
NN
Aijig + Aijji = Wi = Wiy i # 5, i = Aj, (3.34)

where now W; = OW/0\;, W;; = 0*W/ON;0);, i,7 € {1,2,3}, and no summation is
implied by the repetition of indices. Note that in (3.31)—(3.34) the convention of using
Greek letters for indices relating to Lagrangian components has been dropped. For details
of the derivation of these components we refer to Ogden (1997). These equations are
valid for both compressible and incompressible materials subject, in the latter case, to the
constraint (2.51). Corresponding expressions for the components of Ay can be obtained
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by use of (2.24) with (3.31)—(3.34) to give

JAoiii; = NidjWij, (3.35)

Tz = 20T S0N g A N, (3.6)
i J

JAoijji = %MJ i3, N # N, (3.37)
i J

JAoijij = % (N Wii = MW + NW5) i 4, A = Ay, (3.38)

JAoijji = % (N Wis — N\ Way — NW5) i G, A = Ay, (3.39)

and J = 1 for an incompressible material.
When evaluated in the stress-free reference configuration the components of A have
the compact classical form

Aijri = MNijOrt + p(dixdji + 0udjn), (3.40)

where A and p are the Lamé moduli of elasticity and d;; is the Kronecker delta. When
evaluated for \; = 1 for i € {1,2,3}, we have W; =0, W,;; = A+ 2u, W;; = A, i # j. For
an incompressible material there is an element of non-uniqueness in the components of
Aj since they depend on the point at which the incompressibility condition is applied
during the differentiations. The counterpart of (3.40) in this case is

Aiiii = Aijij = 1y Aiigj = Aijji =0 i #£ 7, (3.41)

and Wy = W; = u, Wy; = 0, where p is the shear modulus in B,. The differences
between (3.41) and any alternative expressions are absorbed by the incremental Lagrange
multiplier p in (3.16).

4 Elastodynamics

4.1 Time-dependent deformations

Again B, denotes a fixed (time independent) reference configuration and let t € Z C R
denote time, where 7 is an appropriate interval of time. Time t € 7 is used to parametrize
the deformed configuration of the body, now denoted B;, which is assumed to evolve
continuously with ¢. The (one-parameter) family of configurations {B; : t € Z} is referred
to as a motion of the body. As in Section 2, a point of B, is labelled by its position
vector X. Let x be its position vector in the current configuration By.

Since the deformation now depends on ¢, we write

x=x(X,t) forall X e B,, teZ, (4.1)

where, for each ¢, x has the same properties as in Section 2, with, additionally, sufficient
regularity in t.
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The wvelocity v and acceleration a of a material point X are defined by

2

0
V=xX,= ax(X,t), asv=xy = (X, 1), (4.2)

@X
respectively. Thus, 9/0t is the material time derivative, which, for brevity, is denoted
by : and it is then to be understood that the independent variables are X and t. Of
course, any scalar, vector or tensor field may be changed between the Eulerian description
(with x and ¢ as independent variables) and the Lagrangian description (with X and ¢
as independent variables) by means of the motion (4.1) or its inverse.

It will sometimes be convenient to treat the velocity v as a function of x and ¢, and
we then define the (Eulerian) wvelocity gradient tensor, denoted L, as

(’)vi
L =gradv, L= a—w] (4.3)
Then
Gradx; = F, = (gradv)F = LF, (4.4)

wherein F is the deformation gradient, defined as in (2.2) but now with dependence on
t. This is similar to the formula F = I'F for (static) incremental deformations obtained

from (3.14),.
With the notation J = det F and the standard relation

(detF) ; = (det F)tr (F'F ), (4.5)
and (4.4) we have
Ji = (detF); = (det F)tr (L) = Jdivv. (4.6)

Since J is a measure of volume change, this shows that divv is a measure of the rate at
which volume changes during the motion. If the motion is isochoric then J = 1 and (4.6)
reduces to

divv = 0. (4.7)

This is similar to the incompressibility condition (3.15) arising in the linearized incre-
mental theory. However, (4.7) is exact in the dynamic context whereas (3.15) is a linear
approximation.

For a non-isochoric motion, with p the mass density in B, we have

pt+ pdivv =0, (4.8)

which is the rate form of the mass conservation equation p, = Jp.

4.2 Equations of motion

The equation of motion analogous to the equilibrium equation (2.16)2 is

DivS = pra = p,X 4, (4.9)
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again in the absence of body forces, where S is given by (2.18); for an unconstrained
material and (2.26); for an incompressible material, with F and p now depending on t.
We recall that p, is the mass density in B,.. For an unconstrained material equation (4.9)
has the component form

AaipjTijag = Prii, (4.10)

and its incompressible counterpart is

AciBjTjap = Di = Priitt, (4.11)

the latter coupled with det(x; o) = 1, in which case p = p,. Note that in (4.10) and (4.11)
the coeflicients A,i3; are in general nonlinear functions of the components z; , of the
deformation gradient and the equations are to be solved for x; 7 = 1,2, 3, as a function of
X4, a =1,2,3, and t subject to suitable boundary and initial conditions, which we do
not specify here. Such problems are very difficult to solve in general and very few exact
solutions are available in the literature. We refer to the review by Ogden (2001) for a list
of references. Some simplifications occur when the motion is considered to be of small
amplitude so that the equations can be linearized. In the following section therefore we
examine the problem of incremental motions superimposed on a known finite motion and
its specialization to a known static deformation.

4.3 Incremental motions

First consider incremental motions superimposed on a finite motion. Let
x = x(X,1) (4.12)

be the time-dependent counterpart of the increment defined in (3.1). We emphasize that a
superposed dot represents an increment, whereas a material time derivative is represented
by :. The corresponding dynamic counterpart of the incremental equilibrium equation
(3.8) is

DivS = p,X 4. (4.13)

When this equation is linearized in the incremental quantities it becomes

Div (AF) = p,X (4.14)
in the case of an unconstrained material, or, in components,
Acipjtjoap + Aaipjalys = prii- (4.15)

This equation applies whether the increment is superimposed on a finite motion or a
static finite deformation. If this motion (or deformation) is homogeneous (independent
of X) then equation (4.15) reduces to

Aaipi®jap = priviu, (4.16)

where the coefficients A,;3; now depend only on time. Henceforth, however, we confine
our attention to incremental motions superimposed on a static homogeneous finite defor-
mation so that the coefficients A,;3; are constants that involve material constants and
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the (uniform and constant) components of F, the gradient of the underlying deformation
x = x(X). For this purpose we define the Eulerian form of the incremental displacement
by
u(x, ) = u(x(X), ) = X(X, 1) (4.17)
and update the reference configuration to the configuration B associated with x = x(X)
to give
AopiqjUjpg = PUitt- (4.18)

For an incompressible material the corresponding equation is

AopiqijUipg = Py = Plie, (4.19)
coupled with the incompressibility condition

4.4 Incremental plane waves

We conclude the present section by considering the propagation of incremental plane
waves of the form
u=mf(n-x—ct), (4.21)

where m is a unit vector referred to as the polarization vector, c is the wave speed and
f is a twice continuously differentiable function. For homogeneous plane waves the unit
vector n is real and defines the direction of propagation of the wave (see Figure 2). In
general, however, n (and m and f) may be complex, and the wave is referred to as an
inhomogeneous plane wave.

In respect of the incremental displacement (4.21) equation (4.18) yields

Qo(n)m = pc’m, (4.22)

wave front at time ¢

wave front at t =0

Figure 2. Depiction of a plane wave with unit normal n and polarization m.
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where the so-called acoustic tensor Qo(n) has been introduced. It depends on n and is
defined (in component form) by

[Qo(n)]i; = Aopigjnpng. (4.23)

Equation (4.22) is called the propagation condition. For a given direction n it determines
possible waves speeds and polarizations corresponding to plane waves propagating in
that direction. The wave speeds are determined by the characteristic equation

det[Qo(n) — pc’I] = 0, (4.24)

where I is again the identity tensor. Since Qg(n) is symmetric its eigenvalues are real,
but not necessarily positive. For the wave speeds to be real the eigenvalues pc? must be
positive. If this is the case then for the n in question three real plane waves exist. Now,
from (4.22) and (4.23), we obtain

p62 = [Qo(n)m] - m = Agpiqnpngmim;, (4.25)

and we see, with reference to (2.25), that if the strong ellipticity condition holds then
pc? > 0 for all directions of propagation n, i.e. strong ellipticity guarantees that the
speeds of homogeneous plane waves are real.

Turning next to incompressible materials, in addition to (4.21) we need to take p to
have a similar form, specifically p = ¢f'(n - x — ¢t). Then, substitution into equations
(4.19) and (4.20) yields

Qo(n)m — gn = pc’m, m-n=0. (4.26)

By taking the scalar product of (4.26); with n we obtain ¢ = [Qo(n)m)] - n and hence ¢
can be eliminated from (4.26); to leave

Q;(n)m = pc’m, m-n =0, (4.27)

where we have defined
Qp(n) = Qo(n) —n ® Qp(n)n. (4.28)

Note, in particular, that Q§(n) is not in general symmetric. Moreover, it is singular,
with a zero eigenvalue corresponding to the left eigenvector n. This is a consequence of
the incompressibility constraint, which ensures that there can be at most two real plane
waves, both of them being transverse.

By taking the scalar product of (4.26); with m we obtain (4.25), as in the uncon-
strained case. Thus, strong ellipticity again guarantees that homogeneous plane waves
(when they exist) have real speeds.

5 Plane incremental motions

In this section we apply the general equations in the foregoing section to particular exam-
ples in order to illustrate the influence of pre-stress as compared with the classical theory



Incremental Statics and Dynamics of Pre-Stressed Elastic Materials 19

in the absence of pre-stress. For definiteness we restrict attention to plane incremental
motions in the (x1,z2) plane with displacement u having components

Ul(l‘l,xz,t), Ug(l’l,.fg,t), us =0. (51)

Moreover, we consider only incompressible materials. Then, referred to the principal
axes of V in the considered plane, equations (4.19) reduce to the two equations

Ao1111u1,11 + (Aor122 + Ao2112)u2,12 + Ao2121U1,22 — D1 = pU1 i, (5.2)
A01212u2,11 + (A01122 + A02112)u1,12 + Ao2222u2,22 - 1'7,2 = PU2,tt,
and the incompressibility condition (4.20) reduces to
u1,1 +ug2 = 0. (5.4)

From (5.4) we deduce the existence of a scalar stream-like function t(x1, x2,t) such
that

u =92, uz=—Ya, (5.5)
and on substitution of these expressions into (5.2) and (5.3) followed by elimination of p
by cross differentiation (a special case of (3.18)), we obtain an equation for 4, namely

a 1111 + 26 1122 + Y 2222 = p(V 1166 + Y 2201), (5.6)
which involves the three parameters «, 3,y defined by
a=Api212, 208= Ao + Ao2222 — 2A01122 — 2401221, 7 = Ao2121- (5.7)
On specializing (2.28) to the considered two-dimensional situation we may write m; =
ng, mg = —nq, and the strong ellipticity condition (2.25) then simplifies to
anf +28nin3 +yny >0 (5.8)
for all (two-dimensional) unit vectors n = (nj,n2,0). It follows that necessary and
sufficient conditions for (5.8) to hold are simply
a>0, v>0, B>—-yay. (5.9)

Next, we consider the incremental traction 37 n given by (3.19) on an Eulerian prin-
cipal plane of the underlying homogeneous deformation. We take this to be the plane

x9 = 0, for which ny = 0,no = 1. It is easy to show that the only non-vanishing
components of >"n are Y1 and Yoo, and that
Yo1 = Ap2121u1,2 + (Ao2112 + p)uz 1, (5.10)
and hence, after a short calculation,
Yo1 = Y22 + (v — 02)¥ 11 (5.11)
Also,
Yoo = Ap1122u1,1 + (Aoz2222 + p)uz 2 — p. (5.12)

By differentiating this with respect to z1 and then using (5.2) to eliminate p; we arrive
at the expression

Yoo1 = p¥au — (28 + 7 — 02)W 112 — Y1) 222 (5.13)
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5.1 Application to plane harmonic waves

We now focus on plane harmonic waves and write 1 in the form
1 = Aexplik(z1 cosf + zosinf — ct)], (5.14)

where we have set nq; = cos 0, ns = sin 6 and k is the wave number. Substitution of (5.14)
into equation (5.6) leads to the propagation condition

(4~ —283) cos* 0+ 2(3 — 7) cos® 0 + v = pc?. (5.15)

In the classical theory of incompressible isotropic elasticity we have o = § = v = u, where
p is the shear modulus identified in (3.41), and (5.15) reduces to pc? = u independently
of the direction of propagation. This gives the speed of a classical shear wave. On
inspection of (5.15) we see that in the special case for which the material properties
and/or the state of deformation satisfy 23 = « + v the propagation condition simplifies
to

pc? = acos? O + ysin? 6. (5.16)

For either (5.15) or (5.16) a shear wave can propagate along a principal axis, with pc? = «
corresponding to the x; axis and pc? = 7 to the x5 axis. In the case of (5.16), for a
general (in-plane) direction of propagation, pc? necessarily lies between the values o and
v # a. This need not be so in respect of (5.15), for which the extreme values of pc? are
a,v and (8% —av)/(28 — a —7). The latter is greater than either of o or v if 28 > a+~
and less than either if 20 < a + 7.

For any direction of propagation in the considered plane the wave speed is given by
(5.15) or (5.16). On the other hand, for a given wave speed there will only exist an
associated real direction of propagation if the wave speed lies within permissible bounds.
If this is the case, then (5.16) yields two (in general distinct) directions, symmetric with
respect to the axes. By contrast, for (5.15) there may be two pairs of distinct direc-
tions of propagation. For more detailed discussion we refer to Ogden and Sotiropoulos
(1997), and to Ogden and Sotiropoulos (1998) for corresponding discussion in the case
of unconstrained materials.

Reflection of a plane wave from the boundary of a half-space. We now consider
a wave of the form (5.14) propagating in the material half-space zo < 0 subject to the
pure homogeneous strain with in-plane principal axes of deformation parallel and normal
to the boundary x5 = 0. The boundary xo = 0 is taken to be free of incremental traction
but subject to an underlying normal stress o3. From (5.11) and (5.13) we obtain the
appropriate boundary conditions in terms of 1, namely

Y22 + (v —02)p11 =0 on xy =0, (5.17)
PVt — (28 +7 —02)Y 112 — Y220 =0 on 3 = 0. (5.18)

The wave is incident on the boundary x5 = 0 and, depending on the material proper-
ties and the state of deformation, generates one or two reflected waves and/or a surface
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€2
Ty

Figure 3. Incompressible isotropic elastic half-space subject to pure homogeneous strain
(2 < 0). Plane wave I incident on the boundary x5 = 0 with direction of propagation
at an angle 6 to the boundary; Reflected waves R and R’ with directions of propagation
at angles 6 and ¢’ to the boundary.

wave (see Figure 3). The total solution for 1 consisting of the incident wave and two
reflected waves is written in the form

'I/J _ Aeik:(nla:lJrnzwzfct) _’_AReik(nlwlfnza:zfct) _’_AR/eik/(n/lﬂilJr’ﬂ/zIz*C/t)’ (519)
where R and R’ are the reflection coefficients and k’ and ¢’ are the wave number and
wave speed associated with the second reflected wave. The first reflected wave has the
same speed as the incident wave and is reflected at angle 6 to the boundary, while the
angle of reflection of the second reflected wave is €. Thus, ny = cosf,ng = sinf,n} =
cos @', ny = sin@’. For compatibility of the three waves we must have kc = k'c/, i.e. they

have the same frequency. Furthermore, application of the boundary conditions leads to
kny = k'n} and hence

dny = enf, (5.20)

which is a statement of Snell’s law.

The two cases 28 = a + v and 20 # «a + -y need to be treated separately. Results
for the first case are broadly similar to those for the classical theory in that at most
one reflected wave is possible, although the wave speed does depend on the direction
of propagation. We shall not discuss this case here but refer the reader to Ogden and
Sotiropoulos (1997) for details. The second case is more interesting and reveals several
features that distinguish it from the classical theory. Thus, we now give some attention
to this.

The propagation condition for the incident wave is given by (5.15). This equation
also governs one of the reflected waves (6 is replaced by —#). The propagation condition
for the second reflected wave is

(a+7—28)cos* 0 +2(8 — ) cos® 0+~ = pc’”. (5.21)



