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Preface

The Mechanics of Generalized Continua is an established research topic since the
end of the 1950s–early 1960s of the last century. The starting point of this
development was the monograph of the Cosserat brothers, published in 19091 , and
some previous works of such famous scientists like Lord Kelvin, Duhem, Helm-
holtz among others. All these contributions were focussed on the fact that in a
continuum one has to define translations and rotations independently (or in other
words, one has to establish force and moment actions independently as it was done
by Jakob Bernoulli and Euler). At the same time the continuum was not modeled
as an infinite number of continuously distributed points with properties like the
mass, but as an infinite number of continuously distributed infinitesimal small
bodies with properties like the mass.

The reason for the revival in the mid of 1950s of the last century was that some
effects of the mechanical behavior of solids and fluids could not be explained by
the available classical continuum models. Examples of this are the turbulence of a
fluid or the behavior of solids with a significant and very complex microstructure.
Since the suggested new models fulfill all requirements from Continuum Ther-
momechanics (the balance laws were formulated and the general representation of
the constitutive equations were given) the scientific community was satisfied for a
while. At the same time real applicative developments were missed.

Indeed, for practical applications the developed models were not useful. The
reason for this was the gap between the formulated constitutive equations and the
possibilities to identify the material parameters. As is often the case one had much
more parameters compared to classical models, but no facilities to measure all
properties. In addition, computational progress and available machines in these
times were limited.

During the last ten years the situation has drastically changed. More and more
researches emerged, being kindled by the partly forgotten models. Now one has
available much more computational possibilities and very complex problems can
be simulated numerically. In addition, with the increased attention paid to a large

1 E. et F. Cosserat: Cosserat, F.: Théorie des Corps Déformables, Hermann Editeurs, Paris, 1909
(Reprint, Gabay, Paris, 2008).
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number of materials with complex microstructure and a deeper understanding of
the meaning of the material parameters (scale effects) the identification becomes
much more well founded. Thus we have contributions describing the micro- and
macro-behavior, new existence and uniqueness theorems, the formulation of multi-
scale problems, etc., and now it is time to ponder again2 the state of matter and to
discuss new trends and applications.

The main focus in this book will be directed on the following items:

• Modeling and simulation of materials with significant microstructure;
• Generalized continua as a result of multi-scale models;
• Multi-field actions on materials resulting in generalized material models; and
• Comparison with discrete modeling approaches.

This book contains selected papers submitted to the Second Trilateral Seminar
Generalized Continua as Models for Materials With Multi-scale Effects or Under
Multifield Actions, which held at the Leucorea (Lutherstadt Wittenberg, Germany)
from September 26 upto 30, 2012.3 Special thanks to Andreas Kutschke who took
all duties connected with realization of the Seminar. In addition, we kindly
acknowledge Dr. Christoph Baumann and Benjamin Feuchter (Springer Publisher)
for the support of the book project. Last but not least it should be mentioned that
the Seminar was sponsored by grants of the French National Center for Scientific
Research (CNRS), the German Research Foundation (DFG) AL341/41-1, and the
Russian Foundation for Basic Research 12-01-91260RFG.

Magdeburg, December 2012 Holm Altenbach
Paris Samuel Forest
St. Petersburg Anton Krivtsov

2 There were two proceedings within the last years which should be mentioned here: Gérard A.
Maugin, Andrei V. Metrikine (Eds) Mechanics of Generalized Continua - One Hundred Years
After the Cosserats, Springer, 2010 (Advances in Mechanics and Mathematics, Vol. 21) and
Holm Altenbach, Gérard Maugin, Vladimir Erofeev (Eds) Mechanics of Generalized Continua,
Springer, 2011 (Advanced Structured Materials, Vol. 7).
3 The First Trilateral French–German–Russian Seminar held also in Lutherstadt Wittenberg
(Germany) August 9–11, 2010.
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Rasa Kazakevičiūt _e-Makovska Mechanics-Continuum Mechanics, Ruhr Uni-
versity Bochum, Universitätsstr. 150, 44780 Bochum, Germany, e-mail: Rasa.
Kazakeviciute-Makovska@rub.de

x Contributors



Vladimir V. Kazhaev Nizhny Novgorod Mechanical Engineering, Research
Institute of Russian Academy of Sciences, IMASH RAN 85, Belinskogo st.,
Nizhny Novgorod, Russia 603024

Yaroslav E. Kolpakov Morion Inc., Kima ave. 13a, St. Petersburg, Russia
199155, e-mail: jaroslav@morion.com.ru

Anton Krivtsov Institute for Problems in Mechanical Engineering (IPME RAS),
Bolshoy pr. V.O., 61, St. Petersburg, Russia 199178, ; St. Petersburg State Poly-
technical University (SPbSPU), Politekhnicheskaya 29, St. Petersburg, Russia
195251, e-mail: akrivtsov@bk.ru

Arthur Lebée Laboratoire Navier (ENPC-IFSTTAR-CNRS), Ecole des Ponts
Paris Tech, Université Paris-Est, 6-8 avenue Blaise Pascal, 77420 Champs-sur-
Marne, France, e-mail: arthur.lebee@enpc.fr

Bernd Lenhof Chair of Applied Mechanics, Saarland University, Campus A4.2,
D-66123 Saarbrücken, Germany, e-mail: b.lenhof@mx.uni-saarland.de

Christian Liebold Lehrstuhl für Kontinuumsmechanik und Materialtheorie,
Institut für Mechanik, TU Berlin, Einsteinufer 5, 10587 Berlin, Germany, e-mail:
christian.liebold@tu-berlin.de

Gérard A. Maugin Institut Jean le Rond d’Alembert, CNRS UMR 7190,
Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris Cedex 05,
France, e-mail: gerard.maugin@upmc.fr

Thomas M. Michelitsch Institut Jean le Rond d’Alembert, CNRS UMR 7190,
Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris Cedex 05,
France, e-mail: michel@lmm.jussieu.fr

Wolfgang H. Müller Lehrstuhl für Kontinuumsmechanik und Materialtheorie,
Institut für Mechanik, TU Berlin, Einsteinufer 5, 10587 Berlin, Germany, e-mail:
wolfgang.h.mueller@tu-berlin.de

Bhasker Paliwal Unité Mixte Internationale Georgia Tech Lorraine-CNRS, UMI
CNRS 2958, 57070 Metz, France; George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA,
e-mail: bpaliwal@gatech.edu

Igor S. Pavlov Nizhny Novgorod Mechanical Engineering, Research Institute of
Russian Academy of Sciences, IMASH RAN, 85, Belinskogo st., Nizhny Nov-
gorod, Russia 603024, e-mail: ispavl@mts-nn.ru

Wojciech Pietraszkiewicz Institute of Fluid-Flow Machinery, PASci, ul., Gen.
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Shells and Plates with Surface Effects

Holm Altenbach and Victor A. Eremeyev

Abstract The through-the-thickness integration procedure applied to a three-
dimensional (3D) slender body leads to exact two-dimensional (2D) equations of
plates and shells, see [36]. The procedure can be considered as a specific homoge-
nization technique which results in a 2D generalized media—the non-linear theory
of shells of Cosserat type. Within this theory the shell is described as a deformable
surface each point of which has 3 translational and 3 rotational degrees of free-
dom similar to the 3D Cosserat continuum [15]. Below we discuss the through-the-
thickness integration procedure applied to the non-classical problem of the theory
of surface elasticity [21]. The theory can be applied to modeling of surface effects
which are important in mechanics of nanostructured materials [11, 55]. Applying
the through-the-thickness integration procedure we reduce 3D equations to 2D ones.
The effective (apparent) stiffness properties of the shell are changed in comparison
with the classical models of shells. Some examples of a plate bending are discussed
taking into account surface effects.

H. Altenbach
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2 H. Altenbach and V. A. Eremeyev

1 Introduction

Structures, which have a size of several μm and more, as usual are modeled
within continuum mechanics taking into account only the properties of the bulk
material. This statement is valid for any continuum theory—for the classical con-
tinuum mechanics in Cauchy’s sense, Cosserat or micropolar theory and non-local
theories among others. Special two-dimensional theories for plates and shells or
one-dimensional theories for rods and beams can be introduced with the help of the
through-the-thickness integration procedure or the through-the-cross-section inte-
gration procedure, respectively.

With respect to new technological developments an increasing miniaturization of
devices and structural elements must be considered. Because of the changing surface-
volume ratio in comparison with the classical sizes of the devices and structural
elements the effects related to the surface phenomena have a significant influence on
the mechanical behavior and should be taken into account. Here the possibilities to
take into account these effects are demonstrated on plate- and shell-like structures.

1.1 Examples of Surface Phenomena

The influence of surface phenomena in deformable solid bodies is widely presented
in the literature, see for example [6]. The main phenomena can be summarized as it
follows:

• The development of nanotechnologies extends the field of application of the clas-
sical or non-classical theories of plates and shells towards the new thin-walled
structures.

• In general, modern nanomaterials have physical properties which are different
from the bulk material.

• The classical linear elasticity can be extended to the nanoscale by implementation
of the theory of elasticity taking into account the surface stresses, cf. [11, 55].

• In particular, the surface stresses are responsible for the size-effect, that means the
material properties of a specimen depend on its size. For example, Young’s mod-
ulus of a cylindrical specimen increases significantly, when the cylinder diameter
becomes very small [7, 9, 32, 39].

• The surface stresses are the generalization of the scalar surface tension which is a
well-known phenomenon in the theory of capillarity.

The surface stresses which are the reason for the surface phenomena have influence
on the following items:

• phase transitions (nucleation, crystal growth, etc.),
• fracture (Griffith criterion, effective surface energy density, line tension as a energy

of a dislocation core),
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• mechanics of porous media (nanoporous materials can be made stiffer than
non-porous counterparts by surface modification) and

• other problems (surface diffusion, surface waves).

In various publications one reports on the changes of the mechanical properties in
dependence on the size. Experimental results about the increasing Young’s modulus
with the decreasing size of nanowires made of ZnO are presented by Chen et al. [7].
Similar effects are described by Cuenot et al. [9] and Jing et al. [32] in the case
of bending of nanobeams made of Ag and Pb. In [12] the behavior of nanoporous
materials is discussed. In dependence on the size of the pores the material properties
increase or decrease.

Taking into account only the elastic material behavior surface effects can be
modeled within the classical theory of elasticity which was founded and influenced
by French scientists in the 18th/19th century. The following contributions considering
surface effects should be mentioned:

• First investigations of surface phenomena were initiated by Laplace [35], Young
[58] and Gibbs [18].

• A modern treatise taking into account the surface stresses is given, for example, in
the publications [21, 43, 44, 51]. Residual surface stresses are considered in [20,
24–26, 34, 53, 57].

• The treatment by the Finite Element Method or other numerical realizations is
discussed in [27, 29–31].

For further reading about the history and the different approaches to modeling of the
surface energy effects we recommend the reviews [11, 16, 41, 44, 47, 48, 55].

1.2 Basic Three-Dimensional Equations of Elasticity
with Surface Effects

Let us summarize briefly the governing equations of the theory of elasticity with
surface stresses in the sense of [21]. The reference configuration of the shell-like
elastic body with surface stresses is shown in Fig. 1. The following equilibrium and
boundary equations can be introduced

• Lagrangian equilibrium equation

∇X · P + ρf = 0, (1)

• Equilibrium conditions on the upper and lower surfaces

(n · P − ∇S · S)|ΩS
= t, (2)



4 H. Altenbach and V. A. Eremeyev

X
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i3

t

t t S

n

Fig. 1 Elastic body with surface effects

• Boundary conditions
u|Ωu

= 0 , n · P|Ωf
= t . (3)

Here P is the first Piola-Kirchhoff stress tensor, ∇X the 3D nabla operator, ∇S the
surface (2D) nabla operator, S the surface stress tensor of the first Piola-Kirchhoff
type acting on the surfaces ΩS, u = x − X the displacement vector, x and X are
the position-vectors in the initial and actual configurations, respectively, f and t the
body force and surface load vectors, respectively, and ρ the density. We assume
that the part of the body surface Ωu is fixed, while on Ωf surface stresses S are
absent. Equation (2) is the so-called generalized Young-Laplace equation describing
the surface tension in solids.

The boundary-value problem (1)–(3) should be complemented by constitutive
relations. For the bulk material we use the relation

P =
∂W

∂∇Xx
,

where W is the strain energy density. In the theory of Gurtin and Murdoch [21] the
tensor S is similar to the membrane stress resultants defined as follows

S =
∂U

∂F
,

where U is the surface strain energy density and F = ∇Sx the surface deformation
gradient.

In the case of residual stresses we assume that W and P possess the properties

W(I) = 0, P(I) = 0,
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while there exist residual (initial) surface energy and surface stresses that is

U(A) = U0 �= 0, S(A) = S0 �= 0,

where I and A ≡ I − N ⊗ N are the 3D and the surface unit tensors, respectively. In
other words, we assume that the reference placement for the bulk material is natural
one while for the attached on ΩS membranes we assume the non-natural reference
placement.

1.3 Linearized Relations

In the case of infinitesimal strains of an isotropic body we have the following
constitutive equations:

• For the stresses in the bulk material the Hooke law is valid

P = 2με+ λI trε, (4)

where λ and μ are the Lamé elastic moduli.
• For the surface stresses one can assume

S = S0 + CS : e + S0 · ∇Su, (5)

Here the first part is related to the residual stresses, the second is similar to Hooke’s
law with the elasticity tensor CS, the last part has the origin in the linearization of
the surface Piola–Kirchhoff stress tensor.

In the case of initial uniform surface tension we have S0 = pA and

S = pA + 2μSe + λSA tre + p∇Su, (6)

where p is the initial surface tension, λS and μS are the surface elastic moduli called
also the surface Lamé moduli.

The linearized strain-displacement relations are given as it follows

ε =
1

2

[
∇u + (∇u)T

]
, e =

1

2

[
∇SvS · A + A · (∇SvS)T

]
(7)

with
vS = u

∣∣
ΩS

.

The first Eq. (7) is valid for the bulk material, the second one for the surface contri-
butions.
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The number of material parameters is doubled in comparison with the classical
isotropic case: instead of two we have now four. The requirement of the positive
definiteness of the strain energy yields restrictions for λ, μ and λS, μS (see, for
example, [2] and [28])

μ > 0, 3λ+ 2μ > 0; μS > 0, λS + μS > 0. (8)

Note that S0 is an arbitrary second-order tensor, in general.

2 Two-Dimensional Theories of Nanosized
Plates and Shells

The theory of elasticity with surface stresses was applied to the modifications of
the two-dimensional theories of nano-sized plates and shells in [1, 3–5, 10, 14,
19, 22, 23, 37–39, 54, 57, 59], where various theories of plates and shells are
formulated. The approaches can be classified, for example, by the starting point of
the derivation. This can be the well-known three-dimensional continuum mechanics
equations. In contrast, one can introduce à priory a two-dimensional deformable
surface which is the basis for a more natural formulation of the two-dimensional
governing equations. This so-called direct approach should be supplemented by the
theoretical or experimental determination of the material parameters included in the
constitutive equations.

Here we use the general theory of shells presented in [8, 15, 36] for the
modification of the constitutive equations taking into account the surface stresses. We
show that both the stress and the couple stress resultant tensors may be represented
as a sum of two terms. The first term is the volume stress resultant while the second
one determined by the surface stresses and the shell geometry. In the linear case this
modification reduces to the add of new terms to the elastic stiffness parameters. The
influence of these terms on the shell bending stiffness is discussed. We show that the
surface elasticity makes the shell more stiffer in comparison with the shell without
surface stresses.

2.1 Basic Equations of the 6-Parametric
Elastic Shell Theory

The kinematics of the shell can be presented in the actual configuration by the
position-vector r and a triad of three orthogonal vectors dk

{r(q1,q2, t); dk(q1,q2, t)}; dk · dm = δkm, k,m = 1, 2, 3,
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Fig. 2 Actual configuration
of the shell

i3

i1

i2

r 1
2

d1

r2

d2 n
d3

r1

where δkm is the Kronecker symbol, see Fig. 2. For the reference configuration one
has the position-vector R and the triad Dk

{R(q1,q2); Dk(q1,q2)}; Dk · Dm = δkm.

Here q1, q2 are the Gaussian coordinates used for both configurations.
The quality of any continuum theory (three- or lower dimensional) depends

significantly on the correct formulation of the corresponding constitutive equations
that is in the case of elastic material the strain energy function. Let us assume

W = W(F, Q, ∇SQ) (9)

with
F

�
=∇Sr, Q

�
= Dk ⊗ dk ,

∇S(. . .)
�
= Rα∂(. . .)/∂qα .

The base vectors are defined as

Rα · Rβ = δαβ, Rα · N = 0, Rα = ∂R/∂qα , α,β = 1, 2 .

Q is an orthogonal tensor called the microrotation tensor, and N is the unit normal
to the surfaceΩ in the reference configuration. After application of the principle of
the frame indifference W takes the form

W = W(E,K) (10)

with the strain measures which are given by
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E
�
= F · QT − A, K

�
=

1

2
Rα ⊗

(
∂Q
∂qα

· QT
)

×
. (11)

Here (. . .)× denotes the vectorial invariant of the second-order tensor. In particular,
for a diad it is given by

(a ⊗ b)× = a × b.

The Lagrangian equilibrium equations are formulated as it follows

∇S · T + q = 0, ∇S · M +
[
FT · T

]
× + c = 0. (12)

The force and the moment tensors T and M can be computed from

T
�
=
∂W
∂E

· Q, M
�
=
∂W
∂K

· Q . (13)

They are the resultant tensors of the first Piola-Kirchhoff type on the deformable
surface, while q and c are the external surface force and moment vectors, respec-
tively. The equilibrium equations (12) are the exact consequence of three-dimensional
equilibrium equations, see [8, 36]. Within the framework of the theory the approxi-
mation error is localized in the constitutive equation (10) only. The strain measures
E and K are work-conjugate to the respective stress measures.

2.2 Plates and Shells with Surface Stresses

Applying the through-the-thickness integration technique described in [36] to
shell-like bodies with surface stresses, we obtain the following 2D constitutive equa-
tions for nano-sized plates and shells, see [1]:

T∗ = T + TS , M∗ = M + MS , (14)

where

• T,M are classical resultant tensors given by

T =

∫
G · Pdζ , M = −

∫
G · P × zdζ (15)

with ∫
(. . .)dζ =

∫h+

h−

(. . .)dζ

and
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• TS,MS are the resultant tensors induced by surface stresses S± acting on the shell
faces Ω±

TS = G+S+ +G−S− , (16)

MS = −
h

2
[G+(S+) × z+ −G−(S−) × z−] .

Here z is the base reference deviation and G ≡ −N × (A − ζ∇SN) × N is the
geometrical tensor, G ≡ det(A − ζ∇SN) is the geometric scale factor defined in
[36], ζ is the coordinate along the unit normal N in the reference placement, G± =
G

∣∣
ζ=±h/2, and h is the shell thickness, see Fig. 3.

3 Linear Theory of Plates with Surface Stresses

The theory can be significantly simplified for plates and infinitesimal strains. In this
case the shell strain energy density is given by

2W = α1tr2E‖ + α3tr
(

E‖ · ET‖
)

+ α4N · ET · E · N

+β1tr2K‖ + β3tr
(

K‖ · KT‖
)

+ β4N · KT · K · N
(17)

with E‖ = E · A and K‖ = K · A. αi and βi are elastic parameters

α1 = Cν, α3 = C(1 − ν), α4 = αsC(1 − ν) ,

β1 = Dν, β3 = D(1 − ν), β4 = αtD(1 − ν)
(18)

with

C =
Eh

1 − ν2
, D =

Eh3

12(1 − ν2)
.

E and ν are Young’s modulus and Poisson’s ratio of the bulk material, αs and αt

are dimensionless coefficients, while h is the shell thickness. αs is similar to the
shear correction factor introduced by Reissner [45] (αs = 5/6) and Mindlin [40]
(αs = π2/12). The value αt = 7/10 was proposed in [42].

Considering the surface stress tensors S± we assume p = 0 in (6). So we have

S± = λ±
SAtre± + 2μ±

Se± ,

2e± = ∇u± · A + A · (∇u±)T ,
(19)

u± = u
∣∣
ζ=±h/2. For the sake of simplicity we consider the symmetric case with

λ±
S = λS and μ±

S = μS. Taking into account (19) we obtain the stiffness parameters
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R

i2

i1

i3

X
1

N

N

2
N

Fig. 3 Geometry (reference configuration) of the shell-like body

for the plate with surface stresses, see [4, 14]

α1 = Cν + 2λS , α3 = C(1 − ν) + 4μS ,
β1 = Dν + h2λS/2 , β3 = D(1 − ν) + h2μS ,
C∗ = C+ 4μS + 2λS,
D∗ = D+ h2μS + h2λS/2 .

(20)

C∗ and D∗ are the effective in-plane and bending stiffness of the plate with surface
stresses. C∗ > C and D∗ > D, i.e. the plate with surface stresses is stiffer. α4 and
β4 do not depend on λS and μS.

As an example let us consider a nanoplate made of aluminium. Using the data
presented in [11] the dependenceD∗ versus the plate thickness h is shown in Fig. 4.
Here μ = 34.7 GPa, ν = 0.3, λS = −3.48912 N/m, μS = 6.2178 N/m, where μ is
the shear modulus. For these values of λS and μS the influence of the surface stresses
is significant if h ≤ 20 nm.

0

1

2

3

0 10 20 30 40 50

, nm

Fig. 4 Bending stiffness versus plate thickness
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4 Viscoelastic Case

In most of contributions on the surface stresses the elastic medium is considered.
On the other hand, dissipative processes in the vicinity of the surface are observed.
These surface phenomena are related to the higher mobility of molecules near the
surface, surface imperfections, absorbates, etc., see e.g. [50]. As a special case of
inelastic behavior the surface viscoelasticity exists for both liquids and solids. The
experimental methods of the surface viscoelasticity are different than in the case of
bulk material, in general. One can use various types of microscopies, light scattering,
etc., see e.g. [13, 17, 33, 49, 52, 56]. For the description of the surface dissipation
of nanosized beams, Ru [46] proposed the one-dimensional constitutive law that is
similar to the model of the standard viscoelastic solids. In [5] we extended Ru’s
model to the case of two-dimensional surface stresses.

The simplest case of analyzing viscoelastic material behavior is based on the
correspondence principle. This principle states that if an elastic solution is known,
the corresponding viscoelastic solution can be obtained by substituting the elastic
quantities in the Laplace transforms of the unknown functions. In other words, one
can use the solution of the boundary-value-problem (BVP) for the elastic material
behavior as the solution of BVP for the viscoelastic material but given in terms
of Laplace transforms. According to this principle we use the results of 3D to 2D
reduction procedure for the elastic shell-like body [4].

Let us introduce the Laplace transform

f(s) =

∞∫

0

f(t)e−stdt.

Applying the Laplace transform to the viscoelastic constitutive equations at the
surface we obtain the relation

S = 2sμS(s)e + sλS(s)(tr e)A, (21)

which coincides formally with the surface Hooke law (6) but with two surface relax-
ation functions μS(t) and λS(t). In addition, we establish the constitutive equations
for the shell considering viscoelastic behavior in the form, see [5]

T =

t∫

−∞
[C1(t− τ)ε̇(τ) + C2(t− τ)Atr ε̇(τ)] dτ+ Γγ⊗ N,

M = −

t∫

−∞
[D1(t− τ)κ̇(τ) +D2(t− τ)Atr κ̇(τ)] dτ× N,
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where ε, κ, and γ are the surface strain measures expressed via the translation and
rotation vectors w and ϑ by

ε =
1

2

(
∇Sw · A + A · (∇Sw)T

)
,

κ =
1

2

(
∇Sϑ · A + A · (∇Sϑ)T

)
,

γ = ∇S(w · N) − ϑ.

The relaxation functions are given by

C1(t) = 2C22 + 4μS(t), C2(t) = C11 − C22 + 2λS(t),

D1(t) = 2D22 + h2μS(t), D2(t) = D33 −D22 +
h2

2
λS(t),

C11 =
Eh

2(1 − ν)
, C22 =

Eh

2(1 + ν)
,

D22 =
Eh3

24(1 + ν)
, D33 =

Eh3

24(1 − ν)
, Γ = kμh,

E = 2μ(1 + ν), ν =
λ

2(λ+ μ)
.

E and ν are the Young modulus and Poisson ratio of the bulk material, Γ is the
transverse shear stiffness, and k the transverse shear correction factor. The tangential
and bending relaxation functions are given by

C =
Eh

1 − ν2
+4μS(t)+2λS(t), D =

Eh3

12(1 − ν2)
+
h2

2
[2μS(t) + λS(t)] . (22)

Let us note that the surface stresses do not influence the transverse shear stiffness.

5 Conclusions

In this paper we discussed the two-dimensional equilibrium equations for plates
and shells taking into account the surface stresses. We presented the expressions for
effective stiffness parameters of plates and shells. In particular, the bending stiffness
is bigger for the shells with surface stresses than for shells without surface elasticity.
Elastic case is extended to viscoelastic behavior.
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43. Podio-Guidugli, P., Caffarelli, G.V.: Surface interaction potentials in elasticity. Arch. Ration.
Mech. Anal. 109(4), 343–383 (1990)

44. Podstrigach, Y.S., Povstenko, Y.Z.: Introduction to Mechanics of Surface Phenomena in
Deformable Solids (in Russian). Naukova Dumka, Kiev (1985)

45. Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–194 (1944)
46. Ru, C.Q.: Size effect of dissipative surface stress on quality factor of microbeams. Appl. Phys.

Lett. 94, 051905–1-051905–3 (2009)
47. Rusanov, A.I.: Surface thermodynamics revisited. Surf. Sci. Rep. 58(5–8), 111–239 (2005)
48. Rusanov, A.I.: Thermodynamics of solid surfaces. Surf. Sci. Rep. 23(6–8), 173–247 (1996)
49. Sahoo, N., Thakur, S., Senthilkumar, M., Das, N.C.: Surface viscoelasticity studies of Gd2O3,

SiO2 optical thin films and multilayers using force modulation and force-distance scanning
probe microscopy. Appl. Surf. Sci. 206(1–4), 271–293 (2003)

50. Seoánez, C., Guinea, F., Castro Neto, A.H.: Surface dissipation in nanoelectromechanical sys-
tems: Unified description with the standard tunneling model and effects of metallic electrodes.
Phys. Rev. B 77(12), 195409 (2008)



Shells and Plates with Surface Effects 15

51. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. Roy. Soc. London
Ser. A Math. Phys. Eng. Sci. 455(1982), 437–474 (1999)

52. Tranchida, D., Kiflie, Z., Acierno, S., Piccarolo, S.: Nanoscale mechanical characterization of
polymers by atomic force microscopy (AFM) nanoindentations: viscoelastic characterization
of a model material. Measur. Sci. Technol. 20(9), 9 (2009)

53. Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural
frequency of microbeams. Appl. Phys. Lett. 90(23), 231,904 (2007)

54. Wang, J., Huang, Q.A., Yu, H.: Young’s modulus of silicon nanoplates at finite temperature.
Appl. Surf. Sci. 255(5), 2449–2455 (2008)

55. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress
effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

56. Wang, X.P., Xiao, X.D., Tsui, O.K.C.: Surface viscoelasticity studies of ultrathin polymer films
using atomic force microscopic adhesion measurements. Macromolecules 34(12), 4180–4185
(2001)

57. Wang, Z.Q., Zhao, Y.P.: Self-instabilityand bending behaviors of nano plates. Acta Mech.
Solida Sin. 22(6), 630–643 (2009)

58. Young, T.: An essay on the cohesion of fluids. Philos. Trans. Roy. Soc. London 95, 65–87
(1805)

59. Zhu, H.X., Wang, J.X., Karihaloo, B.L.: Effects of surface and initial stresses on the bending
stiffness of trilayer plates and nanofilms. J. Mech. Mater. Struct. 4(3), 589–604 (2009)



Geometrical Picture of Third-Order Tensors

Nicolas Auffray

Abstract Because of its strong physical meaning, the decomposition of a symmetric
second-order tensor into a deviatoric and a spheric part is heavily used in contin-
uum mechanics. When considering higher-order continua, third-order tensors natu-
rally appear in the formulation of the problem. Therefore researchers had proposed
numerous extensions of the decomposition to third-order tensors. But, considering
the actual literature, the situation seems to be a bit messy: definitions vary according
to authors, improper uses of denomination flourish, and, at the end, the understanding
of the physics contained in third-order tensors remains fuzzy. The aim of this paper
is to clarify the situation. Using few tools from group representation theory, we will
provide an unambiguous and explicit answer to that problem.

1 Introduction

In classical continuum mechanics [28, 29], only the first displacement gradient is
involved and all the higher-order displacement gradients are neglected in measuring
the deformations of a body. This usual kinematical framework turns out not to be rich
enough to describe a variety of important mechanical and physical phenomena. In
particular, the size effects and non-local behaviors due to the discrete nature of matter
at a sufficiently small scale, the presence of microstructural defects or the existence
of internal constraints cannot be captured by classical continuum mechanics [2, 18,
24]. The early development of higher-order (or generalized) continuum theories of
elasticity was undertaken in the 1960s and marked with the major contributions of [5,
19–21, 26]. For the last two decades, the development and application of high-order
continuum theories have gained an impetus, owing to a growing interest in modeling
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and simulating size effects and non-local behaviors observed in a variety of materi-
als, such as polycrystalline materials, geomaterials, biomaterials and nanostructured
materials (see, e.g., [7, 17, 22]), and in small size structures. In order to take into
account size-effects, the classical continuum mechanics has to be generalized. To
construct such an extension there are, at least, two options:

• Higher-order continua:
In this approach the set of degrees of freedom is extended; a classical example is
the micromorphic theory [6, 11, 20];

• Higher-grade continua:
In this approach the mechanical state is described using higher-order gradients of
the displacement field; a classical example is the strain-gradient theory [19].

In the following section the linear formulation of micromorphic and strain-gradient
theory we will be detailed. The aim is to anchor the analysis that will be made on
third-order tensors into a physical necessity for the understanding of those models.

2 Some Generalized Continua

2.1 Micromorphic Elasticity

Let us begin with the micromorphic approach. In this theory the set of degrees of
freedom (DOF) is extended in the following way

DOF = {u,χ
∼
} ; (u,χ

∼
) ∈ R

3 × ⊗2
R

3,

where ⊗kV stands for the k-th order tensorial power of V. In this formulation the
second-order tensor χ

∼
is generally not symmetric. This micro-deformation tensor

encodes the generally incompatibility deformation of the microstructure. As a con-
sequence, the set of primary state variables (PSV) now becomes

PSV = {u⊗ ∇,χ
∼

⊗ ∇},

where ∇ is the classical nabla vector, i.e.

∇T =

(
∂

∂x

∂

∂y

∂

∂z

)

It can be observed that, despite being of higher-degree, the obtained model is still a
1st-grade continuum. The model is defined by the following set of strain measures:

• ε
∼

= ε(ij) is the strain tensor;
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• e
∼

= u⊗ ∇ − χ
∼

is the relative strain tensor;

• κ� = χ
∼

⊗ ∇ is the micro-strain gradient tensor;

where the notation (..) indicates symmetry under in parentheses permutations. The
first strain measure is the classical one and is, as usually, described by a symmetric
second-order tensor. The relative strain tensor measures how the micro-deformation
differs from the displacement gradient, this information is encoded into a non-
symmetric second-order tensor. Finally, we have the third-order non-symmetric
micro strain-gradient tensor. By duality the associated stress tensors can be defined:

• σ
∼

= σ(ij) is the Cauchy stress tensor;

• s
∼

= sij is the relative stress tensor;

• S� = Sijk is the double-stress tensor.

If we suppose that the relation between strain and stress tensors is linear, the following
constitutive law is obtained:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ
∼

= A≈ : ε
∼

+ B≈ : e
∼

+ C
�

∴ κ�
s
∼

= B≈
T : ε

∼
+ D≈ : e

∼
+ E

�
∴ κ�

S� = C
�

T : ε
∼

+ E
�

T : e
∼

+ F≈
∼

∴ κ�

The behavior is therefore defined by

• three fourth-order tensors having the following index symmetries: A(ij) (lm) ;

B(ij)lm ; Dij lm;
• two fifth-order tensors having the following index symmetries:C(ij)klm ;Eijklm;
• one sixth-order tensor having the following index symmetries: Fijk lmn,

where . . indicates symmetry under block permutations.

2.2 Strain-Gradient Elasticity

In the strain-gradient elasticity the set of degrees of freedom is the usual one, but the
primary state variables are extended to take the second gradient of u into account:

PSV = {u⊗ ∇,u⊗ ∇ ⊗ ∇}

We therefore obtain a second-grade continuum defined by the following set of strain
measures:

• ε
∼

= ε(ij) is the strain tensor;

• η
�

= ε
∼

⊗ ∇ = η(ij),k is the strain-gradient tensor.
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By duality, we obtain the related stress tensors:

• σ
∼

= σ(ij) is the Cauchy stress tensor;

• τ� = τ(ij)k is the hyper-stress tensor.

Assuming a linear relation between these two sets we obtain:

⎧⎪⎨
⎪⎩
σ
∼

= A≈ : ε
∼

+ C
�

∴ η
�

τ� = C
�

T : ε
∼

+ F≈
∼

∴ η
�

The strain-gradient and hyperstress tensors are symmetric under permutation of their
two first indices. The constitutive tensors verify the following index permutation
symmetry properties:

C(ij) (lm) ; M(ij)(kl)m ; A(ij)k (lm)n

2.3 Synthesis

Those two models are distinct but under the kinematic constraint χ
∼

= u⊗ ∇ strain-

gradient elasticity is obtained from the micromorphic model. In the first case, the
micro strain-gradient is element of:

Tijk = {T�|T� =

3∑
i,j,k=1

Tijkei ⊗ ej ⊗ ek}

Assuming that we are in a 3D physical space, Tijk is 27-dimensional and constructed
as Tijk = ⊗3

R
3. For the strain-gradient theory, strain-gradient tensors belong to the

following subspace of Tijk:

T(ij)k = {T�|T� =

3∑
i,j,k=1

Tijkei ⊗ ej ⊗ ek, Tijk = Tjik}

which is 18-dimensional and constructed as1
T(ij)k = (R3 ⊗SR

3)⊗R
3. Therefore,

as it can be seen, the structure of the third-order tensors changes according to the
considered theory.

Facing this kind of non-conventional model, a natural question is to ask what kind
of information is encoded in these higher-order strain measures. In classical elasticity
the physical content of symmetric second-order tensors is well-known through the

1 The notation ⊗S indicates the symmetric tensor product.
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physical meaning of its decomposition into a deviatoric (distorsion) and a spheric
(dilatation) part. But the same result for third-order tensors is not so well-known, and
its physical content has to be investigated. In the literature some results concerning
the strain-gradient tensors can be found, but the situation seems to be fuzzy. In
mechanics,2 third-order tensor orthogonal decomposition was first investigated in
the context of strain-gradient plasticity. According to the authors and the modeling
assumptions the number of components varies from 2 to 4. In the appendices of [25]
the authors introduced a first decomposition of the strain-gradient tensors under an
incompressibility assumption, and expressed the decomposition into the sum of 3
mutually orthogonal parts. This decomposition was then used in [7, 8]. In [17] the
situation is analyzed more in depth, and a decomposition into four parts is proposed.
In some other works, it is said that strain-gradient can be divided into two parts.
Therefore the following questions are raised:

• What is the right generalization of the decomposition of a tensor into deviatoric
parts ?

• In how many orthogonal parts a third-order tensor can be split in a irreducible
way ?

• Is this decomposition canonical ?

The aim of this paper is to answer these questions. These points will be investigated
using the geometrical language of group action.

3 Harmonic Space Decomposition

To study the orthogonal decomposition of third-order tensors, and following the
seemingly work of Georges Backus [3], an extensive use of harmonic tensors will
be made. This section is thus devoted to formally introduce the concept of harmonic
decomposition. After a theoretical introduction, the space of third-order tensors iden-
tified in the first section will be decomposed into a sum of harmonic tensor spaces.
This O(3)-irreducible3 decomposition is the higher-order generalization of the well-
known decomposition of T(ij) into a deviatoric (H2) and spherical (H0) spaces.

3.1 The Basic Idea

Before studying decomposition of third-order tensors, let us get back for a while on
the case of second-order symmetric ones. It is well known that any T(ij) ∈ T(ij)
admits the following decomposition:

2 In field of condensed matter physics this decomposition is known since, at least, the 70’ [15].
3 O(3): the orthogonal group, i.e. the group of all isometries of R

3 i.e. if Q ∈ O(3) det(Q) ± 1
and Q−1 = QT .
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T(ij) = H2
(ij) +

1

3
H0δij = φ(H2

(ij),H
0),

where H2 ∈ H
2 and H0 ∈ H

0 are, respectively, the 5-D deviatoric and 1-D spheric
part of T(ij) and are defined by the following formula:

H0 = Tii ; H2
(ij) = T(ij) −

1

3
H0δij

In fact φ, defined by the expression (3.1), is an isomorphism between T(ij) and the

direct sum of H
2 and H

0

T(ij)
∼= H

2 ⊕ H
0

The main property of this decomposition is to be O(3)-invariant, or expressed in
another way the components (H0, H

∼
2) are covariant with T

∼
under O(3)-action, i.e.

∀Q
∼

∈ O(3), ∀T
∼

∈ T(ij), Q
∼

T
∼

Q
∼

T = φ(Q
∼

H
∼

2Q
∼

T , H0)

Irreducible tensors satisfying this property are called harmonic. By irreducible we
mean that those tensors can not be split into other tensors satisfying this property. In
a certain way harmonic tensors are the elementary gears of the complete tensor. Let
now give a more precise and general definition of this decomposition.

3.2 Harmonic Decomposition

The O(3)-irreducible decomposition of a tensor is known as its harmonic decomposi-
tion. Such a decomposition is well-known in group representation theory. It allows to
decompose any finite order tensor into a sum of irreducible ones [3, 14, 30]. Consider
a n-th order tensor T belonging to T then its decomposition can be written [14]:

T =
∑
k,τ

Hk,τ,

where the tensors Hk,τ are components4 of the irreducible decomposition, k denotes
the order of the harmonic tensor embedded in H and τ separates the same order
terms. This decomposition defines an isomorphism between T and a direct sum of
harmonic tensor spaces H

k [10] as

4 To be more precise, Hk,τ is the embedding of the τth irreducible component of order k into a n-th
order tensor.
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T ∼=
⊕
k,τ

H
k,τ

but, as explained in [12], this decomposition is not unique. Alternatively, the O(3)-
isotypic decomposition, where same order spaces are grouped, is unique:

T ∼=

n⊕
k=0

αkH
k,

where αk is the multiplicity of H
k in the decomposition, i.e. the number of copies

of the space H
k in the decomposition. Harmonic tensors are totally symmetric and

traceless. In R
3, the dimension of their vector space dim H

k = 2k+1. For k = 0 we
obtain the space of scalars, k = 1 we obtain the space of vectors, k = 2 we obtain
the space of deviators, and for k > 2 we obtain spaces of k-th order deviators. The
family {αk} is a function of the tensor space order and the index symmetries. Various
methods exist to compute this family [1, 14, 30]. In R

3 a very simple method based
on the Clebsch-Gordan decomposition can be used.

In the next section this construction is introduced. It worths noting that we obtain
the harmonic structure of the space under investigation modulo an unknown isomor-
phism. The construction of an isomorphism making this decomposition explicit is
an ulterior step of the process. Furthermore, according to the nature of the sought
information, the explicit knowledge of the isomorphism might by unnecessary. As
an example, the determination of the set of symmetry classes of a constitutive tensor
space does not require such a knowledge5 [16, 23].

3.3 Computation of the Decomposition

The principle is based on the tensorial product of group representations. More details
can be found in [1, 14]. The computation rule is simple. Consider two harmonic tensor
spaces H

i and H
j, whose product space is noted G

i+k := H
i ⊗ H

j. This space,
which is GL(3)-invariant, admits the following O(3)-invariant decomposition:

G
i+j =

i+j⊕

k=|i−j|

H
k

For example, consider H
1
a and H

1
b two different first-order harmonic spaces. Ele-

ments of such spaces are vectors. According the above formula the O(3)-invariant
decomposition of G

2 is:

5 Even if some authors explicitly construct this isomorphism [10, 13] this step is useless.


