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Review of Probability Theory, Random Variables, 
and Random Fields 

Gordon A, Fenton* and D.V. Griffithgt 
* Department of Engineering Mathematics. Dalhousie University. Canada 

' Division of Engineering. Colorado School of Mines. U.S.A. 

Abstract Regulatory bodies are increasingly asking geotechnical engineers to 
provide rational risk assessments to accompany their designs. In order to provide 
these assessments, practicing geotechnical engineers need a good understanding 
of both basic probability theory and the more sophisticated, but realistic^ ran­
dom field soil models. This chapter lays the groundwork for this understanding. 
Starting with the basics of probability, the reader is lead through the theory of 
random variables and random fields and how they can be used to realistically 
model spatially variable soils. 

1 Event Probabilities 

The probability of an event A. denoted by P [A], is a number satisfying 

0<P[A]<1 

Also, we assume that 
P [0] - 0, P [5] - 1. 

Probabilities can sometimes be obtained using the counting rules discussed in the previous 
section. For example, if an experiment can result in any one of N different but equally 
likely outcomes, and if exactly m of these outcomes correspond to event A. then the 
probability of event ^ is P [A] — m/N. 

1.1 Additive Rules 
Often we must compute the probability of some event which is expressed in terms of 
other events. For example, if A is the event that the company A requests your services 
and B is the event that company B requests your services, then the event that at least 
one of the two companies request your services is ^ U B. The probability of this is given 
by the following relationship; 

If A and B are any two events, then 

V[A U B]^F[A]+F[B]-F[A n B] (1) 

This relationship can be illustrated by the following Venn diagram. The desired 
quantity, P [^ U -B], is the area of ^ U -B which is shaded. If the shaded area is computed 
as the sum of the area of ^ , P [^], plus the area of B, P [-B], then the intersection area, 
P [^ n B]. has been added twice. It must then be removed once to obtain the correct 
probability. 
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Figure 1. Venn diagram illustrating the union A U B. 
Also, 

If A and B are mutually exclusive, i.e. are disjoint and have no overlap, then 

V[A U B]^7[A]+V [B] (2) 

If Ai,A2,...,An are mutually exclusive, then 

P [A, U ... U yl„] - P [A,] + ... + P [A„]. (3) 

Definition: We say that Ai.A^.—.An is apartitionof the sample space 5 if ^1 , ^2 , -—.An 
are mutually exclusive and collectively exhaustive. Collectively exhaus­
tive means that ^1 U ^2 U ... U An = S. 
If A1.A2..... An is a partition of the sample space 5, then 

P [^1 U ... U yl„] - P [^1] + ... + P [An] - P [5] - 1 (4) 

The above ideas can be extended to the union of more than two events. For example. 
For any three events A, B, and C, we have 

P [^ U B U C] - P [^] + P [B] + P [C] 

-v[A n B]-v[A n CP\-v[B n C] 
+ v[A n B n C\ (5) 

This can be seen by drawing a Venn diagram and keeping track of the areas which must 
be added and removed in order to get P [yl U B U C]. 

For the complementary events A and A'^, F[A] +¥ [A'^] — 1. This is often used to 
compute P[yl"] = 1-F[A]. 

2 Conditional Probability 
The probability of an event is often affected by the occurrence of other events and/or 
the knowledge of information relevant to the event. Given two events, A and B, of an 
experiment, P [B | ^] is called the conditional probability of B given that A has already 
occurred. It is defined by 

n n i A . . ^ ^ (6, 
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That is, if we are given that event A has occurred, then A becomes our sample space. 
The probability that B has also occurred within this new sample space will be the ratio 
of the "area" of B within A to the "area" of A. 

Sometimes we know P [B | ^] and wish to compute P [^ H B]. If the events A and 
B can both occur, then 

P [^ n B]^F[B\A]F [A] (7) 

2.1 Total Probability 

Sometimes we know the probability of an event in terms of the occurrence of other events 
and want to compute the unconditional probability of the event. For example, when we 
want to compute the total probability of failure of a bridge, we can start by computing 
a series of simpler problems such as 

1) the probability of bridge failure given a maximum static load, 
2) the probability of bridge failure given a maximum dynamic traffic load, 
3) the probability of bridge failure given an earthquake, 
4) the probability of bridge failure given a flood, 

etc. The Total Probability Theorem can be used to combine the above probabilities into 
the unconditional probability of network failure. We need to know the above conditional 
probabilities along with the probabilities that the 'conditions' occur (e.g. the probability 
that the maximum static load will occur during the design life, etc.). 

The Total Probability Theorem is stated generally as follows; 
Total Probability Theorem: 

If the events Bi,B'2,...,Bf^ constitute a partition of the sample space S (i.e. are 
disjoint but collectively exhaustive) then for any event A in S, 

k k 

^[A=Y.^[Bi n A]=Y.^[A\Bi]V[Bi] (8) 

2.2 Bayes' Theorem 

Sometimes we want to improve an estimate of a probability in light of additional informa­
tion. Bayes' Theorem allows us to do this. It arises from the observation that P [yl n B] 
can be written in two ways; 

P [^ n B]^V[A\B]-V[B] 

^V[B\A]-V[A] (9) 

w hich implies that P [B | yl] • P [yl] ^ P [yl | B] • P [B], or 

p[Bi,4i = ^ M a _ m ,10, 

Bayes' Theorem is stated formally as follows. 
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Bayes' Theorem: 
If the events Bi-Bi-.-.-Bk constitute a partition of the sample space S (i.e. are 
disjoint and collectively exhaustive) then for any event A of S, such that P [A] / 0, 

P[B,\A]^ 
PJBj nA] 

E t i P [Bi n A] 
P[A\B,]P[B,] _P[A\B,]P[B,] 

T.i=i'P{MBi]P{Bi\ P[^] 

for any j — 1, 2,.... k. 
Bayes' Theorem is useful for revising or updating probabilities as more data and infor­
mation becomes available. In the previous example on piezocones, there was an initial 
probability that a piezocone would have been manufactured at plant A: P [A] — 0.5. This 
probability is referred to as the prior probability of A. That is, in the absence of any 
other information, a piezocone chosen at random has a probability of having been man­
ufactured at plant A of 0.5. However, if a piezocone, chosen at random, is found to be 
defective (so that there is now more information on the piezocone), then its probability 
that it was manufactured at plant A reduces from 0.5 to 0.294. This latter probability 
is referred to as the posterior probability of A. Bayesian updating of probabilities is 
a very powerful tool in engineering reliability-based design. 

For problems involving conditional probabilities, event trees are usually the easiest 
way to proceed. However, event trees are not always easy to draw, and the purely 
mathematical approach is sometimes necessary. As an example of a tree which is not 
quite straightforward, see if you can draw the event tree and answer the questions in the 
following Exercise. Remember that you must set up the tree in such a way that you can 
fill in most of the probabilities on the branches. If you are left with too many empty 
branches and no other given information, you are likely to have confused the order of the 
events - try reorganizing your tree. 

2.3 Problem-Solving Methodology 
Solving real-life problems (i.e. 'word problems') is not always easy. It is often not 
perfectly clear what is meant by a worded question. Two things improve one's chances of 
successfully solving problems which are expressed using words: (a) a systematic approach, 
and (b) practice. It is practice that allows you to identify those aspects of the question 
that need further clarification, if any. Below, a few basic recommendations are outlined. 

1) Solving a word problem generally involves the computation of some quantity. Clearly 
identify this quantity at the beginning of the problem solution. Before starting any 
computations, it is good practice to write out your concluding sentence first. This 
forces you to concentrate on the essentials. 

2) In any problem involving the probability of events, you should 
a) clearly define your events. Use the following guidelines: 

i) Keep events as simple as possible. 
ii) if your event definition includes the words "and", "or", "given", "if, 

"when", etc., then it is NOT a good event definition. Break your 
event into two (or more, if required) events and use " H ", " U ", or air. 
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operators to express what you had originally intended. The complement is 
also a helpful operator, see (iii). 

iii) You do not need to define separate events for. for example, "an accident 
occurs" and "an accident does not occur". In fact, this will often lead to 
confusion. Simply define A to be one of the events and use A'^ when you 
want to refer to the other. This may also give you some hints as to how to 
proceed since you know that P [A'^] = 1 — P [^]. 

b) Once your events are defined, you need to go through the worded problem 
to extract the given numerical information. Write this information down in 
the form of probabilities of the events that you defined above. For example, 
P [A] ^ 0.23, P [-B I ^] ^ 0.6, etc. Note that the conditional probabilities, are 
often difficult to unravel. Phrases such as 

'if ... occurs, the probability of ... doubles...' 
'In the event that ... occurs, the probability of ... becomes 0.6' 
'When ... occurs, the probability of ... becomes 0.43' 
'Given that ... occurs, the probability of ... is 0.3"' 

all translate into a probability statement of the form P [^ | _B]. In this case, you 
will likely be using one of the conditional probability relationship (P [yl H -B] = 
P [-B I ^] P [^]), the Total Probability Theorem, or Bayes' Theorem. 

c) Now review the worded problem again and write down the probability that 
the question is asking for in terms of the events defined above. Although the 
question may be in worded form, you should be writing down something like 
P [^ n B] or P [B I yl], etc. Make sure that you can express the desired proba­
bility in terms of the events you defined above. If you can't, then you need to 
revise your original event definitions. 

d) Finally, use the rules of combining probabilities (e.g. probabilities of unions, 
intersections, Bayes' Theorem, etc) to compute the desired probability. 

3 Random Variables and Probability Distributions 
Although probability theory is based on the idea of events and associated set theory, it 
becomes very unwieldy to treat random events like 'time to failure' using explicit event 
definitions. One would conceivably have to define a separate event for each possible time 
of failure and so would soon run out of symbols for the various events. For this reason, 
and also because they allow the use of a wealth of mathematical tools, random variables 
are used to represent a suite of possible events. In addition, since most engineering 
problems are expressed in terms of numerical quantities, random variables are particularly 
appropriate. 
Definition: Consider a sample space S consisting of a set of outcomes {si, s a , . . . ] . If 

X is a function that assigns a real number X{s) to every outcome s G S, 
then X is a random variable. Random variables will be denoted with 
upper case letters. 

Now what does this mean in plain English? Essentially a random variable is a means 
of identifying events in numerical terms. For example, if the outcome Si means that 
an apple was selected and sa means that an orange was selected, then X(si) could be 
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set equal to 1 and J^(s2) could be set equal to 0. X > 0 then means that an apple 
was selected. Now mathematics can be used on X, ie. if the fruit picking experiment is 
repeated n times and xi — A'i(s) is the outcome of the first experiment, X2 — ^2(s) the 
outcome of the second, etc., then the total number of apples picked is Yl7=i ^i- ^o^e 
that mathematics could not be used on the actual outcomes themselves, e.g. picking an 
apple is a real event which knows nothing about mathematics nor can it be used in a 
mathematical expression without first mapping the event to a number. 

For each outcome s, there is exactly one value oi x — X{s). but different values of s 
may lead to the same x. 

The above discussion illustrates in a rather simple way one of the primary motivation 
for the use of random variables - simply so that mathematics can be used. One other 
thing might be noticed in the previous paragraph. After the 'experiment' has taken place 
and the outcome is known, it is referred to using the lower case, Xi. That is Xi has a 
known fixed value while X is unknown. In other words x is a realization of the random 
variable X. This is a rather subtle distinction, but it is important to remember that X is 
unknown. The most that we can say about X is to specify what its likelihoods of taking 
on certain values are - we cannot say exactly what the value of X is. 

3.1 Discrete Random Variables 

Discrete random variables are those that take on only discrete values {x\ .x^-- • •}• ie. have 
a countable number of outcomes. Note that countable just means that the outcomes can 
be numbered 1,2,..., however there could still be an infinite number of them. For 
example, our experiment might be to count the number of soil tests performed before 
one yields a cohesion of 200 MPa. This is a discrete random variable since we outcome is 
one of 0 , 1 , . . . , but the number may be very large or even (in concept) infinite (implying 
that a soil sample with cohesion 200 MPa was never found). 
Discrete Probability Distributions 

As mentioned previously, we can never know for certain what the value of a random 
variable is (if we do measure it, it becomes a realization - presumably the next mea­
surement is again uncertain until it is measured, and so on). The most that we can say 
about a random variable is what its probability is of assuming each of its possible values. 
The set of probabilities assigned to each possible value of X is called a probability 
distribution. The sum of these probabilities, over all possible values, must be 1.0. 
Definition: The set of ordered pairs {x,fx{x)) is the probability distribution of the 

discrete random variable X if, for each possible outcome x, 
l ) 0 < / , ( x ) < l , 

2) $ ] / . ( a : ) - l , 

3) P[X^x]^fAx) 
fx{x) is called the probability mass function of X. The subscript is used 
to indicate what random variable is being governed by the distribution. 
We shall see when we consider continuous random variables why we call 
this a probability 'mass' function. 
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Discrete Cumulative Distributions 

An equivalent description of a random variable is the cumulative distribution function 

(CDF), which is defined as follows; 

Definition: The cumulative distribution function, Fx (x) of a discrete random variable 

X. with probability mass function fx{x). is defined by 

Fx{x)^V[X<x]^Y.^-^'^) (12) 
t<x 

We say that this is equivalent to the probability mass function because one can be 

obtained from the other, 

fx{xi)^Fx{xi)-Fx{xi-i) (13) 

3.2 Continuous Random Variables 

Continuous random variables can take on an infinite number of possible outcomes -

generally X takes values from the real line 5R. To illustrate the changes involved when 

we go from the discrete to the continuous case, consider the probability that a grain 

silo experiences a bearing capacity failure at exactly 4.3673458212... years from when 

it is installed. Clearly the probability that it fails at exactly that instant in time is 

essentially zero. In general the probability that it fails at any one instant in time is 

vanishingly small. In order to characterize probabilities for continuous random variables, 

we can't use probabilities directly (since they are all essentially zero) - we must use 

relative likelihoods. That is, we say that the probability that X lies in the small interval 

between x and x + dx \s fx{x) dx. or 

V[x<X <x + dx]= fx{x)dx (14) 

where fx{x) is now called the probability density function (pdf) of the random variable 

X. The word density is used because "density" must be multiplied by a length measure in 

order to get a "mass". Note that the above probability is vanishingly small because dx is 

vanishingly small. The function fx{x) is now the relative likelihood that X lies in a very 

small interval near x. Roughly speaking, we can think of this as P [X — 2:] = fx{x)dx. 
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Figure 2. Cumulative distribution function for the exponential distribu­
tion. 

Continuous Probability Distributions 

Definition: The function fx{x) is a probability density function for the continuous 

random variable X, defined over the set of real numbers, if 

1) 0 < fx{x) < oc, for all —oc < x < +oc, 

/

oo 
fx{x)dx = 1 (i.e. the area under the pdf is 1.0), 

-oc 
rb 

3) P[a<X <b]^ / fx{x)dx (i.e. the area under fx{x) between a 
J a 

and b). 
NOTE: it is important to recognize that, in the continuous case, fx{x) is no longer a 

probability. It has units of probability per unit length. In order to get probabilities, we 

have to find areas under the pdf, i.e. sum up values of fx{x)dx. 

Continuous Cumulative Distribution 

The cumulative distribution function (cdf), for a continuous random variable is basically 

defined in the same way as it is for a discrete distribution. 
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Definition: The cumulative distribution function, Fx{x). of a continuous random 
variable X having probability density function fx{x)., is defined by the 
area under the density function to the left of x 

Fx{x) ^F[X<x]^ r Mt)dt (15) 

As in the discrete case, the cdf is equivalent to the pdf, in that one can be obtained from 
the other. It is simply another way of expressing the probabilities associcated with a 
random variable. Since the cdf is an integral of the pdf. the pdf can be obtained from 
the cdf as a derivative, ie. 

A ( . ) ^ ^ (.0, 

4 Measures of Central Tendency, Variability, and Association 
A random variable is completely described, as well as can be. if its probability distri­
bution is specified. However, we will never know the precise distribution of any natural 
phenomenon. Nature cares not at all about our mathematical models and the 'truth' 
is usually far more complex than we are able to represent. So we very often have to 
describe a random variable using less complete, but more easily estimated, measures. 
The most important of these measures are central tendency and variability. Even if the 
complete probability distribution is known, these quantities remain useful because they 
convey information about the properties of the random variable that are of first impor­
tance in practical applications. Also, the parameters of the distribution are often derived 
as functions of these quantities, or they may be the parameters themselves. 

The most common measures of central tendency and variability are the mean and 
the variance, respectively. In engineering, the variability of a random quantity is of­
ten expressed using the dimensionless coefficient of variation which is the ratio of the 
standard deviation over the mean. Also, when one has two random variables, X and Y, 
it is frequently of interest to measure how strongly they are related (or associated) to 
one another. A typical measure of the strength of the relationship between two random 
variables is their covariance. As we shall see, covariance depends on the units of the 
random variables involved and their individual variabilities, and so a more intuitive mea­
sure of the strength of the relationship between two random variables is the correlation 
coefficient, which is both dimensionless and bounded. All of these characteristics will be 
covered in this section. 

4.1 Mean 
The mean is the most important characteristic of a random variable, in that it tells us 
about its central tendency. It is defined mathematically as follows; 
Definition: Let X be a random variable with probability density function f{x). The 

mean or expected value of X, denoted fix-, is defined by 

lix ^E[X]^Y]xf{x) if X is discrete (17a) 
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/

oo 

xf{x)dx if X is continuous. (l^S) 

-oc 

where the subscript on fi. when present, denotes what yu is the mean of. 
Expectation 
The notation E [X\ refers to a mathematical operation called expectation. The expecta­
tion of any random variable is a sum of all possible values of the random variable weighted 
by the probability of each value occurring. For example, if X is a random variable with 
probability (mass or density) function, fx{x)., then the expected value of the random 
variable g{X), where g is any function of X, is 

Hg^x) = E [giX]] = ^g{x)fx{x) if X is discrete 

f^9(X) 
/

oc 

g{x)fx{x)dx if X is continuous. (18) 

-oc 

If we have a sample of observations , xi.X2;.-.;Xn. of some population X. then the 
population mean, fix-, is estimated by the sample mean. x. defined as 

Sample Mean: x = — \^ Xi 
n •̂ —' n 

2 = 1 

4.2 Median 
The median is another measure of central tendency. We shall denote the median as jl. 
It is the point which divides the distribution into two equal halves. Most commonly, jl 
is found by solving 

Fx{fi)^V[X< 11] ^0.5 

for jl. For example, if fx{x) — Ae^"^ ,̂ then Fx{x) = 1 — e^'^^, and we get 

l _ , - . = 0 . 5 ^ . ^ _ l n ( a 5 ) = 0 ^ 

While the mean is strongly affected by extremes in the distribution, the median is largely 
unaffected. 

In general the mean and the median are not the same. If the distribution is positively 
skewed (or skewed right, which means a longer tail to the right than to the left), as are 
most soil properties, then the mean will be to the right of the median. Conversely, if 
the distribution is skewed left, then the mean will be to the left of the median. If the 
distribution is symmetric, then the mean and the median will coincide. 
NOTE: the median is the point which divides the distribution in half. 
If we have a sample of observations , xi,X2,... ,Xn, of some population X, then the 
population median, jlx, is estimated by the sample median, x. To define x, we must first 
order the observations from smallest to largest, â ĵ̂  < X(2) < • • • < x^„y When we have 
done so, the sample median is defined as 

. _ f 2:((n+i)/2) if n is odd 
^ ^ I i (^(n/2) + X{(n-\-i)/2)) if " is even 

Sample Median 
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4.3 Variance 

The mean (expected value) or median of the random variable X tells where the prob­

ability distribution is "centered". The next most important characteristic of a random 

variable is whether the distribution is "wide", "narrow", or somewhere in between. This 

distribution "variability" is commonly measured by a quantity call the variance of X. 

Definition: Let X be a random variable with probability (mass or density) function 

fx{x) and mean fix- The variance, CT^, oi X is defined by 

al - Var [X] ^E[{X- fi^f] - ^^(a^ - fixffx{x) (19a) 
X 

/

oc 

{x-nxffx{x)dx (19&) 
-oc 

for the discrete and continous cases, respectively. 

The variance of the random variable X is sometimes more easily computed as 

al^E[X']-E'[X]^E[X']-t^l (20) 

The variance, cr^, has units of X^. The square root of the variance, GX, is called the 

standard deviation of X. Since the standard deviation has the same units as X. it is 

often preferable to report the standard deviation as a measure of variability. 

Even though the standard deviation has the same units as the mean, it is often still 

not particularly informative. For example, a standard deviation of 1.0 may indicate sig­

nificant variability when the mean is 1.0, but indicates virtually deterministic behaviour 

when the mean is one million. For example, an error of 1 m on a 1 m survey would be 

considered unacceptable, whereas an error of 1 m on a one thousand km survey might 

be considered quite accurate. A measure of variability which is both non-dimensional 

and delivers a relative sense of the magnitude of variability is the coefficient of variation, 

defined as 

Note that the coefficient of variation becomes undefined if the mean of X is zero. It 

is, however, quite popular as a way of expressing variability in engineering, particularly 

for material property and load variability, which generally have non-zero means. 
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Figure 3. Two distributions illustrating how the position and shape changes 
with changes in mean and variance. 

4.4 CovariancG 

Often one must consider more than one random variable at a time. For example, the 
two components of a drained soil's shear strength, tan((/)') and c', will vary randomly 
from location to location in a soil. These two quantities can be modeled by two random 
variables, and since they may influence one another (or they may be jointly influenced 
by some other factor), they are characterized by a bivariate distribution. 
Properties of the Bivariate Distribution: 
Discrete: fxY{x,y) -VlX - x n Y - y] 

0<fxy{x,y)<l 

all X all y 
Continuous: fxyi^,y)dxdy — F[x < X < x + dx H y <Y < y + dy] 

fxY{x,y) > 0 for all {x,y) e K^ 

/

CX3 POC 

/ fxv{,x,y)dxdy 

rV2 rxi 
P [xi < X < X2 n yi < Y < ya] = / fxY (x, y) dx dy 

J y\ J xi 



Review of Probability Theory, Random Variables, and Random Fields 13 

Figure 4. Example bivariate probability density function, fxY^x.y). 

Definition: Let X and Y be random variables with joint probability distribution 

fxY{x.y). The covariance between X and Y is defined by 

CoY[X.Y]^E[{X-f,x){Y-f,Y)] (22) 

^ ^^{x- fj-xKy - fj'Y)fxY{x,y), 
X y 

/

OO /-OO 

/ {x-l^x){y-I^Y)fxY{x,y)dxdy, 

for the discrete and continuous cases, respectively. 
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The covariance between two random variables X and Y, having means fix and fiy, 
respectively, may also be computed as 

Cov [X, Y] - E [XY] - E [X] E [Y] - E [XY] - II^I^Y (23) 

Although the covariance between two random variables does give information regarding 
the nature of the relationship, the magnitude of Cov [X, Y] does not indicate anything re­
garding the strength of the relationship. This is because Cov [X, Y] depends on the units 
and variability of X and Y. A quantity which is both normalized and non-dimensional 
is the correlation coefficient, to be discussed next. 

4.5 Correlation Coefflcient 
Definition: Let X and Y be random variables with joint probability distribution 

fxv{x.y). The correlation coefflcient between X and Y is defined to 

P„ = ^^5?JM. (24) 
OXOY 

Figure 5 illustrates the effect that the correlation coefficient has on the shape of a bivariate 
probability density function, in this case for X and Y jointly normal. If pxY = 0, then 
the contours form ovals with axes aligned with the cartesian axes (if the variances of X 
and Y are equal, then the ovals are circles). When pxv > 0, the ovals become stretched 
and the major axis has a positive slope. What this means is that when Y is large, X 
will also tend to be large. For example, when pxv ~ 0.6, as shown on the right plot of 
Figure 5, then when Y = 8. the most likely value X will take is around 7, since this is 
the peak of the distribution along the line Y = S. Similarly, if pxY < 0, then the ovals 
will be oriented so that the major axis has a negative slope. In this case, large values of 
Y will tend to give small values of X. 

Figure 5. Effect of correlation coefficient, Pxv, on contours of a bivariate 
probability density function, fxY{x,y)., having px — PY — 5 
and (7x — 1-5 and cry — 2.0. 
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We can show that — 1 < p^Y < 1 as follows: Consider two random variables X and Y 
having variances a^. and (jy, respectively, and correlation coefficient pxv • Then 

Var 
X Y 

0 " Y CTV + 
ol ^ ,Cov[xy] 

> 0 

which implies that pxv > — 1- Similarly, 

Var 
X 

Ox 

Y 

OY 

al , al ^Cov[X,Y] 
- 2 

OXOY 

![l-p.y] 
> 0 

which implies that pxY < 1- Taken together, these imply that —1 < pxY < 1-
The correlation coefficient is a direct measure of the degree of linear dependence 

between X and Y. When the two variables are perfectly linearly related, pxv will be 
either +1 or -1 (+1 if Y increases with X and —1 if Y decreases when X increases). 
When \PXY\ is less that 1, the dependence between X and Y is not completely linear; 
however, there could still be a strong nonlinear dependence. If two random variables 
X and Y are independent, then their correlation coefficient will be 0. If the correlation 
coefficient between two random variables X and Y is 0, it does not mean that they are 
independent, only that they are uncorrelated. Independence is a much stronger statement 
than is pxY — 0; since the latter only implies linear independence. For example, Y — X 
may be linearly independent of X (this depends on the range of X) , but clearly Y and 
X are completely (non-linearly) dependent. 

5 Common Discrete Probability Distributions 
Many engineered systems have the same statistical behaviour - we generally only need a 
handful of probability distributions to characterize most naturally occurring phenomena. 
In this section, the most common discrete distribution will be reviewed (the next section 
looks at the most comment continous distributions). These are the Bernoulli family of 
distributions, since they all derive from the first, 

1) Bernoulli 
2) Binomial 
3) Geometric 
4) Negative Binomial 
5) Poisson 
6) Exponential 
7) Gamma 

The Poisson, Exponential, and Gamma are the continuous-time analogs of the Binomial, 
Geometric, and Negative Binomial, respectively, arising when each instant in time is 
viewed as an independent Bernoulli trial. In this section we consider the discrete members 
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of the Bernoulli family, which are the first five members listed above, looking briefly at 
the main characteristics of each of these distributions and describing how they are most 
commonly used in practice. 

For a more complete description of these distributions, the interested reader should 
consult an introductory textbook on probability and statistics, such as Law and Kelton 
(2000) or Devore (2003). 

5.1 Bernoulli Trials 
All of the discrete distributions considered in this section (and the first two in the next 
section) are derived from the idea of Bernoulli Trials. A Bernoulli trial is an experiment 
which has only two possible outcomes, success or failure (or [1,0], or [true, false], or 
[< 5, > 5], etc). If a sequence of Bernoulli trials are mutually independent with constant 
(stationary) probability, p. of success, then the sequence is called a Bernoulli Process. 
There are many examples of Bernoulli processes: one might model the failures of earth 
dams using a Bernoulli process. The success or failure of each of a sequence of bids 
made by a company might be a Bernoulli process. The failure of piles to support the 
load applied on them might be a Bernoulli process if it can be assumed that the piles 
fail (or survive) independently and with constant probability. However, if the failure of 
one pile is dependent on the failure of adjacent piles, as might be the case if the soil 
structures are similar and load transfer takes place, the Bernoulli model may not be 
appropriate and a more complex, 'dependent', model may be required, e.g. random field 
modeling of the soil and finite element analysis of the structural response within a Monte 
Carlo simulation. Evidently, when we depait from satisfying the assumptions underlying 
the simple models, such as those required for the Bernoulli model, the required models 
rapidly become very much more complicated. In some cases, applying the simple model 
to the more complex problem will yield a ballpark estimate, or at least a bound on the 
probability, and so it may be appropriate to proceed with a Bernoulli model taking care 
to treat the results as approximate. The degree of approximation depends very much 
on the degree of dependence between 'trials' and the 'stationarity' of the probability of 
'success', p. 

If we let 
y _ J 1 if the j * ' ' trial results in a success, /r,r\ 

•̂  \ 0 if the j * ' ' trial results in a failure 

then the Bernoulli distribution, or probability mass function, is given by 

P[X,^l]^p (26) 

F[X,^0]^l-p^q 

for all j — 1,2, Note that we commonly denote 1 — p as q for simplicity. 
For a single Bernoulli trial the following results hold 

E [^,] - E ^ • P [^J ='^= 0(1 - r t + l(rt = P (27a) 

1 

E [^]] ^Y.'^-P{Xj^i\^ 0^(1 - P ) + l '(rt - P 
i=0 
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Var [Xj] - E [X]] - E'^[X^] ̂ p-p'^^pq (27&) 

For a sequence of trials, the assumption of independence between the trials means that 

P [ X i =Xi n X2=X2 n •••X„ = Xn\=P[Xi ^ X i ] P [ X 2 =X2\---P[Xn = X„] (28) 

The Maximum Likelihood Estimate of p is just the average of the set of observations, 
Xi,X2., • • • -Xn. o f X. 

P = 
1 

(29) 
i=l 

Notice that we use a hat to indicate that this is just an estimate of the true parameter 
p. Since the next set of observations will likely give a different value for p, we see that p 
is actually a random variable itself, rather than the true population parameter, which is 
non-random. The mean and variance of the sequence of p can be found by considering 
the random P. 

1 " 

p^-Y^Xi (30) 
i=l 

obtained prior to observing the results of our Bernoulli trials. We get 

E M ^ E Y^x, 

-{np) 
i=\ 

= P (31) 

which means that the estimator given by Eq. (29) is unbiased (that is, the estimator is 
'aimed' at its desired target on average). 

The estimator variance is 

Var P Var 
1 E '̂ 

i = l 

1 " 1 
-^ V Var [Xi] ^ - ^ {npq) 

n 

pq (32) 

where we made use of the fact that the variance of a sum is the sum of the variances 
if the random variables are uncorrelated. We are assuming that, since this is a 
Bernoulli process, not only are the random variables uncorrelated, they are completely 
independent (the probability of one occurring is not affected by the probability of other 
occurrences). 
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Note that the estimator variance depends on the true value of p on the right-hand-side 
of Eq. (32). Since we are estimating p. we obviously don't know the true value. The 
solution is to use our estimate of p to estimate its variance, so that 

a , ^ - (33) 

Once we have determined the estimator variance, we can compute its standard error. 
which is commonly taken to be equal to the standard deviation and which gives an 
indication of how accurate our estimate is. 

(34) 

For example, if p — 0.01, then we would prefer ap to be quite a bit smaller than 0.01 
and we can adjust the number of observations, n, to achieve this goal. 

Later in this book, we will be estimating the probability of failure, pf, of various clas­
sic geotechnical problems using a technique called Monte Carlo simulation. The standard 
error given by Eq. (34) will allow us to estimate the accuracy of our failure probabil­
ity estimates, assuming that each 'simulation' results in an independent failure/success 
'trial'. 
Applications 
The classic Bernoulli trial is the toss of a coin, but many other experiments can lead to 
Bernoulli trials under the above conditions. Consider the following examples; 

1) Soil anchors at a particular site have a 1% probability of pulling out. When an 
anchor is examined, it is classified as a success if it has not pulled out, or a failure if 
it has. This is a Bernoulli trial with p — 0.99 if the anchors fail independently and 
if the probability of success remains constant from trial to trial. 

2) Suppose that each sample of soil at a site has a 10% chance of containing significant 
amounts of chromium. A sample is analyzed and classified as a success if it does not 
contain significant amounts of chromium, and a tailure if it does. This is a Bernoulli 
trial with p — 0.90 if the samples are independent and if the probability of success 
remains constant from trial to trial. 

3) A highway through a certain mountain range passes below a series of steep rock 
slopes. It is estimated that each rock slope has a 2% probability of failure (resulting 
in some amount of rock blocking the highway) over the next 10 year. If we define 
each rock slope as a trial which is a success if it does not fail in the next 10 years, 
then this can be modeled as a Bernoulli trial with p — 0.98 (assuming rock slopes 
fail independently - which might not be a good assumption if they generally fail due 
to earthquakes...). 

5.2 Binomial Distribution 
Let Nn be the number of successes in n Bernoulli trials, each with probability of success 
p. Then N„ follows a binomial distribution where 

P [ i V „ - f e ] - ( ' " ' ) P * Q " - * , fe-0,l,2,...,n (35) 
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The quantity p'^q'"-'^ is the probability of obtaining k successes and n — k failures in n 

trials and (") is the number of possible ways of arranging the k successes over the n 

trials. 

For example, consider 8 trials, which can be represented as a series of 8 dashes: 

One possible realization of 3 successes in 8 trials might be: 

F S F F S S F F 

where successes are shown as S and failures as F. Another possible realization might be 

S F F S F F F S 

and so on. Clearly these involve 3 successes, which have probability p^, and 5 failures, 

which have probability q^. Combining these two probabilities with the fact that 3 suc­

cesses in 8 trials can be arranged in (g) different ways leads to 

P [ i V 8 - 3 ] - Q p V - ^ 

which generalizes to the binomial distribution, for n trials and k successes, given above. 

Figure 6. Binomial distribution for n — 10 and p — 0.4. 
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Properties: 
In the following proofs, we make use of the binomial theorem, which states that 

i-Q ^ ^ i=0 '̂  '' 

The expected number of successes in n trials can be found directly from the definition of 
the discrete case expectation. 

7 Tl — 7 

•^1 (i - l ) ! ( n - «)! ^ i ! ( (n - 1) - «)! 

— np{p + q)"^^ 

- np (37) 

since p + q — 1. 
Alternatively, we could write 

E[N„]^E[Xi+X2 + --- + X„] 

= np 

where Xi is a Bernoulli random variable, having expectation p. 
To find the variance of N^. we first need to find 

p^^n-^ 

n - l 

fl! 1 ^^ 

= np{{n — \)p+ 1} 

= npq + n^p^ 

where for the first sum. we made use of the result given by Eq. 37. The variance is thus. 

Var [N^] = E [N^] - E'^[N„] = npq + n^j? - n'^pp = npq (38) 
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The same result could have been obtained much more easily by considering the vari­

ance of a sum of independent random variables, since in this case, the variance of a sum 

is the sum of the variances: 

Var [N„] ^ Var — y j VarXi — npq 
i=l 

5.3 Geometric Distribution 

Consider a Bernoulli process in which Ti is the number of trials required to achieve the 

first success. Thus, if Ti — 3, then we must have had 2 failures followed by a success 

(the value of Ti fully prescribes the sequence of trials). This has probability 

P [Ti — 3] = P [{failure, failure, success}] — q^p 

In general 

P[Ti^k]^q''-^p., k^l.,2,... (39) 

Note that this is a valid probability mass function since 

k=l k=0 ^ 

where we used the fact that for any \alpha\ < 1 (see, e.g., Gradshteyn and Ryzhik, 1980), 

oc I 

fe=0 

As an example, in terms of the actual sequence of trials, the event that the first 
th 

success occurs on the 8 trial appears as 

That is, the single success always occurs on the last trial. If Ti — 8, then we have had 7 

failures, having probability q'. and 1 success, having probability p. Thus 

P [Ti - 8] - q'^p 

Generalizing this for Ti — k leads to the geometric distribution shown above. 
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Figure 7. Geometric distribution for p — 0.4. 

Because trials are assumed independent, the geometric distribution also models the num­
ber of trials between successes in a Bernoulli process. That is, suppose we observe the 
result of the Bernoulli process at trial number 1032. We will observe either a success or 
failure, but whichever is observed, it is now known. We can then ask a question such as: 
What is the probability that the next success occurs on trial 1040? To determine this, 
we start with trial 1032. Because we have observed it there is no uncertainty associated 
with trial 1032, so it does not enter into the probability problem. However, trials 1033, 
1034, . . . , 1040 are unknown. We are asking for the probability that trial 1040 is the first 
success after 1032. In order for this event to occur, trials 1033 to 1039 must be failures. 
Thus, the 8 trials, 1033 to 1040, must involve seven failures (q^) followed by one success 
(p). The required probability is just the product 

P [Ti - 8] - q'p 

What this means is that the geometric distribution, by virtue of the independence 
between trials, is memoryless. It doesn't matter when you start looking at a Bernoulli 
process, the number of trials to the next 'success' is given by the geometric distribution 
(and is independent of the trial number). 
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Properties: 
The mean of Ti, which is also sometimes refered to as the return period or the mean 
recurrence time, is determined as follows: 

OC OC 1 OC J / 

k=l k=l ^ k=l ^ ^ ^ 

= P 

1 

P 
(41) 

where we used Eq. 40 to evaluate the final sum above. We will use the second to last 
sum in the following proof. 

The variance of Tj is obtained from Var [Tj] ^ E [T^] - E^[Ti] as follows; 

E[Tf]^5]^W-^-pE^V-^-P;fE^^' 

thus 

k=l 

d 
dq 

1 
- + 
P 

Vai 

( 
1 ( 1 
2? 
P" 

'[Ti] 

k=l 

^ ^ 
-Q)y 

- E [Tf ] -

^1 + h. 
P P^ 
Q 

•E2[TI] 

1 

oo 

dq 
k=l 

(42) 

Aside: In engineering problems, we often reverse the meaning of 'success' and 'failure'. 
and use the geometric distribution to model 'time' to failure, where 'time' is measured 
in discrete steps (trials). 

5.4 Negative Binomial Distribution 
Suppose we wish to know the number of trials ('time') in a Bernoulli process until the 
nrr success. Letting T^ be the number of trials until the nrr success, then 

F[T^^k]^ ('^~^\"'q''-"' for fe-m.m + 1.... (43) 
\m — \J ' ' 

which is the negative binomial distribution. Whereas a binomial distributed random 
variable is the number of successes in a fixed number of trials, a negative binomial 
distributed random variable is the number of trials for a fixed number of successes. 
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We note that the negative binomial is also often used to model the number of failures 
before the rrr success, which results in a somewhat different distribution. We prefer 
the interpretation that the negative binomial distribution governs the number of trials 

th 
until the m success because it is a natural generalization of the geometric distribution 
and because it is then a discrete analog of the Gamma distribution considered in Section 
1.6.2. 

The name of the negative binomial distribution arises from the negative binomial 
series 

(44) 
k—m 

which converges for \q\ < 1. This series can be used to show that the negative binomial 
distribution is a valid distribution, since 

PC PC / , I X PC ^ , I X 

(45) 
as expected. 

Figure 8. Negative binomial distribution for Tg (ie. m — 3) and p — 0.4. 
We see that the Geometric distribution is a special case of the Negative Binomial dis­
tribution with m — 1. The negative binomial distribution is often used to model 'time 
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tVi to the m failure', where 'time' is measured in discrete steps, or trials. Consider one 
possible realization which has the 3rd success on the 8th trial; 

J L _ S _ _ S _ J L J L J L J L _ S _ 
Another possible realization might be 

F F F S F S F S 
In both cases, the number of successes is 3, having probability p^, and the number of 
failures is 5, having probability q^. In terms of ordering, if T3 — 8, then the 3rd success 
must occur on the 8'th trial (as shown above). Thus, the only other uncertainty is the 
ordering of the other two successes. This can occur in (2) ways. The probability that 
the 3rd success occurs on the 8th trial is therefore given by 

Generalizing this for m successes and k trials leads to the negative binomial distribution 
shown above. 
Properties: 
Mean: 

m j—m 

j=m j=m j=m 
00 

mp 

mp'" 
(1 - Q)™+I 

m 

P 

m\{j — m) 
r,J-™ 

^ , ^. (m + 2)(m + l) 2 (m + 3)(m + 2)(m + l) , 
1 + (m + 1)Q + ^ ^̂  '-q^ + ^ g, -q^ 

(46) 

which is just m times the mean of a single geometrically distributed random variable, 
Ti, as expected since the number of trials between successes follows a geometric dis­
tribution. In fact, this observation leads to the following alternative representation 
ofT™, 

Tm - Ti,i + Ti,2 + • • • + Ti,^ (47) 

where Ti^i is the number of trials until the first success, Tî 2 is the number of trials 
after the first success until the second success, and so on. That is, the Ti^j terms 
are just the 'times' between successes. Since all trials are independent, each of 
the Tî j terms will be independent geometrically distributed random variables, all 
having common probability of success, p. This leads to the following much simpler 
computation, 

m 
E [Tm] = E [Ti,i] + E [Ti,2] + • • • + E [Ti,™] = - (48) 
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since E [Tî ,] — 1/p for alH — 1,2,.. . , m. The mean in Figure 8 is 3/0.4 — 7.5. 
Variance: 

To get the variance, Var[Tm], we'll again use Eq. 47. Due to independence of the 
Tî j terms, the variance of the sum is the sum of the variances. 

Var [T„] - Var [Ti,i] + Var [Ti,2] + • • • + Var [Ti,„] 

— mVar [Ti] 

- ^ (49) 
P 

which is just m times the variance of a single geometrically distributed random 
variable, Ti, as expected. 

5.5 Poisson Distribution 

The Poisson distribution governs many 'rate' dependent processes - for example, arrivals 
of vehicles at an intersection or number of points where a soil's cohesion exceeds some 
high threshold in a region. The Poisson is yet another distribution arising from the 
Bernoulli family and can be derived directly from the binomial distribution by letting 
each instant in time (or space) become an independent Bernoulli trial. For simplicity, 
we will talk about Poisson processes in time, but recognize that they can be equivalently 
applied over space, simply by replacing t with a distance (or area, volume, etc) measure. 

For any non-zero time interval we have an infinite number of Bernoulli trials, since 
any time interval is made up of an infinite number of instants. Thus, the probability 
of success, p, in any one instant must go to zero - otherwise we would have an infinite 
number of successes in each time interval {np ^ ex: as n ^ ex:). This means that we 
must abandon the probability of success, p, in favour of a mean rate of success, X, which 
quantifies the mean number of successes per unit time. 

The basic assumption on which the Poisson distribution rests is that each instant in 
time is a Bernoulli trial, with mean success (arrival) rate given by the parameter A. This 
basic assumption leads to the following statements (which also define A); 

1) successes occur at random and at any point in time (or space), 
2) the occurrence of a success in a given time (or space) interval is independent of 

successes occurring in all other disjoint intervals, 
3) the probability of a success occurring in a small interval, At.is proportional to the 

size of At, ie., is XAt, where A is the mean rate of occurrence. 
4) for At -^ 0, the probability of two or more successes in At is negligible (e.g. a 

Bernoulli trial can only have one success). 
Now define Nt to be the number of successes ('arrivals' or 'occurrences') occurring in 

time t. If the above assumptions hold, then Nt is governed by the following distribution, 

P [ i V f - f e ] - - ^ e - ^ * , A ; - 0 , 1 , 2 , . . . (50) 

where A is the mean rate of occurrence (A has units of 1/time). 
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Figure 9. Poisson distribution for t = 4.5 and A — 0.9. 
Properties 
Mean: 

(Xt) (Af)-'-i 
n^^]=Tr-^e-^^^Xte--Y.ff^_ 

j = o to-

^Xte-^'Y. 
j = o 

{Xiy 

- A t (51) 

The mean of the distribution shown in Figure 9 is E [iV4.g] — 0.9(4.5) — 4.05. 
Variance: 

E [N?] - E f ^ e-'^ = Ate- '̂ Y^U + 1 
j=o 

Xte -\t t.'^^t 
j = o r- J=0 

J=0 

{xty_ 

(Ai)2 + {Xt) 


