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PREFACE 

The nature and the human creations are full of complex phenomena, which sometimes 
can be observed but rarely follow our hypotheses. The best we can do is to build a 
parametric model and then try to adjust the unknown parameters based on the 
available observations. This topic, called parameter identification, is discussed in this 
book for materials and structures. 

The present volume of lecture notes follows a very successful advanced school, 
which we had the honor to coordinate in Udine, October 6-10, 2003. The authors of 
this volume present a wide spectrum of theories, methods and applications related to 
inverse and parameter identification problems. 

We thank the invited lecturers and the authors of this book for their contributions, 
the participants of the course for their active participation and the interesting 
discussions as well as the people of CISMfor their hospitality and their well-known 
professional help. 

Zenon Mroz 
Georgios E. Stavroulakis 
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An Overview of Enhanced Modal Identification 

Luca Bolognini 

RSI Sistemi s.p.a., Altran Group, Milan, Italy 

Abstract. The application of identification techniques is spreading in many engineering 
fields, as a rehable and reaUstic understanding of structures is becoming a common issue. 
The aim of this paper is to summarize the main steps needed for a complete and up-to-date 
identification process, referring to the modal approach. The complex eigenvalue approach 
and a non-proportional damping model are discussed in detail. 

1 Why Identification 

The construction industry is increasingly involved in the survey, assessment, alteration or 
refurbishment of existing structures. This is due to limited space and funds for new construction, 
the disruption costs, a greater environmental awareness and a cultural desire to maintain ancient 
and historic structures. At the same time, managing and operation of those structures having high 
social and economical impact (such as bridges, dams, commercial facilities) are demanding 
reliable condition-based safety evaluations. 

Theoretical models of civil engineering structures are essential for assessment and for the 
design of alterations. For older structures these models often do not exist. Where they do exist 
(mostly based on visual survey) they are often inaccurate, and anyway "as-built" information 
often does not accurately reflect the work done on site. 

Given the shortcomings in design data and surveys as a basis for structural models, it is clear 
that better non-destructive methods are needed for creating reliable models that accurately reflect 
the form and condition of existing structures. This process of adapting theoretical, approximate 
models to accord with observed behaviour is called structural identification. 

It can be used for the most general structural component (in both mechanical and civil fields) 
with the main purpose of: 

improving the design stage (virtual modelling); 
enhancing the safety assessments; 

- monitoring the evolution of structural conditions; 
- evaluating the effect of modifications or refurbishment 

The modal approach (aiming to the identification of structural intrinsic properties such as 
frequencies, modal deformations, damping factors and non linear behaviours) is one of the 
possible techniques that can be used for the purpose. 

Many efforts have been spent to make this kind of identification general, reliable and easy to 
manage. In the following, a short excursus in the up-to-date modal identification practice will be 
given, with a few more detail as far as the complex approach and a non-proportinal damping 
model are concerned. 
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2 The Identification Process 

The identification basic idea is to improve our knowledege on a given structure through a model 
that accords with observed behaviour. In other words, to meet the real structure with its virtual 
modelling. The main steps of a complete identification process are summarized below. 

- Starting from the Real Structure (Step 1), 
- a Finite Element Model is defined (Step 2). 
- To understand the structure's dynamic behaviour some Prehminary Modal Analyses are 

performed (Step 3) and 
- the sensors lay-out is optimised by means of a Data Acquisition Planning (Step 4). 
- It is then possible to get the experimental data, Testing the Structure (Step 5). 
- Raw data are processed performing the Experimental Modal Analysis (Step 6), to 

derive the dymanic features of the real structures, which are compared with those 
obtained from the Finite Element model. 

- The discrepancies are minimised modifying the material parameter values via the 
Modal Matching / Model Updating iterative procedure (Step 7). 

The identification loop aims to a better understanding of the structure's current state and a 
more realistic model. In this view, many of the concepts hold for any other approach, substituting 
the modal one. 

2.1 The Real Structure 

The starting point of any identification process is the structure as such (Step 1). The safety 
assessment of a given structure starts from a correct interpretation of its actual status. 

Figure 1. A typical example of structure to be identified: a masonry arch bridge. The geometrical shape 
can be correctly captured, different cortical construction materials can be mapped by visual inspection and 

boreholes can be used for fillings. 
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The behaviour of any structure is mainly a function of: 
the geometrical shape; 

- the materials it is made of; 
- the boundary conditions; 
- the forces that are applied on it. 

A good approximation of the structural shape and an estimate of materials distribution are 
generally achievable (Figure 1). Visual inspection, boreholes, and any available documentation 
are useful for the purpose. 

The applied forces depend on the structure usage and can be prescribed, measured or 
controlled. 

From the previous considerations, material parameters and boundary conditions are the most 
uncertain properties and may vary in time. It is the purpose of an identification tool to identify 
these properties. Once that the process has been completed, more reliable stress and safety 
analyses will follow. 

2.2 The Finite Element Model 

The process is based on the Finite Element model of the structure under consideration (Step 2). 
The geometry of the structure must be described in terms of a mesh (Figure 2). Critical issues are: 

the respect of the actual shape; 
- an adequate mesh subdivision: usual validation criteria available in most mesh 

modellers can be used; an alternative is to subdivide into 5-10 elements the shortest 
wave length involved in the modal analysis; 
a proper definition of element groups sharing the same material properties, which will 
be involved in the model updating procedure; expected material distribution, potential 
fault locations as well as any location of interest to the engineer should be included; 

- a realistic simulation of the boundary conditions applied on the structure. 

Figure 2. The 3D mesh of the masonry arch bridge used for identification: different material properties and 
boundary conditions are assigned. 
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2.3 Preliminary Modal Analyses 

The identification approach is based on the comparison of the actual structure modal properties 
with those computed using the Finite Element model. Modal properties (a mode, in short) include 
frequencies, damping coefficients and modal shapes. Each mode depends on: 

the geometrical shape; 
- the material properties; 
- the boundary conditions. 

If one assumes that geometry is known (and correcdy meshed, as discussed in the previous 
step), it is possible to use modes to derive information on materials and boundary conditions. 

The number of modes associated to any actual structure is theoretically infinite, whereas modes 
obtainable from the Finite Element model are as many as the model nodes. The identification 
process can use a few modes (up to some tenths, depending on the structure relevance, the 
available resources, etc.). The most significant modes must be selected adequately (Step 3) and 
the modal energy concept is used to this aim. 

Each modal shape is indeed a deformation pattern and the related elastic energy indicates those 
parts more actively involved (i.e. having higher energy values, Figure 3). Conversely, a given 
mode depends on the activated parts and their material properties. It follows that if one includes 
at least one mode exhibiting high modal energy for each of the parts of concern, the best subset of 
modes is obtained. 

'H 
Figure 3. Contour representation of the elastic energy for one of the bridge modes. 

2.4 Data Acquisition Planning 

The quality of measured data is critical for a reliable identification. Yet, data capture on a 
structure is generally expensive and the number of available sensors is limited. As the quality of 
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measured data depends on the sensor locations it is important to optimise these locations to 
guarantee effective measurements (Step 4). 

There exist many alternatives in evaluating the best locations: such as the Effective 
Independence Distribution Vector decribed by Magand et al., (2000), aiming to those measurement 
locations which make the mode shapes as linearly independent as possible.This planning module 
can be fully based on the numerical Finite Element model. Trial and error procedures based on 
the real structure are completely eliminated, dramatically reducing costs and improving 
efficiency. 

2.5 Testing the Structure 

The aim of the Step 5 is to apply sensors in the optimal positions previously defined and to 
measure the dynamic responses while the structure is vibrating. The success of the experimental 
measurements is achieved if data are significant, i.e. statistically stable and representative of a 
structural state. Lessons learnt from past experiences are very useful. 

Response can be measured in terms of acceleration (velocity or displacement) vs. time, 
depending on the sensors available, the frequency range, the amplitude of vibrations, etc. 
Velocity measurements are to be preferred for low frequency structures (first frequency below 1 
Hz, up to 10-20 Hz), whereas accelerometer can be more convenient for higher frequency bands 
(more than 20-30 Hz). Relative displacements transducers are generally used across cracks and 
joints. Raw data may be stored in analogue or digital formats. 

Excitation of the structure can be obtained in some alternative ways, depending on the 
resources available, the structure relevance and the testing purpose. 

The more expensive and reliable solution is to apply one (or more) excitors on the structure 
(unbalanced rotating mass, hydrauHc piston, etc.). The excitors can be convenientiy controlled in 
terms of frequencies and amplitudes. All the structural resonance within the available excitors 
frequency working range will be clearly activated. This approach is strongly recommended for 
massive structure. 

A much cheaper excitation source is represented by environmental vibrations as induced by 
urban traffic, wind etc. In this case signals are corrupted and long acquisition times must be 
planned so to perform many averages to remove noise. Good results can be achieved for slender 
tall structures (towers, chimneys, bridges, etc.). 

Two more alternatives are the pull & release test and the impact test.The former is very good to 
induce free decay transients which are convenient to measure damping behaviours. Signals are 
generally good, even if short in time. Some safety problems may arise when the steel wire is 
released. 

The latter is used in the case of non massive structures (mechanical components, steel 
members, etc.) and also to test structural details (concrete slabs, junctions, etc.). If it is performed 
using an instrumented hammer, the input force is known. The test is easily repeatable varying the 
force amplitude and location. 
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All of the above tests must be properly selected and performed not to induce any damage on the 
structure itself. It is recommended to compare the expected (and acceptable) ampUtudes of 
vibration as computed on the model with those measured on the real structure. Also, a real time 
control on the data quality must be carried out (null or saturated signals must be avoided, etc.). 

2.5 Experimental Modal Analyses 

It is the purpose of this phase to derive experimental modal features from the dynamic measured 
responses (Step 6). Raw data are the time histories as measured from each sensor for all the 
different testing conditions (Figure 4). 

A preliminary control on the data quality must be carried out (null or saturated signals must be 
removed, etc.). Also, it is recommended to compute some Fourier Transform on sample data to 
check the frequency content of the signals. Undesired (or clearly unphysical) frequencies can be 
removed by filtering. Expected structural resonance can be broadly checked, as well as varying 
frequency values during testing can be appreciated using time-frequency analysis. 

Next step is the computation of modal features, evaluating Transfer Functions (Figure 5), using 
for instance the State Space algorithm as described by Magand, (2000). This method is applicable 
on any time signals, providing a general purpose and up-to-date tool for extracting modal 
features. Real and Imaginary components of frequencies and shapes are obtained without any 
approximation. There is no limitation either on the number of sensors or on the signal samples. 
Frequencies can be sorted by statistical relevance as well as it is possible to compare the original 
data with those synthetized numerically using the modal identified features. 
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f '''i?hit:'''i.l'':-f 'ffFn':''''''''y'''f^>^ v ;' '' | 

Tempo [s] 

Figure 4. Typical acceleration time histories as obtained from two different train motions 
(axes scale are mm/s^ and s). 
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Figure 5. An example of experimental pseudo-transfer function. From top: amplitude, coherence, and 
phase for different averaging of signal (horizontal axis scale is Hz). 

Some specific time signals can be successfully used for further insights and to evaluate, for 
instance, damping coefficients or crack relative movements. In the former case the Hilbert 
Transform (Figur 6) can be used to compute the damping related to a structural frequency as 
shown by Bolognini, Gahmberti, Meghella, (1995). 
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Figure 6. A free decay envelope in the log-axis, for the approximation of damping coefficient via 
Hilbert Transform. 
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2.6 Modal matching / model updating 

The difference between experimental modal features and the corresponding numerical ones are 
minimised by an iterative correction of those physical parameters affecting the solution (Step 7). 

Modal features involved in the process can be both real and imaginary parts of frequencies and 
shapes. Thus, to generalize the classic modal identification approach, one has to manage a full 
complex modal analysis, both experimental and numerical (§ 3.1). A general damping matrix is 
explicitly included in the numerical eigenvalue problem as described in Chapter 4, removing 
previous limitations to the modal damping modelling (bridge spans with dampers, for instance, 
are a new potentiality offered); coupled 3D fluid structure problems can be analysed as well as 
discussed by Brusa, (1999). 

The process is based on the computation of the derivatives (sensitivities) of all modal quantities 
with respect to each parameter and the solution of a constrained least squares problem. In the 
following the basic formulation is described, whereas the general approach is presented in 
Chapter 3. 

Basic formulation. The described identification method searches for the minimum distance 
between vector Ym containing experimental eigenvalues and eigenshapes and vector Ye(p) 
where the corresponding quantities are stored as obtained numerically, being Ye(p) function of 
L parameters pi, multipliers of "initial guess" structural parameters. 

These parameters are related to L sets of finite elements sharing the same parameter 
("macroblocks") defined on the structure and they are supposed to be coefficients of the Hnear 
combination which relates the related matrix of the whole structure. Defining the difference 
vector b and its norm d(p) as a distance between the two aforecited vectors: 

b = r(p)-r; c/f^;=67^;w^wb(p) (2.i.a,2.i.b) 

6 V W W ' ^ W - ^ = 0 (2.2) 
dp 

being W^W a weight matrix, symmetric positive definite, the necessary condition for the 
minimum of the norm d(p) can be stated as: 
Introducing a linear approximation for vector b(p) by the Taylor's expansion up to first order 
terms, a Least Squares iterative procedure derives from Equation (2.2), that is: 

SlW^W(SjAD -bj) = 0 
(2.3) 

where Sj = Sj (p) = [ 3YVap',..., 9YVap"- ]̂  
where Sj and bj indicate respectively sensitivity matrix and residual vector as calculated in the j -
th iteration, whilst Apj+1 means the new variation of parameters (pj+l= pj -Apj+1; pO= 1). 

The iterative procedure defined by Equations (2.3) ends when a new iteration is unable to 
reduce either parameters variation or residual norm given below a given tolerance. Starting from 
results obtained according to the given initial values of parameters and from available 
experimental data, the identification procedure runs iteratively to the best approximation of the 
parameters. 
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3 Extended Set of Identification Parameters 

The typical version of a modal identification tool is able to manage only those parameters which 
affects merely the stiffness matrix K (and/or mass matrix M). 

This limitation is due to the fact that the eigenvalue problem is solved under the hypothesis that 
the damping matrix C is negligible or proportional to K and M. 

The extended identification method introduces a substantial enhancement with respect to the 
above identification, allowing the user to choose among an extended set of parameters. The idea 
is that free parameters (i.e. subject to modification) may affect respectively the stiffness matrix K, 
the mass matrix M and the damping matrix C, explicidy included in the standard eigenvalue 
equation (3.4) of Paragraph 3.1. 

The case of a single parameter affecting more than one matrix simultaneously can be taken into 
account as well. 

The general formulation of Finite Element theory asserts that if the calculation domain is 
subdivided in N zones having different properties (either physical or geometrical) described by a 
parameter p, the following relations hold: 

K = £K,(P, ) M = '£Mi{pi) C = f^Ci{pi) (3.1) 
i=^ i=^ i=i 

where summation means matrices assembly and where K j , M j and C j are zone matrices. 
According to the proposed method, it is required that, if the stiffness matrix K is considered 

(but the same procedure could be apphed to M and C as well), the dependency on the parameter 
is of the kind: 

K = X^K,(p,)=f;(p,A/+B,) (3.2) 
/=i /=i 

being Aj and Bj not dependent on p. 
This hypothesis is necessary in order to compute the first derivative of a matrix with respect to 

the parameter without knowing all the physical and geometry data used in its formulation: 

T—- = A,- (3.3) 

3.1 Reduction of the eigenvalue problem to standard form 

In this section the generalized eigenvalue problem is considered. Afterwards, by distinguishing 
two particular cases (damped/undamped), the explicit expressions of the corresponding standard 
form are derived. More details and the discussion of coupled fluid-structures complex cases can 
be found in Brusa L., (1999). 

The following generahzed eigenvalue problem is considered: 

K Z + ^ C Z + X.2MZ = 0 (3.4) 

where K, C, M is a given set of nxn matrices, X is a scalar and Z is a n components vector. The 
problem (3.4) is equivalent to the following standard problem: 
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A0 = X(P 
where: 

A = 
0 

; 0 = z 

(3.5) 

(3.6) 
•M-''K -M- ' 'C | 

If it is possible to find a matrix r such that: 

A'r=rAr-^ (3.7) 
then each of the r = 2n "left eigenvector" ^/c of matrix AT, solution of the problem: 

can be related to the "right eigenvector" O/^ , solution of the problem (3.5), by the equation: 

% = r O ; , (3.9) 
Therefore, since M-'/̂  and 0 ^ are orthogonal by definition, the following ortho-normaHzation 
condition can be assumed: 

OjrOy=5/^y (3.10) 

where k,j = l,...,r and ^kj means the Kronecker symbol. The exphcit form of the standard 
problem (3.5,6) together with relation (3.10) can be useful for computing the derivatives of 
eigenvectors and eigenvalues with respect to a parameter. Moreover, in doing derivative algebra, 
it is valuable requiring F to be a symmetric matrix. 

Undamped structural problem (real eigenvectors and eigenvalues). Problem (3.4) specialised 
for the undamped structural eigenvalue problem reads: 

M"'̂ KZ = | iZ; |Li>0 (3.11) 

where M is the mass matrix and K is the stiffness matrix of the structural system. The problem 
(3.11) is equivalent to the following standard problem: 

A 0 = |LlO ; with: A = - M " ' ' K and O = Z (3.12) 

By choosing , f = K relation (3.7) is satisfied and the ortho-normalization condition (3.10) 
is: 

ZjKZy =5;^y (3.13) 

Damped structural problem (complex eigenvalues and eigenvectors). Problem (3.4) 
specialised for the damped structural eigenvalue problem reads: 

- M - V Z - >,M-''CZ = A-̂ Z (3.14) 

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix of the 
structural system. The problem is equivalent to the standard problem A O — }JX> with: 
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By choosing: 

A = 
0 

M-̂ C 
0 

Z 

AZl 

r = 
lO Kl 

|K C| 

the relation (3.7) is satisfied and the ortho-normalization condition (3.10) is: 

(3.15) 

(3.16) 

(3.17) 

3.2 First derivatives of the eigenvectors and eigenvalues with respect to a parameter 

Let us consider the standard eigenvalue problem (3.5), with F = F such that: 

A " ^ = F A F " ^ (3.18) 

and with the normalisation condition: 

Ojr0y=6,y (3.19) 

If matrix A depends on a parameter p, the derivatives of the eigenvectors with respect to this 
parameter, being vectors of the space generated by the eigenvector system itself, are computed 
with the following formal expansion: 

^ = Ec[^'^^/c;with:c[>^ = c t ) J r ^ (3.20) 

It should be noted that the complete set of eigenvectors 0 ^ might include pairs of conjugate 
complex vectors, if complex eigenvalues exist. Therefore, in this case, equation (3.20) can be 
explicitly written in the following form: 

K 

where the bar over a variable indicates its conjugate complex value. 

The derivatives of the eigenvectors with respect to this parameter are computed with the 
following expansion equivalent to the relation (3.21): 

^ ^ = 0S + 0S with:S = 0 ^ r — ; S = 0 ^ r ? ^ 30 
= q>CD + q>:^ with: ^ = q> I ; ^ = cp | 

dp dp dp 
With reference to the relation (3.21), the elements of matrices are respectively: 

S,y = C,̂ ) and S,y = c P 

(3.22) 

(3.23) 
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As shown by Brusa, Bolognini, (1999) the coefficient of matrices S , S and the derivatives of the 
eigenvalues can be computed. 

4 A General Damping Model 

The interest for a general damping model comes from the need of analysing a wide variety of 
structural components, such as point dampers in bridges, or dissipative devices in mechanical 
components. 

Yet, it must be emphasized that the importance of simulating a general damping behaviour is 
very often dictated by the experimental outcomes. Figure 7 is the polar plot of the vectors 
respresenting an experimental modal shape of a dam, as discussed by Bolognini, Frigerio, (2001). 
The Real Axis (depicted inf red) is the expected locations of modal values in the case of 
undamped or proportionally damped behaviours, whereas the blue points are the actual 
experimental values. It can be seen that most of the points are averagely ±30° out of the red line, 
exhibiting a relevant Imaginary component (vertical axis). The usual practice is to project the 
blue points on to the Real Axis, introducing an unrealistic approximation since the beginning of 
the identification process. 

Figure 6. Polar plot of vectors respresenting an experimental modal shape. 

4.1 Non-Proportional Damping Model 

If a general structural eigenvalue problem is considered of the form: 

KZ + ^̂ CZ + X^MZ-O (4.1) 

depending on the form of matrix C, both real and complex eigensolutions can be found. A 
necessary and sufficient requisite in order to force the solution of the corresponding standard 
problem to be complex, is that C expresses a condition of non-proportional damping. This means, 
by using the definition of proportional damping, requiring that the C matrix is such that: 

n = CM"^K (4.2) 
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is strictly non symmetric. As a counter example, the well known Rayleigh damping matrix, 
defined as: 

C = aK + PM (4.3) 

does not satisfy (4.2), since: 

n = CM'M = (aK + PM) M'V = aKM-^ + PK (4.4) 
is symmetric because of the symmetry of both K and KM'̂ K: 

(KM-''Kf = K'^M-'^K"^ = KM-^K (4.5) 

In what follows, we show two possible way of choosing C such as condition (4.2) is satisfied. 

4.2 A Rayleigh damping model depending on element zones 

A first method to loose the proportionaUty is to define local a i and (3 i Rayleigh coefficients not 
globally over the whole structure, but related to the N element zones which compose the 
structure. In this case for any possible choice of global a and (3 we have: 

N N 

C = Y^Cj = J^(a/K/ +p/M/)^ (aK + pM) (4.6) 

In this way the validity of (3.2) does not hold, because: 

n = CM-̂ K = Y, V /̂K/M-̂ K + p/M/M-̂ K j (4.7) 

and the members of the sum are symmetric only in the trivial case N=l. That would mean the 
Rayleigh damping again. 

4.3 A damping model using "damper" elements 

Another possible approach is the use of "damper" elements, for which the element damping 
symmetric matrix can be defined as: 

I ̂ 1,1 1̂,2 

0^=1 ?2,1 72,2 

yn^ 7n,2 7n,n 

where Yij = Yjj (4.8) 

and n is the number of element degrees of freedom. Also in this case, apart from the trivial case 
Ce = Ke Ve <=^ C=K the symmetry fails, leading to a non-proportionally damped system.This is 
very useful to manage point dampers, such as in the case of bridge deck supports, which have a 
huge impact on seismic safety evaluations. 
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5 The Identification Process 

As previously stated, one of the aim of identification is to provide realistic models of structures 
in their current state. These models can be used for safety evaluations strongly improved and 
reUable. This is indeed the outcome of many industrial cases, whose divulgation is obviously 
restricted. 

The difference between an identified model and the "prior" model are presented by Bolognini, 
Frigerio, (2001), and by Bolognini, Galimberti, (1995) with reference to dams. Two examples are given in 
the following Tables 1 and 2: the effect of identification can be clearly understood. 

Table 1. "Prior " model, experimental and identified values of five vibrating frequencies of a dam. 

NUMERICAL values 
(before identification) 

Real part Imaginary part 

-0.5916E+00 0.4439E+02 

-0.1624E+01 0.7356E+02 

-0.2018E+01 0.8200E-H02 

-0.3430E-h01 0.1069E-H03 

-0.3041E+01 0.1235E+03 

EXPERIMENTAL values 

Real part Imaginary part 

-0.1027E-h01 0.5706E+02 

-0.1664E-h01 0.7567E-h02 

-0.1902E-H01 0.8648E-H02 

-0.2455E-H01 0.1023E-H03 

-0.2687E-h01 0.1222E-H03 

NUMERICAL values 
(after identification) 

Real part Imaginary part 

-0.1345E-h01 0.5655E+02 

-0.2013E-h01 0.771 lE+02 

-0.2303E-h01 0.8597E+02 

-0.2634E-h01 O.lOOlE+03 

-0.2854E-hOO 0.1260E+03 

Table 2. Seisimic analysis: some results from the "prior" model (Ml) and the identified one (M2). 

1 Ml 

M2 

Displacement 
10--^ [m] 

s. 
5.8 

4.0 

Sy 

4.3 

2.3 

s. 

2.1 

1.3 

Acceptation 
[m/s^J 

A 

2.2 

2.3 

Ay 

1.6 

1.3 

A, 

1.0 

0.8 

Normal Stress 
l(f [Pa] 

CJx 

2.2 

1.6 

Gy 

3.6 

2.6 

(^z 

2.3 

2.4 

Tangential Stress 
l(f [Pa] 1 

^xy 

1.4 

.74 

^. 

1.8 

.99 

^ 1 
1.7 1 

.88 I 

6 Open Issues and Further Enhancements 

It is important to remember that identification is an inverse problem: this induces some 
peculiarities if compared with the usual problems of design and verification, as discussed in 
Bolognini etal., (2001). 
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The solution may be not unique; there exist more than one combination leading to the 
same result. Always check feasibility of solutions and use engineering judgement. 
Experimental modal shapes are noisy data and related to few locations: interpolations 
tend to be arbitrary and unreliable. 
The objective function should be complete: all the parameters (and not more) affecting 
the selected eigensolutions Y should be included; 

- The objective function should be significative: all the eigensolutions which are 
necessary for the decription in the space of the selected variables of the actual problem 
have been included. 

- Static measurements can been included to reduce feasibility space of unknown 
parameters. 
Modal identification can be unstable: to compute the modal error, you must assign to 
any experimental modes the nearest computed one, according to II^Ei- ^Cj(i)IIMAC < 
II^Ei- ^CjllMAC. When updating parameters a mode never considered before can 
become nearer (to a given experimental one) than any previously selected. To 
overcome this problem the Objective Function approach is being studied. 

- Other approaches could be more robust: static or dynamic, in time domain. 
Up-to-date minimisation algorithm could be used: combinatory solvers (genetic, for 
instance). 
New measurement tecnhiques are at hand: optical fibers, laser and radar. 

- Use identification techniques aiming to the modelling of behaviours and not to the 
understanding of causes (Quadratic and Narma-X, Neural Networks, Fuzzy Logic, 
etc.). 

In the end, models and reality will be getting closer. 
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Abstract. The recovery of defects and cracks in solids using overdetermined boundary 
data, both the Dirichlet and the Neumann types, is considered in this paper. A review of 
the method for solving these inverse problems is given, focusing particularly on linearized 
inverse problems. It is shown how the reciprocity gap functional can solve nonlinear 
inverse problems involving identification of cracks and distributed defects in bounded 
solids. Exact solutions for planar cracks in 3D solids are given for static elasticity, heat 
diffusion and transient acoustics. 

1. Introduction and Scope 

There are many classes of inverse problems for detection of defects in solids: recovery of 
distributed coefficients, densities, identification of cavities and cracks. 

The recovery of coefficients or densities in a domain from line integrals, known as "Ray 
Tomography", with X-rays or Gamma-rays, single or double photon emission... is possible 
owing, on the one hand, to highly sophisticated data acquisition systems such as Scanners, 
Photonic Collimators and, on the other hand, to mathematical techniques like the Radon 
transform and its exact inverse, with or without absorption. The case of Gamma ray 
tomography, taking account of the Compton electron diffusion, has been investigated recently 
by Nguyen and Truong (2002) and Nguyen et al (2002) who gave the exact inverse of the so-
called "Conical Radon Transform". For optical absorption and scattering tomography, the 
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mathematical models are given by the Bohzmann transport equation and the diffusion 
equation. For a review of the topic, see Arridge (1999). 

Applications of acoustics in geophysics and non destructive testing of materials are based 
on mechanical set-ups like the transducers which collect data on their boundary. 
Mathematically one deals here with inverse scattering theories which are based on some 
approximations: incident plane waves, Bom's approximation, Kirchhoff s approximation (see 
Bui, 1993, 1994). Analytical solutions exist only for some specific problems. For example, in 
"Acoustics tomography", under the above approximations, an exact solution to the inverse 
scattering of a rigid inclusion has been given by Bojarski (1981). The classical "Elastic Wave 
Tomography" using the Kirchhoff approximation, the far-field analysis and the assumption of 
smallness of the defects, leads to the so-called POFFIS method (Physical Optics Far Field 
Inverse Scattering). Most works applied to Geophysics are generally based on numerical 
methods such as Finite Elements Method, Boundary Integral Equations, Optimal Control 
theory (Lions, 1971). 

Recently a large amount of work has been devoted to "Generalized Tomography" applied 
to different physical phenomena ranging from elliptic to parabolic and hyperbolic equations. 
Such works are yet at the stage of primary developments of methods for computational and for 
pure and applied mathematical purposes. Despite the existence of new devices such as the 
Infra-Red camera already used for investigation of delaminations in composites structures or 
ftmctional observations in Biology, its industrial applications are not well developped. One 
explanation is the lack of exact solutions to thermal inverse problems which can be used as a 
benchmark for computational solutions and, above all, the difficulties encountered in numerical 
methods for ill-posed inverse problems. 

The aim of this paper is to review some recent works done in the applied mathematics for 
identifying defects in solids. It focuses mainly on the following topics: 

a. Derivation of the "Observation Equation" using the notion of "Defect Indicators". 
b. General considerations on non-linear and linearized inverse problems. 
c. Linear inverse problems settings; Ill-posedness; Regularizations methods; 

Mathematical aspects; The Cauchy Problem. 
d. Exact solutions of the inverse problems for identifying a planar crack in the 3D case, 

for elliptic, parabolic and hyperbolic equations, from overdetermined boundary data. 

2. Defects and cracks indicators 

The boundary data for recovering the defects provides qualitative and quantitative informations 
about the unknowns by means of defect indicators. If there exists a relationship between the 
boundary data and the parameters which characterizes the unknown defects, this relationship 
can be used as a defect indicator. Generally the indicator is a boundary integral which vanishes 
in the case of absence of defect or relates to the strength of the singularities inside the body, the 
location of point forces, or the crack geometry, etc. 

The method for obtaining indicators are based on conservation laws which transfer the 
information about the mechanical field inside the body to the exterior boundary S where 
boundary data can be obtained, without solving any boundary value problem. Let us consider 
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some types of indicators in the following examples. Consider a first class of indicator defined 
by a conservation law of the form -div(A)=B in Q, with B a source term. 

The defect indicator is given by the boundary integral 

I = -JsA.ndS (1) 

over the exterior surface S of the body. The integral (1) vanishes (or not) if B=0 (or B^O), 
indicating the abscence (or presence) of the source. As an example, consider the stress field 
a(x) in a 3D solid, 

- diva(x) = f5(x-a) inQ (2) 

with the point force f5(x-a). The integral (1) is equal to the total force f. 
Consider another class of indicator more general than (1), in the case of linear elasticity 

under small strain. Denote by a[u](x) the stress field corresponding to the displacement field 
u(x) in the solid due to the point force f5(x-a). Introduce an auxiliary field a[v](x) associated 
to the displacement field v(x), without body force. We get 

- div{a[u].v - a[v].u} = v. f 5(x-a) in Q (3) 

The indicator derived from (3) is the linear form v->I(v) 

(v) = - I s I(v) = - Js {n.a[u].v - n.a[v].u}dS (4) 

which contains the information on both the force f and the point a. 
This indicator is twice the bilinear symplectic form corresponding to the energy release rate 

in linear Fracture Mechanics. 

Exercices. Take v=(vj), VJ=5JJ and verify that I(vj)= f[. 
Take v=(vj), Vj=xĵ 5jj and verify that I(Vj)= a|̂ fj. • 

2.1. Crack indicator 

Let us introduce another class of indicators more suitable for crack detection. We assume that 
the stress field a[u](x) corresponds to the stress field of the previous 3D elastic solid with an 
unique internal crack Z, with some boundary conditions on S and without body force. We 
assume that v(x) corresponds to the auxiliary (or adjoint) field of the uncracked solid, with the 
same elastic constants and some different boundary conditions. The indicator given by (4) is 
called here the Reciprocity gap R(v) 

iy)=i R(v) = Js {n. a[v].u - n. a[u].v}dS (5) 
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The reason of the word "gap" in the name comes from the fact that in an uncracked body, 
the Betti reciprocity relation yields R(v)=0, for any v satisfying the elasticity equation. Hence a 
non vanishing value of R(v) indicates the presence of a crack. More precisely by introducing 
the displacement jump defined as [[u]]=u+-u~ one gets 

R(v)- t n. a[v].[[u]]dS (6) 

where n = n" = -n+. From (5) and (6) one obtains the "observation equation" 

L n. a[v].[[u]]dS = Is {n. a[v].u - n. a[u].v}dS (7) 

Equation (7) has been derived in many works as a tool for crack identification. It can be 
generalized to transient problems in elasticity, acoustics, and also to heat diffusion problems 
(See Section 7.2). The use of (7) for crack identification using an overdetermined boundary 
data pair (u, T:=n. a[u]) will be discussed in Section 7. Let us remark that Equation (7) alone 
is not sufficient for identifying the crack Z. We shall discuss further two important questions : 
the number of data pairs (u, T) and the nature of adjoint fields which are necessary and 
sufficient for a complete identification. The idenfifiability quesfion is important because it is 
related to uniqueness of the solution of the inverse problem for exact data pair. In contrast with 
the identifiability problem, practical solutions to crack or defect inverse problems are based on 
numerical computations which generally make use of noise-contamined dsLta, pairs. In this case, 
the key issues are the continuity of approximate solutions with respect to data variation and an 
error estimate with respect to the exact solution. These questions will be examined for linear 
inverse problems which are simpler than nonlinear inverse problems. 

2.2. Distributed Defect Indicator 

The following example is given by Calderon (1980) for transient as well as for static heat 
diffusion equation. Let us restrict to the static case. Distributed defects in solids are due for 
example to the presence of microscopic voids and micro-cracks which change macroscopically 
the thermal diffusion coefficient, from the known constant value ko to k(x)=ko+c(x). 

Without lost of generality, we consider normalized constant so that ko=l and assume that 
c(x)=0 on dQ. In the macroscopic scale, c(x) can be considered as the damage field. 

The inverse problem consists of finding c(x) from measurements of surface temperature 
0 and temperature gradient d^Q. 

The equations are the following ones. 

-Actual field 0 (damaged solid): 

- div{(l+c)grad 0} = 0 (in Q) (8) 

drfiix) = f(x) (on dQ) (9) 



The Reciprocity Gap Functional for Identifying Defects and Cracks 21 

-Adjoint field \|/ (undamaged solid): 

- divgrad \\j = 0 (in Q) 

n̂H (̂x) = g(x) (on 5Q) 

The observation equation is given by : 

JQ C grade[c]. gradvK dV = JaQ {\\jdr,Q - Qdr,\\j)dS (=d) 

(10) 

(11) 

(12) 

The explicit dependence of 6[c] on c in Equation (12) and the solution of (8) and (9) under 
the compatibility condition nj^QfdS^O clearly show that the observation equation is nonlinear 
with respect to c. 

The observation equation (12) alone does not allow the determination of the scalar field 
c(x) since its right hand side is a scalar constant denoted by d, for a given surface data pair 
(6,9n6) and for a given adjoint field v|/(x). It is necessary to establish an one-to-one mapping 
between c(x) and a larger family of data d(Q depending on some family of boundary data or of 
adjoint fields indexed by some N-dimensional parameter C^. 

To illustrate the necessary condition, suppose for example that c(x) is a constant c inside a 
2D ellipsoidal inclusion, and is equal to zero outside the inclusion, Figure 1. To determine the 
constant c and the ellipsoidal geometry, e.g. 6 unknown parameters (the constant c, 2 
coordinates of the center, the orientation of the main axis, the semi axes a and b), many 
procedures can be used. One can consider a single data pair (0,5nQ) measured on dQ and six 
adjoint fields, or two data pairs (61,5^90. (Q^̂ n̂O )̂ and three adjoint fields etc. These 
conditions are necessary but not sufficient for solving the nonlinear inverse problem. 

dn^(x) 

Figure 1. Two dimensional ellipsoidal inclusion. 
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Calderon (1980) proposed a linearization of (12) in order to obtain a simpler inverse 
problem, which can be solved exactly for 3D defects. His basic idea is the consideration of a 3-
dimensional family of boundary data fz(x) and gz(x), with z being a 3D vector. 

The linearized inverse problem is based on the first order approximation of (12), 
considering c as a small perturbation. The linearized observation equation for the first order 
solution c" is deduced from (12) by leaving the right hand side of (12) unchanged and changing 
only the left hand side as 

IQ c^gradct). gradvi/ dV = ISQ (X\J f- 9 g)dS (13) 

where ^ is the solution of the boundary value problem on the solid without defect: 

-div{grad(t)}=0 (in Q) (14) 

an(t)(x) = f(x) (onaQ) (15) 

By taking a family of boundary data fz(x) and gz(x), zeR^, the right hand side of (13) 
becomes a scalar field d(z) and equation (13) becomes a Fredholm integral equation of the first 
kind for c^x) with kernel K(x, z)=gradx(t)(x; z).gradxV|/(x; z). As expected, the linear inverse 
problem for c" is ill-posed because it is governed by a Fredholm integral equation of the first 
kind mapping the x-space onto the z-space. 

An attempt to solve the nonlinear equation has been given in (Isaacson and Isaacson, 1989) 
for determining c(x) within a circular inclusion (a priori knowledge on the shape). A surprising 
result was found for the supporting function supp[c] which takes the values 0 or 1, depending 
on whether c(x)=0 or c(x)9^0. It is found that the support functions of c(x) for nonlinear theory 
and c~(x) for linearized theory are practically the same. The resuh is very interesting for 
applications because it justifies the use of the linearized theory, even when c(x) is not small. 

A recent study (Bui and Constantinescu, 2000) on the detection of damage in elasticity 
using integral equation techniques gives a similar result. Far from the inclusion and the 
boundary, where c(x) is assumed to be zero, the difference in the stress components between 
nonlinear and linearized theories is found to be negligible. 

In the next section, we reconsider the comparison between nonlinear and linerarized 
theories for the stationary heat equation. 

3. Nonlinear and Linear Theories 

Consider the inverse problem for determining an internal perturbation c(x), using the boundary 
data 9(x)=h(x) and drfi(x)=f{\). Instead of comparing c(x) with c~(x), we compare the 
nonlinear solution 0NL(x) with the thermal field 0L(x) associated with the linear theory. We 
assume 

i) that the perturbation is continuous and admits a series expansion in the form 
c=8Ci+s2c2+... with small 8 and, 

ii) that the supports Z{ of the functions Ci(x) are compact and that Ci(x)=0 on dZ[ and outside 
Z[. The support Z of c(x) is given by the union of the Zi's. A well-known example of such 
compact support functions is given by the test functions in finite element methods. 
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The field 0(x) satisfies the Dirichlet boundary value problem: 

- div{(l+c)grad0} = 0 (in Q) (16) 

e(x) = h(x) (on dQ) (17) 

and admits the series expansion 9(x)=9o+s0i(x)+8292(x)+... The nonlinear thermal field 
0NL(x)=9(x) admits the integral representation {dQ/dn = f(y)) 

e(x) = l^ {G(x,y)f(y) - h(y)anyG(x,y)}dSy + ^ G(x,y)div{c(y)grade(y)}dVy (18) 

where G(x,y) is the Green's function. We call 6o(x) the zero-order solution satisfying the 
equations: 

-div{gradeo}=0 (inQ) (19) 
eo(x) = h(x) (on DQ) (20) 

The zero order term 6o(x) admits the integral representation 

eo(x) = L {G(x,y)anyeo(y) - h(y)anyG(x,y)}dSy 

In what follows, the sum of the first two terms will be refered to as the linear solution 

eL(x) = eo(x) + sei(x) (21) 

By substituting the series expansions of c(x) and 0(x) in (16) and (17) and considering the 
term 0(s), we obtain the governing equations for 0i(x) 

- div{grad 61} = div{ci(x)gradeo(x)} (in Q) (22) 

Gi(x)=0 (on dQ) (23) 

The field 0i(x) admits the integral representation 

ei(x) = Is^ G(x,y)5„yei(y)dSy + Jz, G(x,y)div{c,(y)grad0o(y)}dVy (24) 

Using the boundary condition ci(y)=0 on dZ\, it can be shown that the difference 
A between the nonUnear solution and the first order solution is given by 

A =eNL(x) - eL(x) = t o G(x,y){5„ye - SnyBo - sanyGi }dSy 

- 82 Jz, gradxG(x,y)ci(y)gradyei(y)dVy (25) 
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Both terms of the right hand side of (25) are of order O(s^). By differentiating (25), we 
obtain the difference between their gradients r=gradxA 

r(x) = 4 ^ gradxG(x,y){anye - 3,,^% - ^^0^61 }dSy 

- (fp) s24i gradxgradyG(x,y)ci(y)grady0i(y)dVy x^(ZiuaQ) (26) 

where (fp) stands for the Hadamard finite part sense. A close inspection of (26) shows that the 
difference between the thermal gradient is significant only inside or near ZIDZI because of the 
following reasons : 

1. the kernel of the first term behaves as |gradxG|«|x-y|-2^ with |x-y|=distance(x,5Q). 
Therefore the first integral term is significant only in the vicinity of dQ, due to the difference in 
normal derivatives d^ d -d^ (9o+s0i)«O(8^). Note that in the derivation of the approximate 
solution, c~(x), it is assumed that the same normal derivative holds for OKx) and G(x) so that 

{\e-^ny(eo+sei)}«o. 
2. the second term, understood in the Hadamard finite-part sense, decreases as 

|gradxgradyG|«|x-y|-3^ as the distance r =distance(x, Z^) increases. 
The difference A between nonlinear and linear thermal fields decreases as the distance to Zj 

increases, and the decrease of T is much more rapid. 
These analyses show that far away from Zj we find that the thermal fields GNL(x), Q^x) 

and their respective gradients gradx6NL(x), gradx0^(x), are quite similar. In other words, the 
perturbation of the thermal coefficient c(x) is not significant outside Zj, while by assumption, 
the perturbation sci(x) vanishes outside Zj, consequently vanishes too outside Z (which 
contains the subset Zj). 

This discussion indirectly shows that the property observed in (Isaacson and Isaacson, 
1989) about the support of the nonlinear solution c(x) for circular inclusion and that of the 
linearized theory c~(x), in the Calderon sense. Equation (13), seems to be likely for an arbitrary 
geometry of the inclusion. 

Remark 1. The example of the thermal inverse problem shows that a relationship between 
the unknown coefficient k(x) and the boundary data pair d={0^, ^n^^} can be written formally 
as A(k)=d, where A is a nonlinear integral operator, the kernel of which is defined implicitly 
by equations (8) and (9). A simpler approximate observation equation is derived in discretized 
form, if we set k={ki, k2, k3, ...kn}. By means of the Finite Element Method, one solves (8) 
and (9) using the Neumann boundary condition d^O=f (or ^n^^) ^^^ calculates the boundary 
temperature Ocal(ki, k2, k3, ...k^). The inverse problem is defined as the optimization of an 
objective function. 

Generally, the least square method is used to minimize the "error" between predicted and 
measured temperatures 

k= arg Minĵ  | ecal(ki, k2, k^, ...kj - 0^ 12 

The difficulty of such numerical approach lies on the evaluation of the gradient of the error 
functional with respect to ki which requires a great number of solutions of the equations (8) and 
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(9) for different increments 5ki. It can be overcame by using adjoint equations (See, e.g., 
Constantinescu, 1995 ). 

Alternatively, instead of using the Neumann bounadry condition, one can solve the thermal 
equation with the Dirichlet boundary condition 9=9^ and then calculate the optimal flux 
d^d^^^ki, k2, k3, ...kn) which approaches the datum d^Q^ 

k= arg Minĵ  | d^ 9cal(ki, k2, ks, ...k^) - d^Qd \ 2 

A symmetrical method consists of minimizing the "constitutive law error functional" (see 
Kohn and Vogelius, 1984 and Constantinescu, 1994, 1995). 

F(q, 9, k) = (1/2) J^ (kl/2grad9 + q k-l/2)2dV 

where the field 9 satisfies the Dirichlet boundary condition 9=9^ while q satisfies the 
equilibrium equation div(q)=9 and the Neumann boundary condition q=-f (k=l on the 
boundary). The constitutive law 

q + kgrad9 =0 

is solution of the minimization of the "polyconvex" ftinctional F, convex with respect to each 
variable separately, but not convex with respect to all together. 

Remark 2. The nonlinear equation A(u)=y, UGX, yeY is generally solved by methods of 
linearization. It is assumed that the Frechet derivative A'(u) exists. The least square method 
leads to the minimization problem Min^ ||A(u)-y|p, with the norm {|.|| in the Y-space. The 
solution is obtained formally by the multistage quadratic programming which, starting from a 
guess value (or a priori knowledge) u^, calculates the updated solution u^+l^u^+sk with 

sk =Arg (Ming ||A(uk) + A'(uk)s - y||2), s eX. 

Each stage of the calculation of s^ corresponds to a linear inverse problem A'(uk)s=d, with 
d=y-A(uk). 

4. Linear Inverse Problems Settings in Hilbert Spaces 

Let X be the set of unknown model parameters and Y be the set of observable or accessible 
data used for recovering unknown parameters. By model parameters we include unknown 
mechanical fields, unknown geometry, material constants etc. 

Consider two Hilbert spaces (X, (.,.)x » IMI) and (Y, (.,.)Y, |. I) with inner products (.v)x? 
(.,.)Y, and respective associated norms ||.||, |. |. We consider a continuous linear mapping A 
from X to Y, which arises in many inverse problems or in the linearisation procedure of 
nonlinear problems. We assume that the map A and its adjoint A* are bounded. For given 
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datum de Y, one considers the problem of finding the solution of the so-called « observation 
equation » : 

Au=d, u e X , d e Y (27) 

One important difference with usual direct problems is that inverse problems are generally 
ill-posed. This means that A is not always invertible, or solutions do not always exist, and in 
the case of existence of solutions, these solutions do not depend continuously on the data. The 
sensitivity of the solution to errors in data is the very common feature of ill-posed problems. 

It is necessary to introduce a « regularization » process in order to obtain a well-posed 
problem, which is required to be « close » to the initial one. These two objectives - good 
mathematical property in the regularization process and physically acceptable model - are 
often so contradictory that, according to P. Sabatier (1987), their satisfaction may be rather a 
matter of « Art »than « Sciences ». 

The equation (27) can be writen in the variational form 

(Au, AV)Y = (d, AV)Y , ueX , de Y , VveX (28) 

does not have an unique solution, because the bilinear form (Au, AV)Y is not assumed coercive. 
Regularization techniques, introduced in (Tikhonov and Arsenine, 1976, 1986), consist in the 
construction of «solutions» stable with respect to the variation of the datum d, by 
« changing » slightly the map A, or by introducing coercive variational equations. 

4.1 Coercive Variational Equation 

We introduce an additional term (a >0) in the variational equation (28) 

(Au, AV)Y+a(u, v)x = (d, AV)Y , U G X , VVGX (29) 

The added term ensures the coercivity of the bilinear form which can be rewritten as 

((A*A+aI)u, v)x = (A*d, v)x ,ueX, VVGX (30) 

where (A*A+aI) is invertible. The solution of the modified equation (29) is 

u(a)=(A*A+aI)-lA*d (31) 

A large constant a leads to unphysical solution, while a too small value of the constant a 
yields unstable numerical solutions. There exists an optimal choice of the regularizing 
parameter, proposed by Kitagawa (1987). But this optimal choice is not essential for the 
following discussions. It is important to observe that if the solution u of (28) exists, the 
solution is unique only when A is strictly positive A>0 and that the solution u(^) in (31) with 
the same datum d tends towards the exact solution u in X, ||u(a)-u||^'0, as a-^0. However, in 
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most inverse problems for identifying defects and cracks, the condition A>0 is not always 
satisfied. 

Remark. It is worth mentionning a geometrical interpretation of the Tikhonov 
regularization procedure. Suppose that there is an a priori knowledge about the solution of (27) 
given by the constraint ||u-Uo||<P with known Uo and P>0. An approximate solution of (27), 
with an a posteriori residual error 8>0, is given by any u belonging to the intersection C of 
two convexes |Au-d|<s and ||u-Uo||<p. Either the intersection C is void (no solution to the 
inverse problem exists) or not void (there is an infinite number of approximate solutions). In 
the latter case, one possible solution can be chosen as follows. 

Let us remark that the intersection C is bounded by two ellipsoids, C2 3C3C1, from below 
by the set Ci of u such that |Au-dp/8^ +||u-Uo|p/p^<l and from above by the set C2 of u such 
that |Au-dp/s2+||u-UolF/p2<2. 

A solution (not unique) satisfying the constraints |Au-d|<8 and ||u-Uo||<P is given by the 
common centre of Ci and C2 or by the solution of the minimisation problem 

uW = Arg Min^ {|Au-d|2 + a||u-Uo|P } (32) 

with a=s2/p2 which can be interpreted as the Lagrangian multiplier. The solution of the 
minimization problem (32) is unique and given by 

uW = Uo + (A*A+aI)-l A*(d-Auo) (33) 

4.2 Continuity Property 

Mathematically, the regularized solution u(ct) depends continuously on the datum d. This is the 
consequence of the Lax-Milgram theorem, based on two properties : 

1. A*A+al is bounded, 
2. A*A+aI is coercive. 
The linear operator A*A : X ^•X is self-adjoint and positive, but not strictly positive. For 

the continuity property and the convergence property as a^O, see the following Exercices. 

Exercice. Prove the inequality : || u(ot)(d) - u(«)(d')|| < a-i||A||.|d-d'|, for any d, d'. 
Proof: Consider two data d, d' and the corresponding solutions u, u' of (29). For 

convenience we write simply u=u(^)(d) and u'=u(^)(d'). 
By substracting the corresponding bilinear forms one gets: 

(A(u-u'), AV)Y + a(u-u', v)^ = (d-d', Av)^ VVEX 

=> (A*A(u-u'), v) + a(u-u', v)^ = (d-d', Av)^ VVGX 

Take : v = u -u ' , one gets 
||A*A||.||u-u'||2 + a||u-u'||2 < ||A||.|d-d'|.||u-u'|| ^ 

=> a|lu-u'||2 < IIMI |d-d'|.||u-u'|| => a||u-u'|| < ||A||.|d-d'| • 

Exercice. (Convergence property). Prove that || u(«)(d) - u(d)||->0, as a->0. 
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Proof: (Au, AV)Y = (d, AV)Y VveX 
(Au(oc), AV)Y + a(u(a), v)x = (d, AV)Y VVGX 
(A(u(a)-u), AV)Y + a(u(a), v)x =0 VveX 
Take : v= u(^)-u, one gets 
||A(u(a)-u)|p + a(u(a),u(a)-u)x=0 =^ a(u(a),u(a)-u)x < 0 
=> ||u(a)||2< (u(a),u)x<||(u(a)l|.||u|| ^ ||u(a)||<||u|i (34) 
Since the sequence ||u(ot)|| is bounded, there exists a subsequence converging 
weakly towards u, (u(ot)-u, v)x^'0, Vv. 
Take v=u we obtain (u(ot)-u, u)x^'0. 
Consider now: 
||u(a)_u IP = (u(a),u(a)-u)x - (u, u(a)-u)x 
Using the inequality (34), one obtains the inequality 
| |u(a)_u|p<-(u,u(«)-u)x 
Therefore ||u(a)-u|p < -(u, u(a)-u)x ^ 0 as a->0, hence ||u(a)-u|p->0. 
The sequence u(ot) converges strongly towards u4 

4.3 Error Estimate 

One important point in mathematical works is to derive the error estimate with respect to the 
(yet unknown) exact solution u^ .̂ There are some results reported in the literature for Inverse 
Problem in Hilbert spaces settings. The main point is to make a comparison between the 
regularized solution u(")(d) and the exact one u^ ,̂ even if the exact solution u^^ is not yet 
known. 

What is the meaning of « exact » solution ? 
Let us introduce some terminologies. A pair { u^ ,̂ d̂ ^ } is called exact or compatible if it 

satisfies the observation equation 

The given data d̂ ^ may satisfy some compatibility condition for the existence of an unique 
exact solution u^^ in X. However it is not always possible to write explicitly the compatibility 
condition on d̂ ,̂ even if precise informations on the physical nature of the problem are known. 
There is of course some exception (As an example, we keep in mind the condition on the 
Neumann boundary data for the Laplace equation l5nUdS=0). 

In practice, to obtain such a pair, one can take for example some u^^ and define d̂ ^ as the 
direct image Au^ .̂ Such a construction of the exact pair { u^ ,̂ d̂ ^ } is based on the solution of 
direct problems which gives indeed a compatible pair with respect to the inverse problem in 
consideration. 

The knowledge of an exact pair, given by solutions of direct problems, is useful for 
checking the algorithm of approximate numerical solutions. One considers a model with 
known geometry and materials constants and known boundary conditions data for calculating 
l̂ ex̂  (jexj xhen one makes use of the numerical data d̂ ^ for recovering the approximate 
numerical solution ni^) of the inverse problem. 
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Another constructive solution from given data d̂ ,̂ consists of establishing explicit 
formulae giving the solution u^ .̂ Exact solutions given in Section 7 fall in this category of 
constructive solutions. 

The main result in error estimate is stated in the following theorem. 
Suppose that there exists d̂  such that u^^=A*d^. Then, the error ||u(^)-u^^|| is given by 

||u(a)_uex|| < (1/2) a-l/2(|d-d^^| + a |dl | ) (35) 

The proof is given in the next Exercice. 
The estimate (35) depends on both the regularisation parameter a which introduces some 

error on the modelling and the error on the datum |d-d^^| in comparison with the compatible 
one. One gets the best possible error estimate by taking the regularization parameter 
proportional to the datum error a=ks 

Id-d^ l̂ < s => ||uW-u^^|| < (1/2) k-i/28i/2(l+ k|di|) 

Exercice. Suppose that there exists d̂  such that u^^=A*d^ prove the estimate (35). 
Proof: The exact pair (u^ ,̂ d^ )̂ satisfies the variational equation 

(Au^^, AV)Y = (d^ ,̂ AV)Y VVGX, (36) 
The approximate solution (u^^), d) satisfies the equation 
(AuW, AV)Y + a(u(«), v)x = (d, AV)Y VVGX 
which can be written as : 
(AuW, AV)Y + a(u(^)- u^ ,̂ v)x + a(ue^, v)x = (d, AV)Y VVGX (37) 
Combining (36) and (37) we get: 
(A(uW- u^^), AV)Y + a(u(«)- u^ ,̂ v)x + aiu^\ v)x = (d-d^^, AV)Y VVGX 
Take v= u^^)- u^ ,̂ one obtains 
I A(u(«)- u^^)p + a||u(^)-ue^|p = (d- d̂ ,̂ A(u(«)- ue )̂)Y 
- a(u^^, uW- ue^)x (38) 
The last term can be written as 
aiu^\ u(«)- u ^ ^ = a(A*di, u(«)- ue^)x = a(di, A(u(«)- ue^))Y 
The left hand side of (38) is bounded by 
I A(uW- ue^)p + a||u(«)-ue^|p < Id-d^^l. |A(uW- u^^)! + 
ald^l .|A(u(^)- u^^)! < |A(u(«)- u^^)]. (Id-d^^l + a|di|) 
< |A(uW- ue^)p + (1/4) (Id-d^^l + a|di|)2 
Finally, by using |d-d^^|< 8 and a=k8, one obtains the inequality (35) 
a||u(«)-uex|p < (1/4) (|d-d^^| + a|di|)2 
=> lluW-u^^ll < (1/2) a-i/2 (|d-d^^| + a|di|) • 

5. Geometry Bound Methods for Static Problems 

It is often of interest to determine, not exactly the geometry of defects and cracks, but only 
their approximate location in the solid. Geometry bound methods consist of determining spatial 
subdomains which do not contain internal defects and cracks. The initial inverse problem of 
determining defects or cracks in Q, using the boundary data pairs {u, d^u} for Laplace's 


