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P R E F A C E  

The study of structural instability plays a role of primary importance in the field of 
applied mechanics. Despite the remarkable progresses made in the recent past years, 
the structural instability remains one of the most challenging topics in applied me- 
chanics. Many problems have bee:: solved in the last decades but still many others 
remain to be solved satisfactorily. The increasing number of papers published in jour- 
nals and conferences organized by ECCS, SSRC, IUTAM, and EUROMECH strongly 
indicates the interest of scientists and engineers in the subject. A careful examination 
of these publications shows that they tend to fall into one of the two categories. 

The first is that of p rac t i ca l  des ign  d i r ec t i on  in which methods for analyzing 
specific stability problems related to some specific structural typologies are developed. 
The research works are restricted to determining the critical load, considering that it 
is sufficient to know the limits of stability range. These studies are invaluable since 
their aim is to provide solutions to practical problems, to supply the designer with 
data useful for design and prepare norms, specifications and codes. 

The second direction is that of t h e o r e t i c a l  s tudies ,  aiming at a mathematical 
modeling of the instability problems, for a better understanding of the phenomena. 
In these studies, special emphasis is placed on the behavior of structures after the 
loss of stability in the post-critical range. This approach is less familiar to designers 
as its results have not yet become part of current structural design practice. 

A wide range of researches has been developed in both directions: by mathemati- 
cians and engineers specialized in applied mathematics and mechanics, by engineers 
who have been working in the field of space and naval construction, etc... Each of 
these two directions has scored many remarkable achievements, but some incompati- 
bilities exist between them because in the first direction mainly structural designers 
are involved, while in the second one essentially academic researchers alien to practice 
are working. 

The purpose of the course " P h e n o m e n o l o g i c a l  and  M a t h e m a t i c a l  Mode l -  
ing in S t r u c t u r a l  Ins tabi l i t ies"  is to present some recent progress in the filed of 
structural instability, with regard both to practical applications and to the transfer 
of theoretical results to practice, in order to fill the gap existing between the accu- 
mulated theoretical knowledge and practical applications. The course progressively 
covers topics such as phenomenological, mathematical and numeric modeling of insta- 
bility analysis, static and dynamic instabilities, structural instability and catastrophe 
theory. 

The first section " M a t h e m a t i c a l  Mode l l i ng  of In s t ab i l i t y  P h e n o m e n a " ,  
elaborated by Marcello Pignataro and Giuseppe Ruta, begins with the theory of 
motion and stability of equilibrium. For the continuous systems, the bifurcation and 
post-buckling analysis is presented and the effect of initial imperfections is evaluated. 
The examples refer to post-buckling of frames and thin walled compression members. 

Section two P h e n o m e n o l o g l c a l  M o d e l h n g  of I n s t a b l h t y  P h e n o m e n a  , 
elaborated by Victor Gioncu, presents the main directions of research works in the field 
of structural stability, new phenomenological models of evolving systems, instability 



types and a phenomenological methodology for instability design. 
Section three "Model l ing  Buckl ing  In t e r ac t i on" ,  elaborated by Eduardo de 

Miranda Batista, refers to the light steel structures where many modes of stability are 
possible: flexural, torsional-flexural, local and distortional buckling modes. The paper 
presents the effect of interaction between these instability modes from theoretical and 
experimental point of view. 

Section four " C o m p u t a t i o n a l  A s y m p t o t i c  Pos t -buck l ing  Analys i s  of Slen- 
de r  Elas t ic  S t r u c t u r e s " ,  elaborated by Raffaele Casciaro, introduces the computa- 
tional treatment of asymptotic strategy for post-buckling analysis of elastic structures, 
using finite element method. 

Section five "Mechan ica l  Mode l s  for t he  Subclasses  of C a t a s t r o p h e s "  
elaborated by Zsolt Gaspar presents the behavior of some mechanical models aiming 
to show the relation between theory of catastrophes and structural instability. 

The lectures are addressed to post-graduate students (PhD and postdoc), to 
researchers as well as to civil, mechanical, naval and aeronautical engineers involved 
in structural design. 

The coordinators of CISM course wish to thank warmly all the colleagues for the 
excellence of the work performed. Special thanks are also due to CISM Rector, Prof. 
M.G. Velarde, to the Editor of the Series, Prof C. Tasso, and to the entire CISM staff 
in Udine. 

Marcello Pignataro 
Victor Gioncu 



CONTENTS 

Preface 

Mathematical Modelling of Instability Phenomena 
M. P i g n a t a r o  a n d  G. C. R u t a  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

Phenomenological Modelling of Instability 
V. G i o n c u  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

Modelling Buckling Interaction 
E. de M i r a n d a  Ba t i s t a  ..................................................................................... 135 

Computational Asymptotic Post-buckling Analysis of Slender Elastic 

Structures 
R. Casc ia ro  .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195 

Mechanical Models for the Subclasses of Catastrophes 
Z. G a s p a r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277 



Mathematical  Modelling of Instability Phenomena 

M.Pignataro and G.C.Ruta 

University of Roma "La Sapienza", Roma, Italy 

Abstract Liapunov theory is first presented and discrete mechanical systems are 
in particular analysed. Then buckling and postbuckling analysis of continuous me- 
chanical system using the general theory formulated by Koiter are discussed in some 
detail following Budiansky presentation. Finally, the influence of multiple interac- 
tive buckling modes on postbuckling behaviour is analysed in some detail for frames, 
thin-walled members and panels. 

1 Theory of Stability of Mot ion  

1.1 I n t r o d u c t i o n  

In the development of the theory of differential equations, it is possible to distinguish 
two quite different approaches. The first is characterised by the search for a solution 
in closed form or through a process of approximation. The second can be distinguished 
from the first by the fact that information on the solution is sought without actually 
solving the problem. This qualitative analysis was introduced by Poincar~ around 1880 
(Poincar~, 1885) and developed in the following decades, especially in Russia. 
The central problem in qualitative analysis is to investigate the relationship between 
the solution and its neighbourhood. A solution is a curve or a trajectory C in a certain 
space. The question is whether any D trajectory, which at the time t=  0 starts near 
C, tends to remain near C or moves away from it. In the first case, the trajectory C is 
said to be stable, in the second unstable. Liapunov is credited with creating a systematic 
qualitative analysis, which is generally called the theory of stability. In 1892 he published 
the first of a series of fundamental papers "General Problem on the Stability of Motion" 
(Liapunov, 1966), in which he treated the problem of stability in two different ways. 
His so-called first method presupposes explicit knowledge of the solution and is applied 
only to a limited but important number of cases; the second method, or direct method, is 
altogether general and does not require knowledge of the solution. 

1.2 Di f ferent ia l  E q u a t i o n s  

From a historical point of view differential equations were introduced by Newton 
through the laws of mechanics which define the motion of a body subjected to a system 
of forces. Subsequent developments in physics have shown how a wide range of problems 
in completely different fields is governed by laws which are altogether analogous to those 
of mechanics. Thus, it is desirable, as a first step, to describe the types of equations on 
which we shall be working and their properties. 
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The ordinary differential equations which are the basis of the problems we are to 
study are essentially of two types (La Salle and Lefschetz, 1961; Pontriaguine, 1969). 
The first is represented by an equation of n- th order 

y(n) __ f ( y , ~ l , . . . , y ( n - - 1 ) ; t )  (1.1) 

where t is a variable and generally, but not necessarily, represents time, and ~), ..., y(a) 
represent the f i rs t , . . . ,  k-th derivative of y with respect to t. The second type is a system 
of n equations of the first order 

~)i = Yi(yj; t) ( i , j  = 1 , 2 , . . . , n )  (1.2) 

where, unless otherwise specified, the Latin indices are understood to vary from 1 to n. 
The first type can be reduced to the second one if we introduce the new variables 

Yl, Y2, ..., Yn defined by 

Yi = y(i-1) 

In this case equation (1.1) is replaced by the system 

(1.3) 

Y i  - -  Y i + l  ( i , j  -- 1, 2 , . . . ,  n - 1) 
~1~ -- f ( Y j ;  t) (1.4) 

As an example the well known equation of van der Pol 

can be replaced by the system 

ij + k ( y  2 - 1)~) + y = 0 (1.5) 

~/1 - - Y 2  (1.6) 
~/2 - -  - - ] ~ ( Y l  2 - -  1 ) y 2  - -  Y l  

If we consider yl, y2, ..., yn as components of a vector y, and Y1, Y2,. • • ,Yn as compo- 
nents of a vector Y, the system (1.2), can be writ ten in the compact form 

:9 = Y(y ;  t) (1.7) 

In many problems the variable t does not appear explicitly in (1.7). In this case, tile 
system becomes 

y = Y ( y )  (1.8) 

A system of this type is called a u t o n o m o u s •  For example, the system deduced from 
vail der Pol's equation is autonomous. A system of the type (1.7) is n o n - a u t o n o m o u s .  

Once the solution yx --- f l ( t ) , y 2  = f2 ( t ) , . . . ,  Yn = fn(t)  has been determined from 
• iS? n + l  (1 7) or (1.8) a curve, called the in tegral  curve,  in the space ~ y , t  can be associated 

with it (Figure 1). The projection of this curve in the sub-space E~of the y coordinates 
is defined as the t ra jec tory  or simple the m o t i o n ,  and the space E~ is the space of the 
p h a s e s  (Figure 2). For the existence and uniqueness of the solution, the C a u c h y - L i p s c h i t z  
theorem holds. 
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F i g u r e  1. Integral  curve 
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F i g u r e  2. Tra jec tory  

T h e o r e m  1.1. Let b-?n+l be the n + 1 dimensions space Yi t, and let ~2 be a simply *-~y,t 
connected open region in such a space. Let the functions Yi be continuous and admit 
partial derivatives OY~/Oyh at each point of f~. I f  (Yo, to) is a point in f~ there exists a 
unique solution of system (1.7) such that y(to)  = Yo. Such a solution is a continuous 
solution of (yo, to) as such a point varies in f~. 

Let us consider a par t icular  solution v( t )  of sys tem (1.7) and introduce new variables 

x( t )  -- y( t )  - v( t )  

By subs t i tu t ing  (1.9) into (1.7) we obtain  

(1.9) 

where 

-- X(x ,  t) (1.10) 

X(x ;  t) - Y ( x  + v; t) - Y ( v ;  t) (1.11) 

Since in (1.11) X(0 ,  t) = 0, eqs. (1.10) admi t  as a solution x( t)  = 0, which is called 
undisturbed motion or position of equilibrium and furnish the differential equat ions  of 
the disturbed motion x(t)  -¢ 0. In the s tudy  of the stabil i ty of motion (eqs. (1.7), one 
can always refer to the s tudy of stabil i ty of the und is tu rbed  motion.  

Let us now consider the motion defined by the au tonomous  sys tem (1.8) and assume 
tha t  f o r y  = c, with c constant ,  Y ( c )  = O. If we replace y by t i n  (1.8) we can see 
tha t  the sys tem is satisfied, and consequently y = c is a solution to the system. From 
a physical point  of view this means tha t  if the sys tem is initially in c then  it remains  in 
this position, and therefore c is a configuration of equilibrium. The  point c is defined as 
the critical point or equilibrium point. By int roducing the change of coordinates  

x( t )  -- y( t )  - c ~ (1.12) 

one has from (1.8) 
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± -  X(x)  (1.13) 

with 

X(x)  - Y ( x  + c) (1.14) 

whence X(0) - 0, and therefore the equilibrium point of eqs. (1.13) coincides with the 
origin. From now on in studying stability of autonomous system, we can always refer to 
the origin as equilibrium point. 

Let us now introduce the norm of vector x which is indicated with I xll. The most 
common norm is the Euclidean vector length 

n 
2 1 / 2  II x II - ( ~ x~ ) (1.15) 

i = 1  

Two other types of norms which are often encountered are 

x [I - m a x  Ixi t (1.16) 

n 

II x II - ~ I ~  1 (1.17) 
i = 1  

The concepts of stability and of asymptotic stability stated below have been intro- 
duced by Liapunov in 1893 and therefore we speak of stability in the Liapunov sense, 
even if other definitions have been introduced later. 

D e f i n i t i o n  1.2. The solution x --  0 of  the sys tem (1.10) or (1.13) is said to be stable 
in the Liapunov  sense if  for  each positive number  c it is possible to f ind a positive number  
5(c) such that if  

Ix(to) II < 5 (1.18) 

holds, then 

IIx(t) < c ,  Vt > to (1.19) 

D e f i n i t i o n  1.3. The solution x - 0 of the sys tem (1.10) or (1.13) is said asymptotically 
stable in the sense of  Liapunov,  i f  for  each solution x(t) with initial conditions 

II x(t0)II < ~ (1.20) 

we have 

lira ]] x II - 0 (1.21) 
t - -+oo 
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Def in i t ion  1.4. The solution x = 0 of the system (1.10) or (1.13) is said unstable in 
the sense of Liapunov if for each number c and for a positive number 5 however fixed, 
there exists at least a point x(t0) with 

such that 

II x(t0)II < (1.22) 

II x(t)II > vt > to (1.23) 

F i g u r e  3. Types of equilibrium 

Def in i t ion  1.5. The domain of attraction of the solution of equilibrium x = 0 of the 
system (1.10) or (1.13) is defined as the collection of the points x(t0), such that motions 
starting from x(t0) are asymptotically stable. 

Definitions 2, 3, 4 may be visualized in (Figure 3), where S(D) is an open spherical 
region in ft in which the conditions requested by the theorem of existence and uniqueness 
of the solution are satisfied and H(D)  is its boundary. In addition S(R) is the spherical 
region defined by [Ix[I < R and Ilxll = R is the spherical surface H(R) .Then we have 

Def in i t ion  1.6. A motion is stable if for every R < D there exists r < R such that 
a trajectory g(t) with its origin at a point x0 E S(r) remains in the spherical region 
S(R) when t increases; that is to say, a trajectory with origin in S(r) never reaches the 

boundary H(R)  of S(R).  

Def in i t ion  1.7. A motion is asymptotically stable if it is stable and, besides, each tra- 
jectory g(t) with origin in S(r) tends to the origin for t ~ oc. 
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Def in i t i on  1.8. A motion is unstable if for a fixed R < D and for any r, however small, 
there always exists a point xo in S(r),  such that a g(t) trajectory which originates in xo 
reaches the boundary H(R) .  

The stability of motion (1.10) and of equilibrium (1.13) may depend on a certain 
number of parameters, besides the above mentioned disturbances. This is the case, for 
instance, of a rigid bar loaded by a vertical force N and connected to the ground by a 
hinge to which it is applied a linear elastic spring initially unloaded (Figure 4). Eq. (1.7) 
in this case becomes 

jr = Y ( y ; % ; t )  (k = 1, 2 , . . . ,  m) (1.24) 

% being a parameter. This problem is more complicated and can be treated through 
a perturbation analysis. By denoting with v('yk;t) a particular solution of (1.24), intro- 
ducing the change of coordinates 

x(%;  t) = Y(Tk;t) -- v ( 7  k ;t) 

and replacing (1.25) into (1.24) the following equations are obtained 

(1.25) 

= X(x; vk;t) (1.26) 

having posed 

X ( x ;  %; t) = Y ( x  + v; "yk; t) - Y ( v ;  %; t) (1.27) 

Since X(0;'yk;t) = 0, eqs. (1.26) admit as a solution x(7k;t) = 0 which is the undis- 
turbed motion, and permit to determine the disturbed motion x('yk;t) g: 0. 

! 

a' 
F i g u r e  4. Stability depending on parameters 
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1.3 G e n e r a l  T h e o r e m s  on  S t a b i l i t y  

We shall give in this section few basic concepts regarding the second method or direct 
method of Liapunov on the qualitative response of a motion (eqs. (1.10) and (1.13)), 
without solving the relevant differential equations. We emphasize here that  motion is any 
situation of a body defined by a set of state variables (chemical, electrical, mechanical 
processes). In particular, we shall refer first to motions defined by eqs. (1.13) and, 
following Liapunov, we introduce a scalar function V(x) which is said to be positive 
definite in an open simply connected region ft around the origin if the following conditions 
hold 

(a) V(x) together with its first partial derivatives is continuous in ftg; 

(b) V(0) = 0; 
(c) V(x) has an isolated minimum at the origin. 

If, in addition, dV/dt  is non-positive in f~ along the trajectories of motion of system 
(1.13), that  is 

= V~ixi = V~i X i ( X l , X 2 , . . .  ,Xn) ~ 0 (1.28) 

the function V(x) is called a Liapunov function. It is assumed that  X~(xj) and when 

necessary)f~(xj)are continuous. It follows that  l~is a continuous function in t~. In equa- 
tion (1.28), a subscript preceded by a comma indicates differentiation with respect to the 
corresponding variable. Let us  examine the quadratic form 

V(x) = aijxixj (aij = aji , aij C R) (1.29) 

The necessary and sufficient condition for V(x) to be positive definite is that  the 
successive principal minors of the symmetrical matrix of the coefficients [aij] have positive 
determinant (Sylvester). 

Generally, the function V(x) can be represented as a series of powers in x in the 
neighbourhood of the origin 

V(x) = Vp(x)+ V p + l ( x ) + . . .  (1.30) 

where Vp(x) is a homogeneous polynomial in x of degree p. A necessary condition for 
V(x) to be positive definite is that  the lowest degree p of the series of powers (1.30) is an 
even number. Such a condition, however, is not sufficient. In fact, for p - 2 the function 

Vp(x) -- x~ - x~ (1.31) 

is positive definite for x l =  0 and negative definite for x2 = 0. If p is an odd number 
then V(x) can never be a Liapunov function. Let us now pass to the enunciation of some 
basic theorems. 

T h e o r e m  1.9. Stabi l i ty  (L iapunov) .  If  in a certain neighbourhood 12 of the origin 
there exists a Liapunov function V(x), then the origin is stable. 

T h e o r e m  1.10. A s y m p t o t i c  s tabi l i ty  (L iapunov) .  If  there exists in f~ a Liapunov 
function V(x) such that V < 0 then the stability is asymptotic. 
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/ L_.-d 

. s  

F i g u r e  5. Liapunov function F i g u r e  6. Plane of the phases 

Let us first demonstrate the first theorem using the geometrical interpretation of a 
positive definite function V(x), represented in (Figure 5) for x = {Xl, x2}. (Figure 6) 
the curve V(x) = k is represented by the solid line whilst the spheres H(R)  and H(r) 
are indicated by dashes. 

Given then R < D (Figure 3) and H(R), we can find a constant k such that  the curve 
C defined by V(x) = k is contained in H(R) and an r > 0 such that  H(r) is contained 
in C. Let us now consider a trajectory g(x) with initial point x0 belonging to S(r), the 
interior of H(r). In x0 it is V(x0) < k. Furthermore, as V(x) does not increase along 
the trajectories, g(x) never reaches C and so will never reach H(R). Therefore each 
trajectory with origin in S(r) must remain in S(R) and this implies stability. 

The demonstration of the second theorem follows from the previous demonstration, 
since l) < 0 implies that  the trajectory g(x) which starts at x0 E S(r) tends to the origin 
as t ~ oc, and this implies asymptotic stability. 

T h e o r e m  1.11. Instabil i ty  (Liapunov).  Let V ( x ) w i t h  V(O = O)have continuous 
first partial derivatives in f~. Let V be positive definite and let V(x) be able to assume 
positive values arbitrarily near the origin. Then the origin is unstable. 

The demonstration is omitted here. However, it is easy to guess that  the condition 
l) > 0 implies that  the trajectory g(x) which starts from x0 E S(r) where V(x) > 0 
reaches C and therefore H(R), and so we have instability. 

T h e o r e m  1.12. Instabil i ty  (Chetayev).  Let f~ be a neighbourhood of the origin. Let 
V(x) be a given function and ~-~1 a region in f~ with the following properties 

(a) V (x) and V are positive in f~l; 
(b) V (x) has continuous partial derivatives in f~l; 
(c) at the boundary points of ~1 i~tside ~ V(x):  0; 
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(d) the origin is a point belonging to the boundary of f~l. 

Under these conditions the origin is unstable. 

It is not difficult to see that  any t ra jectory g(x) s tar t ing from a point si tuated in f t l  

must leave ft since it cannot cross the boundary of f t l  inside ft. As the origin is s i tuated 
on the boundary of ~"~1 ~ w e  can choose some points inside ~ 1  arbitrari ly close to the origin 
from which trajectories g(x) which start  must leave ft, and this implies instability. 

F i g u r e  7. Representation of Chetayev's theorem on the plane of the phases 

E x a m p l e  1.13. Let us analyse the stability of the trivial solution to the system 

:;b - -  - - y  - - X  3 

~) -- x -  y3 (1.32) 

The function V(x,  y) - x 2 + y2 satisfies the conditions of Liapunov's theorem on 
asymptotic  stability. In fact 

i) V(x, y) => 0, V(0 ,  0) -- 0 

ii) I) = 2 x ( - y -  x 3) + 2y(x - y3) _ _2(X 4 _~_ y 4 )  ~ 0 
(1.33) 

At a point which is arbitrarily near the origin we have l) < 0, and so the origin is 
asymptotical ly stable. 

E x a m p l e  1.14. Analyse the stability of the equilibrium point x = y - 0 of the system 
of equations 

:b -- y3 + x 5 

~) _ _  X 3 _~_ y5 (1.34)  

The function V(z ,  y) = x 4 - y4 satisfies the conditions of Chetayev's  theorem 
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i) V ( x , y ) = >  0, for I x I>l y l 

ii) t) - 4x3(y 3 + x 5) - 4y3(x 3 + y5) = 4(x s _ y8) > 0 for Ix I>] Y l 
(1.35) 

In a neighbourhood of the origin and for Ix  I>1 Y I we have V > 0, l) > 0; thus the 
equilibrium point x = y = 0 is unstable. 

Liapunov theorems presented for autonomous systems (1.13) can be extended to non 
autonomous system (1.10). To this end we introduce a positive definite function W(x).  
V(x;t) is then positive definite if 

(a) V(0; t) = 0 for t ~> 0 
(1.36) 

(b) V(x; t )  > /W(x)  for t ~> 0 and x I < r 

where r is a sufficiently small quanti ty (Figure 3). The function V(x;t) is negative definite 
if, under condition (a) 

V(x; t) .<< -W(x)  

For instance the function 

f o r t ~ > 0 a n d  Ixl < r  (1.37) 

V - -  t (x21 --~ X 2)  - -  2XlX2 COSt 

is positive definite for t > 2. In fact, by choosing W - x~ + x 2 one has 

(1.38) 

V -  W - ( t -  1)(x 2 -+-x 2) - 2XlX2COSt > 0 (1.39) 

In a different example, the function V - e-t(x~ + . . .  + x~) is not positive definite 
in that  V --+ 0 when t ~ oc. In this case it is not possible to find any positive definite 
function W such that  V > W. If, in addition to conditions (1.36), the function V(x,t) 
satisfies the inequality 1 ) -  ov -aT + V,i Xi ~< 0 along the trajectory of motion, we say that  
V(x,t)  is a Liapunov function. 

The function V(x;t) is said to be decrescent (or uniformly small) if it satisfies the 
condition 

IV(x; t)l ~< W(x) for t ~> 0 and Ixl < r (1.40) 

where l/V(x) is a positive definite function. For instance the function V(x; t )  = (sin 
t ) ( x l + . . .  +xn)  is decrescent while the function V(x; t) = sin [ t (x l+ . . .  +xn)] is not de- 
crescent. In the following, theorems on stability for non autonomous system are presented 
without demonstration. 

T h e o r e m  1.15. Stabil i ty  (Liapunov) .  The equilibrium is stable if there exists a 
positive definite function V(x; t )  such that its total derivative V along the trajectory 
of motion (1.10) is not positive. 
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Theorem 1.16. A s y m p t o t i c  stabil i ty (Liapunov) .  The equilibrium is asymptoti- 
cally stable if a positive definite and decrescent function V(x; t) exists such that its total 
derivative along the trajectory of motion (1.10) is negative. 

Theorem 1.17. Ins tabi l i ty  (Liapunov) .  The equilibrium is unstable if a decrescent 
function V(x; t )  exists having the same sign of V along the trajectory of motion (1.10). 

It is important  to remember tha t  the existence of a Liapunov function is a sufficient 
but not necessary condition for stability. 

1.4 Analysis of the Stability of Equilibrium by Linear Approximation 

Let us consider the autonomous system (1.13) ± = X(x)  with X(0)  = 0. If the 
functions Xi are derivable in a neighbourhood of the origin of coordinates, then the 
second member of system (1.13) can be subst i tuted by a series expansion 

Xi - a i j x j  -t- } ~ i ( X l , . . .  , X n )  (1.41) 

where aij - (OXi/OXj)x= o and tIRll is small with respect to IIxll, tha t  is to say 

lim IIRtl = 0 ~ I IR l l -  o(llxll) (1.42) 
x-~0 Ilxl 

Instead of investigating the stabili ty of the equilibrium point x - 0 of system (1.41), 
the stability of the same point of the linear system 

Xi - a i j x j  (1.43) 

is analysed. System (1.43) is called a system of equations of linear approximation with 
respect to system (1.41). The conditions of stability of this system were examined by 
Liapunov and successively generalised by Malkin, Chetayev and others. 

The analysis of stability of the system of equations of linear approximation is a much 
simpler problem than the study of the original system. In this regard there are two useful 
theorems of great practical importance. 

Let us suppose that  the characteristic roots Ai of the matr ix  of coefficients [aij] are real 
and distinct, and let us apply to system (1.4.1) the linear t ransformation of coordinates 
y = P x  with P non-singular and t ime independent. As (d /d t )Px  = Pic, by making use 
of (1.41) we can write 

~r - P ~ -  P A p - l y  ÷ P R  (1.44) 

We now choose the matr ix  P in such a way that  P A P  -1 - diag(A1, A2,... ,An) and 
assume P R  - R*.  Then, the system (1.44) is wri t ten as 

~r - diag(A1, A2, ..., An)y ÷ R* (1.45) 

where it can easily be shown that  

[ I R * ( y ) [ I -  o([ yll) (1.46) 
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The transformation of system (1.41) into system (1.45) is useful for demonstrating the 
following theorems. 

T h e o r e m  1.18. A sufficient condition for the origin of the non-linear system (1.~5) 
to be asymptotically stable is that the characteristic roots are all negative. I f  there is a 
single positive characteristic root, then the origin is unstable. 

Two cases can be distinguished in the demonstration. 

(a) The )~h roots are all negative 

The following Liapunov function is assumed 

from which 

v - + + . . .  + (1.47) 

I)  -- 2(/~1Yl 2 -t-/~2y 2 + . . .  + / ~ n y  2) -~- r ( y )  (1.48) 

where r is small with respect to the terms in parenthesis. In a sufficiently small re- 
gion gt around the origin V and -l) are positive definite functions, and so the origin is 
asymptotically stable. 

(b) Some of the )~h roots, for example /~1, /~2,. . .  ,~p ( p i n )  are positive and the 
rest negative. 

This time we take 

from which 

v -  V l  + + - - - ( 1 . 4 9 )  

2 2 ~ 2 
9 -- 2(/~lYl 2 -~-...-~- ~pyp -- )kp+lYp+ 1 " ' ' - -  /~nYn)-~- r l  (y)  (1.50) 

where, as before, the rl term is small with respect to those in parenthesis. At some 
points which are arbitrarily near to the origin (those for which Yp+l - -  . . . - -  Yn = O) V is 
positive. As for V, since/~l, A2,..., )kp > 0~ it is positive definite in that 9tl region in ~t 
where V is positive definite and therefore, according to the Chetayev theorem, the origin 
is unstable. 

Let us now suppose that some of the )~h are  complex. For example, let A1,... ,Ap be real 
and , ) kp+l ,~p+l , . . . , ) kp+m,~p+ m be complex with p+2m - n. If A1,...,AB are negative 
and )kp+h, )~p+h have negative real part, then we can choose the following Liapunov 
function 

2 
V - y~ + . . .  + yp + yp+l~]p+l -~- . . . -~  Yp+rn~]p+m (1.51) 

and everything proceeds as in case (a), with the origin asymptotically stable. If, on the 
other hand, some of the A1,... ,Ap are positive or some of the )~p+h have a positive real 
part, then we proceed exactly as in case (b) and we find that the origin is unstable. We 
can therefore enunciate the following theorem. 
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T h e o r e m  1 .19 .  A suf f ic ient  condi t ion for  the origin of  the non- l inear  s y s t em  (1.~5) to 
be asymptot ica l ly  stable is that the characteris t ic  roots all have negative real parts.  I f  
there is a characteris t ic  root with posit ive real part, then the origin is unstable.  

If a cer ta in  number  of character is t ic  roots  vanish or have a purely  imaginary  value, 
results from the analysis of the  linear app rox ima t ion  sys tem cannot  be ex tended  to the  
nonl inear  system, as the  nonl inear  te rms  Ri influence the  stabi l i ty of the  system.  

E x a m p l e  1 .20 .  Analyse the  stabil i ty of the  equi l ibr ium point  x = y - 0 of the  sys tem 

k - 2x  + 8 sin y (1 .52)  

~1 = 2 - e x - 3y - cosy  

By expand ing  sin y,cos y and e x in a Taylor series a round  the  origin we can wri te  the  
sys tem in the  form 

2 - 2x + 8y +/~1  (1.53) 
= - x  - 3y + R2 

where t:~ 1 : - @ 3 / 3  + . . .  and R2 = ( y 2 _  x 2 ) / 2  + . . . .  Since the  l imita t ions  (1.42) are 
satisfied we can analyse the  stabil i ty of equi l ibr ium point  of the  linear sys tem 

k -  2x + 8y (1.54) 
~) = - x -  3y 

The  roots  of the  character is t ic  equa t ion  A 2 + A + 2 - 0 are A1,2 - - 1 / 2  -t- i x / ~ / 4 ;  
therefore the  equi l ibr ium point  x = y = 0 of sys tem (1.54) and (1.52) is a sympto t ica l ly  
stable. 

E x a m p l e  1 .21 .  Let us consider the  sys tem 

- y - x f ( x ,  y) (1.55) 
~) = - x  - y f  (x, y) 

and suppose  tha t  the  nonl inear  te rms  x f ( x ,  y) and y f ( x ,  y) satisfy condi t ion (1.42) and 
tha t  f (O, 0) = 0. The  character is t ic  roots  of the  linear sys tem are A1,2 = :t:i and  therefore  
the  analysis of the  stabi l i ty of equi l ibr ium point  x = y = 0 of sys tem (1.55) depends  on 
nonl inear  terms.  In fact, let us choose as L iapunov  funct ion V = (x 2 + y2)/2,  from which 

? = - (x :  + y:)f(x, y) (1.56) 

Three  case can occur 
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f _> 0 in an arbi t rary vicinity of the origin, the origin is stable; 
f < 0 in an arbi t rary vicinity of the origin, the origin is unstable; 
f is positive definite within a certain vicinity of the origin, the origin is asymptotically 
stable. 

Note that  the system of equations studied in Example(1.13) is of the same type as 
system (1.55). In fact, as the characteristic roots of the linearized system a r e  ) ~ 1 , 2  - -  +i,  
the stability of the equilibrium point has been decided by non linear terms. 

1.5 Cr i t er ion  of  N e g a t i v e  R e a l  P a r t s  of  all t h e  R o o t s  of  a P o l y n o m i a l  

In the previous section the problem of the stability of the trivial solution to a wide 
class of systems of differential equations was reduced to the analysis of the sign of the 
real parts of the roots of the characteristic equation. 

If the characteristic equation is a polynominal of high degree, then its solution is very 
difficult, and therefore the methods which allow us to determine whether the roots do or 
do not have negative real parts are of great importance. With  regard to this, we have 
the following 

T h e o r e m  1.22. ( H u r w i t z ) .  The necessary and sufficient condition for  the real parts 
of all the roots of the polynomial 

p(z)  -- Z n d- al zn-1  + . . .  d- a n - l Z  d- an (1.57) 

with positive real coefficients to be negative is that each principal minor  of the Hurwitz  
matr ix  

is positive. 

al 1 0 0 . . .  0 

a3 a2 al 1 . . .  0 
a5 a4 a3 a2 . . .  0 

0 0 0 0 . . .  an 

E x a m p l e  1.23. Let us consider the polynominal 

The Hurwitz conditions require 

-- z 4 + a l z  3 + a2z 2 + a3z + a4 (1.59) 

al > 0, ala2 - a 3  > O, (ala2 - a 3 ) a 3  - a 4 a  2 > 0, a4 > 0 (1.60) 

to be satisfied. 
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2 Equilibrium of Mechanical System 

2.1 S tab i l i t y  of  E q u i l i b r i u m  of  D i s c r e t e  M e c h a n i c a l  S y s t e m s .  L a g r a n g e  and  
H a m i l t o n  E q u a t i o n s  of  M o t i o n  

Lagrange has demonstra ted (Gantmacher,  1970) tha t  the differential equations of 
motion of a system with n degrees of freedom can be wri t ten immediately if we know the 
kinetic potential or Lagrange function defined by 

L = K -  (~ (2.1) 

where K is the kinetic energy and (I) is the potential  energy of the forces acting on the 
system. 

Let ql,q2,..., qn be generalized coordinates with which it is possible to define the 
configuration of the discrete system, and suppose that  the qi (i = 1, 2 , . . . ,  n) are chosen 
in such a way that  in the position of equilibrium we have qi =0. Indicating the position 
vector by r = r(q; t), the kinetic energy of a system of N particles is expressed by the 
relation 

1 ~  )2 1 ~  (Ori cOri'~ 2 
"~(~ --~ "~ -5-~q~ Oj + o t /  

K - -~ i = 1  i = 1  

which can be writ ten in the form 

(2.2) 

1 
K - -~ aij (ti (tj + ai 0i + a0 = K2 + / ( 1  -~- / ( ' 0  ( 2 . 3 )  

for reonomous systems or K = / £ 2  for scleronomous systems. In eq. (2.3) the summat ion  
convention with respect to repeated indices has been adopted. 

The coefficientsaij, ai, a0 are function of q and t in the first case, while aij are function 
of q, only, in the second case. We shall always refer, in the future, to scleronomous 
systems. The external forces Qi are supposed to be conservative, i.e. derivable from a 
potential  (I) = (I)(q) 

Qi - -  --(I)~i 

The Lagrange equations of motions are then 

(2.4) 

which are of the type 

d OL OL 
= o  (2.5) 

-dt 0(li Oqi 

- f (q; ~t) 

which, according to notations of sect. 1.2, can always be reduced to the form 

(2.6) 

- S (x)  (2.7) 

The kinetic potential  L from which the equations (2.5) have been deduced depends 
on the variables q, (t which are called Lagrange variables. Hamilton proposed to assume 
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as basic variables the quantities q and p, where p is the generalized linear momentum 
defined by 

OL 
Pi -- 0(ti = aij(q)(tj (2.8) 

The quantities q, p are called Hamilton variables. By simple steps it is possible to 
express the kinetic energy as a function of q and p, arriving at the expression 

l l i j (q)p ip j  (2.9) 

The potential energy ¢(q)  in terms of the new variables remains unchanged. 
By introducing the Hamiltonian 

H(p; q) = (I)(q) + K(p; q) + C (2.10) 

with C arbitrary constant, it is easily demonstrated that  the following equations hold 

OH 

OH 
[9i= 

Oq~ 

(2.11) 

Equations (2.11) constitute the Hamilton equations of motion and it is possible to 
use them as an alternative to (2.5) in order to study the stability of equilibrium. These 
equations are of the type (2.7). 

2.2 Stabi l i ty  of  Equi l ibr ium A c c o r d i n g  to L iapunov  

Let us consider a system in the state of equilibrium q - 0, ~l = 0 and suppose that  
we apply at the instant t - 0  a perturbat ion characterised by 

q(O) = qo, 61(0) = 61o (2.12) 

We now introduce a norm p which measures the distance between the state of equi- 
librium and the current state and endow p with the following properties 

P(q; (t) > 0 for q # 0, Cl # 0 

P(ql + q2; Cll -~- C12) ~ P(ql; C11) + P(q2; C12) (triangle inequality) (2.13) 

P(aq;  a(t) = lal p(q; gt) (a real) 

Def in i t ion  2.1. Liapunov.  The configuration of equilibrium q = 0, gt = 0 is stable if, 
for every positive number ¢, there exists a second positive number 5(c) with the property 

p [q(t);/t(t)] ~< ¢ (2.14) 

for any t > 0 and for any motion with initial conditions which satisfy 
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P0 = P (q0;/t0) ~ 5(c) (2.15) 

Expressions of p which are suitable for the solution to mechanical problems are, for 
example 

p = v/qiqi + Oi(ti (2.16) 

p - max Iq~ I + max IO~ ] (2.17) 

2.3 L a g r a n g e - D i r i c h l e t  T h e o r e m  

In this section we demonstrate the Lagrange-Dirichlet theorem by following the pre- 
sentation furnished in La Salle and Lefschetz (La Salle and Lefschetz, 1961). We notice 
from (2.10) that along the motion 

OH OH.  
/ ; / -  ._~q~ 0i + ~-p-~piPi- 0 (2.18) 

having made use of (2.11). Relation (2.18) shows that during motion the sum of the 
kinetic energy and of the potential energy remains constant. The theorem is therefore 
enunciated as follows 

T h e o r e m  2.2. (Lagrange-Dir ich le t ) .  If  the potential energy (I)(q) of a conservative 
system is positive definite in the neighbourhood f t :  I]q[[ < D of an equilibrium configu- 
ration, then the configuration of equilibrium is stable. 

Let us assume that the origin q = 0 is a configuration of equilibrium and consider the 
motion arising from the perturbation (2.12) impressed at the instant t = 0. We choose 
the constant C, which appears in (2.10), so that H(0; 0) = 0. Of the two terms q)(q) 
and K(p;  q) forming the Hamiltonian H(p;  q), the kinetic energy is always positive 
definite. If the potential energy has an isolated minimum by correspondence with the 
configuration of equilibrium q - 0, then H(p;  q) is also positive definite, and as/1/= 0 
in conservative systems, the function H is a Liapunov function. Therefore in accordance 
with the Liapunov theorem in section 1.3, the position of equilibrium is stable. 

The Lagrange-Dirichlet theorem on the stability of equilibrium does not give any 
information on the behaviour of a mechanical system when the potential energy corre- 
sponding to a configuration of equilibrium does not exhibit a minimum. There are two 
theorems regarding this, accredited to Liapunov and Chetayev, respectively, which are 
enunciated here without proof. 

T h e o r e m  2.3. T h e o r e m  on ins tabi l i ty  (L iapunov) .  If  the potential energy (I)(q) 
of a conservative system has an isolated maximum corresponding to a configuration of 
equilibrium, then the configuration of equilibrium is unstable. 

T h e o r e m  2.4. T h e o r e m  on ins tabi l i ty  (Che tayev ) .  If  the potential energy (I)(q) of a 
conservative system is a homogeneous function of the coordinates q and if, corresponding 
to a configuration of equilibrium, (I)(q) does not have a minimum, then the configuration 
of equilibrium is unstable. 
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E x a m p l e  2.5. Let us suppose that the potential energy of a system is of the type 
(I)(q) = Aqlq2...  qn, with A positive real constant, and that q = 0 is a configuration 
of equilibrium. The aim is to examine the type of equilibrium of such a configuration. 
According to the Chetayev theorem, we can assert that  the configuration of equilibrium 
q = 0 of the system is unstable. 

3 Stability of Equilibrium of Mechanical Autonomous  Systems 
and Postcritical Behaviour 

3.1 Discrete Systems 

We have furnished in sect. 1.3 the necessary and sometimes sufficient conditions 
for the Liapunov function to be positive definite and therefore for the equilibrium of 
a general system to be stable. The same arguments hold true for a mechanical system 
when,according to Lagrange theorem, the total potential energy (I) (q) is employed instead 
of V(x). More in general, by assuming that q)(q) is a continuous regular function we 
write the series expansion 

~(q) = ~2(q) 4- ~3(q) 4- ~4(q) 4- . . .  

1 ( 0 2 ~ )  1 ( 0 3 ( I )  ) 

= - qiqj + -6 OqiOqj O q h  q=O 2 OqiOqj q=O 1(o4o) 
qiqjqhqk + . . .  

+ -~ Oqi Oqj Oqh Oqk q=0 

qiqjqh 

( i , j ,h ,k  = 1 , . . . , n )  

(3.1) 

where derivatives are evaluated at the origin and the first order derivative term vanishes 
because of the equilibrium at that  point. In alternative form, eq. (3.1) is written as 

q)(q) = Cijq~qj + Cijhqiqjqh + Cijhkqiqjqhqk + . . .  (i, j, h, k = 1 , . . . ,  n) (3.2) 

The m a t r i x  [Cij] is called stiffness matrix in the configuration of equilibrium. If the 
quadratic form Cijqiqjis positive definite, negative definite or indefinite, then it prevails 
on higher order terms and consequently the equilibrium is stable in the first case or 
unstable in the second and third case. If it is positive semidefinite (positive definite in 
all directions except in one direction (t where (I)2((t) = 0), then higher order terms must 
be analysed. The total potential energy is then positive definite if 

q)3((t) = 0 (3.3) 

(I)4 ((t) > 0 (3.4) 

where (3.3) is a necessary and sufficient condition and (3.4) is a necessary condition only. 
For (3.4) to be also sufficient, (I)4((t) must be "sufficiently larger" than zero. As an 

example, let us consider the function 
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q~(q) - q~ + q~q2 + cq 4 (3.5) 

of a two degrees of freedom system where c is a constant.  Along the direction q2 = 0 the 
quadratic and cubic terms vanish and besides (I)(q) > 0 if c > 0. This condition is only 
necessary but not sufficient. To show this, we observe that  (3.5) can be rewrit ten in the 
form 

1 1 
q)(q) -- (q2 + =q12) 2 + ( c -  -;)ql 4 

z q: 
(3.6) 

Along the curve 

1 2 
q2 - - ~ q l  (3.7) 

the energy is positive definite if c > 1//4 and negative definite if c < 1//4. Therefore the 
sufficient condition for stability is c > 1/4. The results of this analysis are represented 
in (Figure 8). 

The variational equation 

5q)2(q)5(q) = 0 (3.8) 

is an eigenvalue problem which furnishes the bifurcation points along the fundamental 
path and one or more coincident or nearly coincident buckling modes. In addition, ini- 
tial imperfections may by present in the structures as geometric imperfections, loads 
eccentricity and so on. 

¢5 

' q 2  

F i g u r e  8. Representation of the function (3.6) for c < 1//4 

The entire analysis regarding the solution to eq. (3.8), the evaluation of all equilibrium 
paths for perfect structures, the effect of the interaction between several simultaneous 
buckling modes in the presence or without initial imperfections, will be analysed in detail 
in dealing with continuous systems. Actually, the theory of buckling and postbuckling 
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behaviour for discrete and continuous systems follows parallel directions and is based on 
perturbation theory. 

4 Equi l ibr ium of  M e c h a n i c a l  C o n t i n u o u s  S y s t e m s  

4.1 Introduction 

In this chapter we present a resum5 of Koiter general theory of elastic stability (Koiter, 
1945) in the form reformulated by Budiansky (Budiansky, 1974), focusing in particular 
our attention on interactive buckling. 

The subject of interactive buckling has received a great deal of attention in the last 
decades, after Koiter and Skaloud (Koiter and Skaloud, 1963) have pointed out the dan- 
ger of naive optimization without due regard to imperfection sensitivity. Van der Neut 
(Van der Neut, Springer Verlag, Berlin 1969) formulated a simple mechanical model to 
investigate the behaviour of a thin-walled column. Graves-Smith (Graves-Smith, 1967) 
investigated the full range behaviour of a locally buckled box column including the in- 
teraction of the overall mode as well as plasticity effects. 

After these pioneering works there has been a spread of studies on this subject. With 
regard to framed structures we mention the works by Pignataro and Rizzi (Pignataro 
and Rizzi, 1983; Rizzi and Pignataro, 1982) who investigated symmetric and asymmet- 
ric structures. Interaction between two and three overall buckling modes in thin walled 
members was studied by Grimaldi and Pignataro (Crimaldi and Pignataro, 1979). Stiff- 
ened panels have been analysed by Tveergaard (Tvergaard, 1973) and successively by 
Koiter and Pignataro (Koiter and Pignataro, 1976). Axially stiffened cylindrical shells 
have been investigated by Byskov and Hutchinson (Byskov and Hutchinson, 1977). All 
these works furnish an analitycal solution to the problem. 

More recently, in order to override mathematical difficulties, a semianalytical ap- 
proach has been utilised by many researchers who have employed the finite strip method 
to study local-overall interaction in plated structures such as thin-walled members. 
Among these authors we mention Hancock (Hancock, 1981), Bradford and Hancock 
(Bradford and Hancock, 1984), Sridharan et al. (Benito and Sridharan, 1984-1985; Srid- 
haran, 1983; Sridharan and Ali, 1985; Sridharan and Benito, 1984), Pignataro et al. 
(Pignataro and Luongo, 1987; Pignataro, Luongo et al., 1985). The problem of the in- 
teraction of infinitely many buckling modes has been finally studied by Byskov (Byskov, 
1986) and Luongo and Pignataro (Luongo and Pignataro, 1988) who have confirmed the 
occurrence of localization phenomena previously pointed out by Tvergaard and Needle- 
man (Tvergaard and Needleman, 1980) and Potier-Ferry (Potier-Ferry, 1984) after the 
experimental results obtained by Moxham (Moxham, 1971). 

A few of the previously listed works make use of the direct equilibrium method while 
most of them utilize the Koiter / Budiansky perturbation theory to calculate the post- 
buckling equilibrium paths. For asymmetric structures, the analysis is usually carried 
out up to third order terms in order to evaluate the slope of the bifurcated paths. This is 
in general sufficient to describe the postcritical behaviour of the systems. If the system 
is symmetric, then the analysis is more involved since the evaluation of the curvature of 
the bifurcated paths is necessary. There are however a few cases in which the slope of 
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the bifurcated paths, even if different from zero, is so small that  the evaluation of the 
curvature is necessary. 

4.2 Bifurcat ion and Postbuckl ing  Analys is  

Let (I)[u; A] be the total potential energy of a hyperelastic body subjected to conser- 
vative loads, where u is the displacement field measured from the stress free configura- 
tion and A a parameter governing the external force field. The equilibrium condition is 
obtained by requiring the functional (I) [u;A] to be stationary with respect to all kine- 
matically admissible displacement fields, that  is 

(I)'[u; A]Su = 0 V 5u (4.1) 

where a prime denotes Frdchet differentiation with respect to u. Eq. (4.1) furnishes 
all possible equilibrium paths u = u(A). In stability theory it is usually assumed that  an 
equilibrium path u0 = u0(A) is known (fundamental path). Then, a second bifurcated 
equilibrium path is detected by writing 

u(A) - u0(A) + v(A) (4.2) 

v(A) being an additional displacement measured from the fundamental configuration 
(Figure 9). By replacing eq. (4.2) into eq. (4.1) and performing the series expansion 
with respect to v, we have 

1 ~ l l l  2 c (I)~vSu + ~'~'o v o u  + . . . -  0 (4.3) 

where (I)g - (I)"[u0(A); A], . . .and use has been made of eq. (4.1). From eq. (4.3), by 
expanding each term with respect to A starting from the bifurcation value A = A~ we 
obtain 

1 [(I)~' " "  1 ( A -  Ac )2~  + .]vSu + ~ + ( A -  Ac)(I)~ + . . . ] v 2 5 u  [ ¢ "  + + .- 

(4.4) 
1 

-4- g[(I )/V -~-...]V3(~U -- 0 

In eq. (4.4) q;"~ - (d/dA)O~l),=),c,...etc. It is now convenient to express the depen- 
dence of v on A through a parameter 

- v -  ( 4 . 5 )  

Then under the assumption of regularity and keeping in mind that  we are looking for 
an asymptotic solution to our problem, we write eqs. (4.5) as series expansions from 
= 0  

1 
A -  A~ + ~ +  gA2~ 2 + . . .  

1 ol 3 V -- V1~-4- V2~ 2 -~" ~V3~ -JC-... 

(4.6) 
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Uo (a) v{~ .................... ~ . ~  // 

. . . .  v 

U 

F i g u r e  9. Equilibrium paths in a structure 

where A(O) -- Ac and v(0) - O. Besides An - d n A / d ~ n l ) , = ) , c  and vn  - d n v / d ~ n l ) , = ) , c .  By 
replacing (4.6) into (4.4) and collecting terms with equal power of ~ we have 

1~2 ,, ",, ~, , ,  2 1{3 { ,, ",, { ~"Vl} 6u + ~ { ~ v ~  + 2 ~ ~ V l  + ~ Vl } & + ~ ~ v ~  + 8~l~V~ 

+ 3A2~)~V1 + 3A12 "',, ,•, l i t ,  2 I V  (I)cVl -}- 3(I)c V l V 2  -~- 3 A 1 ~ c  V 1 -]- (I) c V l  3 } (~U -~- . . .  - -  0 

(4.7) 

whence the first, second and third order perturbat ion equations are obtained by equating 
separately to zero terms with equal power of 

cv l~u  =0 
.~ . I I I  2 ( I ) t c t V 2 ~ U - - - - {  2,~l(I)tctV 1 n L- tt~ c V 1 } (~U 

• II " II (I)'/v85u - - 3 { AlO~v2 + A2~cVl + A12"'''~cvl 

~, , ,  i m  2 1 I V v 3  i Jr- tP c V l V 2  -~- AltP  c V 1 -}- 5(I)c } 6 0  

(4.8) 

By denoting with (^) partial differentiation with respect to A eqs. (4.8) change into 
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If 
( I ) c V 1 5 U -  0 

It :~lll 2 tit ^ If 
(I)cVe(~U - -  --  { (1) c V 1 -~- 2A1(I) c l lcV1 -3 t- 2A1 (I)c v 1 } 5U 

. . ,  1 ~ - I V  3 
(I)cV3t~U - -  --  3 { (Pc V l V 2  -[- ~ t P  c V 1 

(4.9) 
+ A1 [ ~ ' " ^  ^, ,  ~ . IV ^ 2 ~ , , ,  2 ~c UcV2 + (I)cv2 + ~c UcV 1 + Wc v 1 ] 

^ ff 

+ ~1~[ ¢~"~Vl  + 2~"'~Vl + ~c ucvl + ~ v ~  ] 
"" I f  + ~ [¢"' U~Vl + ¢~Vl ] } ~u 

If (I) is bilinear in u and A and besides u is a linear function of A along the fundamental  
^ I f  

path as in most practical problems, it results (~' - ~ ' ~ ' -  (~c - ~c - 0 and eqs. (4.9) 
simplify into 

f! 
( I ) c v I ( ~ U -  0 

¢ " v 2 5 u  { ~, , ,  2 ~,,, - - - -  (Pc V l  -}- 2 A I - - c  l~lcVl } 5U 

(a.10) 
1 ' v  [ ~ '  'YficV2 ] (I)~v3(~U - -  --  3 { (I)'c" V 1V 2 + ~(I) c V 3 -'~ )kl l~lcV2 -~- (I) c 

.~2 .:~. I V  ^ 2 ~m Wc UoVl +A2_c  fiovl} 5u 

Eq. (4.8)1 or (4.9)1 is an eigenvalue problem whose solution furnishes the critical 
load Ac and the buckling mode v l. Suppose that  the solution to this problem has several 
linearly independent eigenmodes vi i  (i -- 1, ... , m) all associated with the lowest 
eigenvalue Ac. Then the most general solution to eq. (4.8)1 can be expressed as a linear 
combination 

V1 - -  l l i V l i  ( i -  1 , 2 ~ . . .  ~ ?Tt) ( 4 . 1 1 )  

where repeated indices denote summation from 1 to m and ~i are arbi trary parameters.  
Without  loss of generality these modes can be orthonormalised according to 

f !  II 2 V l i V l j  - -  ~ i j  (i, j - -  1, 2 , . . . ,  m )  (4.12) 

where ~ i j  is the Kronecker delta and II2 collects all quadratic terms of the series expansion 
around the stress-free configuration of the elastic energy. By requesting --" 2 _ 1, the 112vl 
condition 

~ i ~ i -  1 (4.13) 

follows. 
To evaluate the second coefficient v2 of the series expansion (4.6)2 we use the differ, 

ential equation 

(I:)~V2 5 u  - -  2)kl c zVl i  + ( / / i V l i )  2 5U ( 4 . 1 4 )  
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obtained from (4.8)2 by replacing V 1 with UiVli. By assuming 5u = v i i ,  vl2, ... , V i m  

successively, eq. (4.14) in conjunction with eq. (4.8)1 yields a set of m equations of the 
type (Fredholm orthogonality conditions) 

where 

AijkPi~'j + AiBikv i  = 0 (i ,j ,  k = 1 , . . . , m )  (4.15) 

Aijk = d2 ttt 
c V l i V l j V l k ,  Bik -- 2~'c'VliVlk (4.16) 

Eqs. (4.15) together with eq. (4.13) permit the evaluation of the m + l  coefficients u~ 
and A1. Since eqs. (4.15) are nonlinear it is shown that, unless all the Aijk 's  vanish, there 
are at the most 2 "~ - 1 essentially different real solutions and at least one real solution 
each one describing a bifurcated path (Van der Waerden, 1950). In the following we 
shall distinguish the case in which all the Aijk vanish (~1=0 , symmetric postbuckling 
behaviour) from the case in which one at least of these coefficients is different from zero 
()~1 ¢ 0, asymmetric behaviour). 

4.3 A s y m m e t r i c  Pos tcr i t i ca l  B e h a v i o u r  

The general integral of the differential equation (4.14) corresponding to any of the r 
solutions of eqs. (4.15) can be written as 

V 2 - -  ~iVl i  -1- V2p (4.17) 

where v2v denotes a particular integral and/3~v~ is the general solution of the homoge- 
neous equation with/3~ arbitrary constants. If the orthogonality condition 

II~vlv2 - 0 (4.18) 

is imposed, then by using (4.11), (4.12), (4.17) the following condition on the coefficients 
3i is obtained 

u~(II~'VliV2p +/3i) - 0 (4.19) 

In order to evaluate the constants/3i and the second load rate coefficient A2 corre- 
sponding to each of the r bifurcated paths we make use of the equation 

~f! c { " f! " If ~2~I! 
f 

~v3ou- - 3 ~i~ (v2p + 8ivli) + ~2~iVli + A1W~YiVli 

+ ~tctt(l/iVliV2 p + Y i ~ j V l i V l j )  -~ /~l~)/cI/( / / iVli)  2 (4,20) 
1 IV 3 + } 

obtained by replacing eqs. (4.11), (4.17) in (4.8)3. Note that there are r equations (4.20) 
each one corresponding to a particular solution ui, A1 of eqs. (4.15). By successively 
identifying 5u with v11,..., vim and by imposing the orthogonality condition on the right 
hand member of each of these equations we obtain 
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(2Aijkb' j  + AiBik) /3 i  + A2Biku i  - -  2AijklUiUjUl 

-- ,~l (2Bijkt,'iz,'j -+- Bpk)  

-- A 2 G k u i  - 2ApikUi 

(i, j ,  k, l =  1 , . . . , m )  

where Ai jk  andBik are given by (4.16) and 

(4.21) 

Besides 

1 i v  
f l i j k t -  - ~ c  VliVljVlkVll 

.+.ttt 
B i j  k - -  U2c V l i V l j V l k  

°° II Cik - 2(I)c VliVlk 

(4.22) 

Ill 
Apik -- d2 c V2pVliVlk 

(4.23) 
• !I 

Bpk -- 2OcV2pVlk  

Eqs. (4.19), (4.21) are r linear nonhomogeneous systems each one containing m + 1 
equations (m orthogonality conditions plus a constraint equation) and m + 1 unknowns 
/3i, k2. For each bifurcated path the coefficients v2 and A2 of the series expansions (4.6) 
can thus be evaluated. 

4.4 S y m m e t r i c  Postcr i t ica l  Behaviour  

Symmetric postcritical behaviour arises in the particular case in which all coefficients 
A i j k ' s  previously examined vanish. In this situation from eqs. (4.15) the solution A, 
= 0 is obtained and the coefficients ui's, which are undetermined at this level, must 
be evaluated from the third order perturbation equation. Eq. (4.14) admits now the 
particular solution 

V2p 

where the v2ij's satisfy the equations 

- -  l / i l # j V 2 i  j (4.24) 

~ l l  v .v. lll 
c 2 i j a U  5U (4.25) --  --¢Pc V l i V l j  

Also, due to the arbitrariness of the ui's, the orthogonality condition (4.19) furnishes 
all/~i's as function of ui's 

~i -- Pijkb'jYk (4.26) 

where 

Pijk -- -II~VliV2jk (4.27) 
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By replacing (4.24) into eq. (4.20) and accounting for )~1 --  0, w e  have the Fredholm 
orthogonality conditions 

2Aijklr'ilO~'l + A2Bikr'i --0 

where the Bik's are given by (4.16)2 and 

( i , j , k , l - 1 , . . . , m )  (4.28) 

' '  (4.29) A i j k l  - -  tPc V l i V l l V 2 j k  -4- (~c V l i V l j V l k V l l  

Note that  the solution to eqs. (4.28) is unaffected by the/~i 's  because of the assump- 
tion A i j k  = O. 

Eqs. (4.28) together with condition (4.13) are a set of m + 1 equations in the m + 
1 unknowns yi's and A2 and therefore, according to B6zout (Van der Waerden, 1950), 
they furnish at the most 3m-1 essentially different real solutions and at least one real 
solution. By correspondence with each set yi, the corresponding /3i's are determined 
from eq. (4.26) and consequently v2 from eqs. (4.17), (4.24) and (4.25). 

If the second hand member in eq. (4.25) vanishes for any (~u, then v2ij = 0. Con- 
sequently/3i = 0 from eqs. (4.26), (4.27), V2p = 0 from eq. (4.24) and v2 = 0 follows 
from eq. (4.17). 

4.5 Single Buckling Mode 

If a single buckling mode Vl  occurs for A = Ac, explicit expressions for the first and 
second load rate/~1 and A2 are obtained by solving the Fredholm orthogonality conditions 
relative to eqs. (4.8)2 and (4.8)3, respectively. It is found that  

1 ~ l , l  3 ¢Pc Vl  
~1 = 2 £ . . 2  (4.30) 

:':c --1 

1 ~ . I V  4 ,~ t l t .  2 .  " // ~1I/ ~ l t  2 
- (I)c VlV2  --c qJc Vl  3 Wc Vl  -~- "i'c Vl  v2  -~- /~1( -4- V3 -Jr- /~1 ) 

,~2 = - ",,. 2 (4.31) 
(I)cV 1 

which for A1 - 0 reduces to 

1-~. I V  4 ~ III 2 
/'\2 - -  - -  -~Wc v l  + "Pc V1 V2 t.~t oz.j(A.'~Oh 

"ii .  2 
(I)cv 1 

5 Initial  Imper fec t i ons  

5.1 G e n e r a l  T h e o r y  

If the structure under analysis is not perfect, in that  it contains a displacement fi 
before the application of load, its potential energy functional (I)[u; A] is modified as 
follows 

¢ - ¢ [u ;  a] + ¢ [ u ,  a; a] 

where ~[u, 0; A] - 0 for any u. The equilibrium eq. (4.1) reads then 

(5.1) 
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• ' [u; ~] au + ~'  [u, a; ~] au - 0 (5.2) 

Under the assumption that  fi is small, let us take the series expansion of (5.2) in 
terms of fi from fi - 0 by retaining only linear terms 

• '[u; ~] au + ~ ' [ u ,  0; ~] aau - 0 (5.a) 

In eq. (5.3) the symbol (~) denotes differentiation with respect to ft. Besides use has 
been made of the property that  • vanishes for fi - 0. 

Let 

u(A) = u0(A) + 9(A) (5.4) 

be an equilibrium path where u0(A) is the fundamental path of the perfect structure 
and 9(A) an additional displacement measured from it. By replacing (5.4) into (5.3) and 
expanding in terms of 9 we have 

,, I m,,, ~¢2 1 (i)oiV V3 ~ fi - ,, { ~o ~ + ~ - o  + ~ + . . .  + + ~o a ~  + . . . }  au - 0 (5.5) 

N 

where ~ - ~ '  [Uo, O; A], . . . .  Further expansion of eq. (5.5) in terms of A about the 
critical load A - Ac gives 

1 2~i)tt [~" + (:~- ~ ) ~ "  + -2 ( : , -  :,~) _~ +...] ~au 

1 A ~ ' "  . .  9 2 1 [~zv 
+ ~ [ ~ ' + ( ~ -  c, c + .] ~ u + g  c + . . . ] v ~ a u + - . -  

+ p'c + +...] + +...] ° au + . . . - 0  

• I 

being ~ c  - ( d / d A )  q2'olx=~c, . . . .  

It is now convenient to choose an initial imperfection in the form 

(5.6) 

m 

a -  {u* - a C u *  (5.7) 

where ~ is the imperfection amplitude and u gives the shape of the imperfection which 
is normalised according to II~u .2 - 1. Besides a is a scalar parameter  and the exponent 
-y > 0 will be chosen to suit our convenience. Under suitable regularity condition we 
write 

1 
- ~ c + 1 ~ +  ~ 2 ~  2 + . . .  

_ 9 , { +  ~%{2 + . . .  
Z 

(5.8) 

Then replacing eqs. (5.8) into (5.6) and collecting terms with equal powers of { one gets 


