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Preface

Nanomaterial is one of the hottest fields in nanotechnology that studies fabrication,

characterization, and analysis of materials with morphological features on the

nanoscale in at least one dimension. Recent progress in synthesis and fundamental

understanding of properties of nanomaterial has led to significant advancement of

nanomaterial-based gas/chemical/biological sensors. The most important aspect of

nanomaterial is their special properties associated with nanoscale geometries. The

most fundamental characteristic of nanomaterial is the high surface area to volume

ratio, which results in a number of unusual physical and chemical properties such as

high molecular adsorption, large surface tension force, enhanced chemical and

biological activities, large catalytic effects, and extreme mechanical strength, but

another unique property of nanomaterial and recently most studied is the quantum

size effect that leads to their discrete electronic band structure like those of

molecules. This quantum property of nanomaterial can lead to an extraordinary

high sensitivity and selectivity of biosensors and can be benefit to the field of

diagnostics.

In this book, we focus on a wide range of nanomaterials including nanoparticles,

quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plasti-

bodies, nanometal, DNA-based structures, smart nanomaterials, nanoprobes, mag-

netic nanomaterials, organic molecules such as phthalocyanines and porphyrins,

and the most amazing novel nanomaterial called graphene, for various gas/chemi-

cal/biological sensing applications. Moreover, perspectives of new sensing techni-

ques such as nanoscaled electrochemical detection, functional nanomaterial-

amplified optical assay, colorimetric fluorescence, and electrochemiluminescence

are reviewed and extensively explained. This book includes recent progress of

selected nanomaterials over a broad range of gas/chemical/biological sensing

applications, and examples of nanomaterials in sensing and diagnostic application

are given.

The use of biofunctional nanomaterials in signal amplification for ultrasensitive

biosensing is extensively discussed. The biofunctional nanomaterials with the

abilities of specific recognition and signal triggering can be employed as not only
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excellent carriers but also electronic and optical signal tags to amplify the detection

signal. Nanomaterial-based electroanalytical biosensors are discussed to give some

ideas and concepts of utilizing nanomaterials for cancer and bone disease diagnos-

tics. Then, new nanomaterial-based electrochemical impedance biosensors applied

in cancer and bone disease studies that can detect in real time without any

pre-labeling specific biomolecules at previously unattainable ultra-low concentra-

tions are specifically discussed. The hottest area of nanomaterial called “carbon

nanomaterial” including carbon nanotube and graphene is up-to-date reviewed.

Carbon nanotube-based chemical and biosensors and its integration to microfluidic

systems are discussed. Carbon nanotube-based electrochemical sensors integrated

into microfluidic systems are extensively surveyed and discussed. Moreover, a

comprehensive review of graphene-based chemical and biosensors will help who

interests to springboard to the new area of carbon nanomaterial-based sensors more

easily. Graphene’s synthesis methods, properties, and different types of chemical

and biosensors including chemoresistive, electrochemical, and other sensing plat-

forms are described. Newly invented organic nanomaterials such as molecularly

imprinted polymers (MIPs) are expansively reviewed and analyzed for sensing and

diagnostics of various biological species. Inorganic nanomaterials such as nanome-

tal structures using in localized surface plasmon resonance (LSPR) biosensor

platform are discussed including their biomedical diagnosis applications. Naturally

derived nanomaterial-based sensors such as DNA sensors (genosensors) employing

nanomaterials are extensively described. As quantum effect of nanomaterial is

amazing, novel nanoprobes for in vivo cell tracking used for evaluating the thera-

peutic efficacy will show the potential of this quantum effect for diagnostics.

Another organic nanomaterials made of metallo-porphyrin (MP) and metallo-

phthalocyanine (MPc) which are optically active are used in optical-based gas

sensors and electronic nose systems. Then, this book concludes with the uses of

nanotechnology to attain highly sensitive detection in electrochemical microde-

vices. Issues relating to miniaturization of electrochemical electrode and system are

discussed. Various techniques applicable to fabrication and integration of nano-

electrodes are included. With the extensive review of newly discovered nanomater-

ials used for sensors and diagnostics, this book will be interesting not only for

scientists working in the field of nanomaterial-based sensor technology but also for

students studying analytical chemistry, biochemistry, electrochemistry, material

science, and micro- and nanotechnology.

Pathumthani, Thailand Adisorn Tuantranont
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Nanomaterials for Sensing Applications:

Introduction and Perspective

Adisorn Tuantranont

Abstract Recent progress in synthesis and fundamental understanding of

properties of nanomaterials has led to significant advancement of nanomaterial-

based gas/chemical/biological sensors. This book includes a wide range of

nanomaterials including nanoparticles, quantum dots, carbon nanotubes, graphene,

molecularly imprinted nanostructures, nanometal structures, DNA-based

structures, smart nanomaterials, nanoprobes, magnetic-based nanomaterials,

phthalocyanines, and porphyrins organic molecules for various gas/chemical/

biological sensing applications. Perspectives of new sensing techniques such as

nanoscaled electrochemical detection, functional nanomaterial-amplified optical

assay, colorimetric, fluorescence, and electrochemiluminescense are explored.
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1 Introduction to Nanomaterials and Their Sensing

Applications

Nanomaterial is one of the major fields in nanotechnology that studies fabrication,

characterization, and analysis of materials with morphological features on the

nanoscale in at least one dimension [1–5]. The nanoscale is usually defined as the

size that is smaller than 100 nm. However, it is sometimes extended to a dimension

smaller than 1 mm. Recently, the European Commission adopted the definition of a

nanomaterial as a natural, incidental, or manufactured material containing particles,

in an unbound state or as an aggregate or as an agglomerate and where, for 50% or

more of the particles in the number size distribution, one or more external

dimensions is in the size range 1–100 nm. In specific cases, the number size

distribution threshold of 50% may be replaced by a threshold between 1% and 50%.

Nanomaterials may be classified based on dimensionality (D) of their features into

0D, 1D, 2D, and 3D nanostructures [6]. 0D nanostructures including nanoparticles,

nanospheres, quantum dots, isolated molecules and atoms are point structures with

nanoscale in all dimensions [7–9]. 1D nanostructures including nanotubes and

nanowires are structures with non-nanoscale only in one dimension [8, 10–12]. 2D

nanostructures such as nanosheet, nanoplates, nanobelts, and nanodisc are structures

with nanoscale in one dimension [13–16]. Lastly, 3D nanostructures such as

nanotetrapods, nanoflowers, and nanocombs are arbitrary structures, which contain

nanoscale features in any of three dimensions [17, 18]. These nanomaterials can be

made of large variety of functional materials, including metals, metal oxides, ionic

compound, ceramics, semiconductors, insulators, organics, polymers, biological

materials, bioorganisms, and so on. Each functional material can be made in many

nanostructure forms. Carbon is one of the most notable examples that all

dimensionalities of 0D fullerene (hollow bucky ball) [19], 1D carbon nanotubes

(CNTs) [20–23], 2D graphene [13], and 3D graphite nanostructures are available.

Apart from carbon, a wide range of nanomaterials with different dimensions of metal

[24, 25], metal oxide [8, 15, 26–28], semiconductor [29–33], organic [11, 34, 35],

polymers [36], biomaterials [37–40], and their composites [39, 41–44] have been

widely reported.

Various forms of nanostructured materials can be synthesized or fabricated by

many different methods. In general, nanomaterials can be made by three main

approaches, including top-down, bottom-up, and the combination [45–47]. In the

first approach, bulk starting materials will be broken down into nanoscale structures

by various methods such as photolithographic patterning, wet etching, plasma

etching, reactive-ion etching, laser processing, electrochemical etching, and grind-

ing [30, 48–51]. The approach can be used for production of nanoparticles,

nanorod, and nanowires of metal oxide, semiconductor, metal, and polymer

materials. The main advantages of these methods include well-controlled

parameters and large-scale manufacturability. However, they suffer from high

material loss, relatively high cost, and slow production rate.

2 A. Tuantranont



For the second scheme, nanostructures are formed by assembly of atoms or

molecules controlled by suitable process parameters of each process [52]. Bottom-up

methods are more widely used because they can be better controlled, faster, and more

cost effective [53]. Bottom-up schemes can be mainly divided into vapor-phase and

solution-route syntheses, in which nanostructures are built up from molecules or atoms

in gas and liquid phases, respectively. Widely used vapor-phase methods include

chemical vapor deposition (CVD) [54, 55], plasma-enhanced CVD [56, 57], atomic

layer deposition [58, 59], thermal/e-beam evaporation [60–62], pulse laser deposition

[63–65], sputtering [66], and flame-based synthesis [67]. These techniques have been

widely applied for syntheses of metal oxide, semiconductor, metal, and composite

nanostructures such as nanoparticles, nanowires, nanotetrapods, nanorods, nanobelts,

nanosheets, and nanotubes made of carbon, SnO2, TiO2, ZnO, Si, GaAs, Ti, W, etc.

They offer several advantages including well-controlled parameters, high-quality and

aligned structure, very low contamination, and large-scale manufacturability. However,

they normally involve expensive instrumentation, vacuum system, and high-

temperature process.

Solution-phase methods including precipitation [68], sol–gel deposition [69],

hydrothermal/solvothermal syntheses [70–72], electrochemical deposition [73],

self-assembled monolayer [16], molecular self-assembly [74, 75], electrospinning

[76, 77], electrospray [78], spray pyrolysis [79], and other chemical routes [80] are

relatively simple, of low temperature, and of low cost. They are more suitable for

syntheses of organic, polymer, and biological nanomaterials such as nanofibers,

nanoparticles, nanosheets of phthalocyanines, porphyrins, polyanilene (PANI),

poly (3,4 ethylenedioxythiophene):poly-styrene-sulfonic acid (PEDOT:PSS),

polypyrol, polyvinlypyrolidone (PVP), polyacrylonitride (PAN), oxidase enzymes,

and deoxyribonucleic acid (DNA) [81–89]. Nevertheless, these methods can also be

used to synthesize some metal oxide, semiconductor, metal nanostructures such as

nanowires of Au, Ni, Fe, and TiO2, which often rely on self-assembly of polymer

and biological materials such as cells and DNAs [90–97].

In the last approach, the bottom-up and top-down methodologies are combined

to realize more sophisticated nanomaterials. First, initial nanomaterials in the form

of film or nanostructures are synthesized by a top-down method. Next, initial

nanomaterials are further broken down by bottom-down techniques such as wet

etching and dry etching. The development of the approach is still in an early stage

and there are not many examples of nanomaterial syntheses based on this concept.

The first example is anodized alumina (AAO) nanoporous thin film fabricated by

the deposition of aluminum thin film and electrochemical anodization in phosphoric

acid. The nanopore structure can be used for subsequent bottom-up growth of

nanowires [98–101]. Similarly, nanoporous silicon thin film can also be made by

sputtering of amorphous silicon layer and electrochemical or plasma etching [102].

Another notable example is the fabrication of graphene sheet from CNTs. CNTs

synthesized by CVD process were etched along their sidewall by photoresist

masking and oxygen plasma etching [103]. Another interesting example is silver

nanowire formed by laser shock on silver thin film [13].

Nanomaterials for Sensing Applications: Introduction and Perspective 3



The most important aspect of nanomaterials is their special properties associated

with nanoscale dimensions. The most fundamental characteristic of nanomaterials

is the high surface-area-to-volume ratio, which results in a number of unusual

physical and chemical properties such as high molecular adsorption, large surface

tension force, enhanced chemical and biological activities, large catalytic effects,

and extreme mechanical strength [104–106]. Another unique property of

nanomaterials is the quantum size effect that leads to their discrete electronic

band structure like those of molecules. Unlike the increased surface-to-volume

ratio that also occurs when going from macro to micro dimensions, quantum effect

is only specific to deep nanoscale dimension of smaller than a few tens of nanome-

ter [107, 108].

The nanomaterials are thus highly useful for a wide range of nanotechnology

fields including nanoelectronics [108–110], optoelectronics [109], nanophotonics

[111–114], nano-electromechanical systems (NEMS) [115], bioelectronics [116],

nanobiotechnology [117, 118], nanochemistry [119], biochemistry [120, 121],

biomedicine [122–124], electrochemistry [125], nanomechanics [126, 127], and

so on. These lead to a large variety of applications such as quantum-effect lasers/

solar cells/transistors [128, 129], photonic band gap devices [113, 114], catalyst

[130, 131], photocatalyst [132, 133], molecular electronic device [8], surface-

enhanced Raman spectroscopy (SERS) [134], nano fuel cells [135, 136], nano

drug delivery systems [41, 137], nanosensors [20, 25, 138, 139], advanced energy

storage devices [140–142], and nanoactuators. Among these, sensors are among the

fastest-growing applications due to their huge demands in many real-world appli-

cation fields such as automobiles, communication, consumer electronics, industrial,

and biomedical. Sensors can be divided into several classes including mechanical,

thermal, optical, magnetic, gas, chemical, and biological.

Among various kinds of sensors, gas/chemical/biological sensors can exploit the

most benefits from high surface-to-volume-ratio property of nanomaterials [143,

144]. Gas/chemical/biological sensors generally comprise sensing material that

responds to changes of gas/chemical/biological analytes and transducer that converts

the changes into electrical signals. Gas sensor may be classified by sensing

mechanisms into chemoresistive, surface acoustic wave (SAW), quartz crystal micro-

balance (QCM), chemiluminescent, optical absorption, and dielectric types

[145–149]. Gas-sensing applications include toxic gases such as NO2, CO, SO2,

NH3, O3, and H2S; flammable gases such as H2, CH4, C2H2, and C3H8; and volatile

organic compounds (VOCs) such as ethanol, acetone, methanol, and propanol

[146–150]. Similarly, chemical sensors can be divided by sensing platforms into

electrochemical, ion-sensitive field effect, chemiluminescent, optical, and mass spec-

troscopic ones [151–153]. Chemical sensing applications are much wider than

gas-sensing ones as they include a large number of liquid-phase chemicals ranging

from acids, bases, solvents, and inorganic substances to organic analytes [154].

Likewise, widely used biosensing platforms include electrochemical, fluorescent,

surface plasmon resonance (SPR), QCM, and microcantilever [20, 155–158].

Biosensing applications also cover a very broad range of biologically relevant

materials including bioanalytes found in living organisms such as glucose, choles-

terol and uric acid, DNAs, RNAs, cells, proteins, organelles, and so on [12, 157–160].
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The main and common requirement of these sensors is high sensitivity and

specificity. The specific surface area of sensing material is one of the most impor-

tant factors that dictate the sensitivity as it directly related to adsorption or reaction

rate with target analytes [161]. Gas/chemical/biological sensors developed based on

well-established microtechnology are now currently used in commercial

applications. They provide good sensitivity and reproducibility along with low

power consumption. However, their performances are still not satisfactory for

many advanced applications that involve detection of very low concentration

analytes. The use of nanomaterials in these sensors will provide substantial

improvement of sensing performances due to several orders of magnitude increase

of specific surface area and smaller size [162–164]. Well-controlled synthesis and

fundamental understanding of properties of nanomaterials are very important for

the advancement of nanomaterial-based gas/chemical/biological sensors.

Recently, there has been significant progress in development of nanomaterial-

based sensors. A wide variety of nanostructured materials and composites have

been devised on different sensing platforms by a number of preparation methods for

various sensing applications. For instance, high-sensitivity chemoresistive gas

sensors based on metal oxide nanostructures such as SnO2 nanowires, ZnO

nanotetrapods, and TiO2 nanorods have been extensively explored [144]. In addi-

tion, highly sensitive electrochemical biosensors based on the combination of

biofunctional materials such as enzymes, antibody and DNAs, and novel electrode

materials such as carbon/metal/conductive polymer/metal-oxide nanostructures,

and nanocomposites such as CNTs, graphene, gold nanoparticles, CNTs/

polyaniline, CNTs/ZnO, CNTs/gold nanoparticles graphene/polythiophene and

alike are of great interest [12, 165, 166]. This book includes recent progress of

selected nanomaterials over a broad range of gas/chemical/biological sensing

applications and it is organized as follows.

In Chap. II the use of biofunctional nanomaterials in signal amplification for

ultrasensitive biosensing has been discussed. The biofunctional nanomaterials with

the abilities of specific recognition and signal triggering can be employed as not

only excellent carriers, but also electronic and optical signal tags to amplify the

detection signal. Two approaches including noncovalent interaction and covalent

route for the functionalization of nanomaterials with biomolecules are described.

The performance in terms of sensitivity and specificity are also digested.

In Chap. III, nanomaterial-based electroanalytical biosensors are reported and

emphasized for cancer and bone disease diagnostics. The existing biosensor

technologies, the mechanisms and applications of two types of electroanalytical

biosensors and advantages of nanomaterials in developing these biosensors are

described. Then, new nanomaterial-based electrochemical impedance biosensors

applied in cancer and bone disease studies that can detect in real time without any

pre-labeling-specific biomolecules at previously unattainable ultra-low concentrations

are specifically discussed.

Chapter IV deals with CNT-based chemical and biosensors and its integration to

microfluidic systems. Different components necessary for the construction of a

microfluidic system including micropump, microvalve, micromixer, and detection

system utilizing CNT-based electrochemical sensors are extensively surveyed and

discussed.
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Chapter V covers a comprehensive review of graphene-based chemical and

biosensors. These include graphene’s synthesis methods, properties, and different

types of chemical and biosensors including chemoresistive, electrochemical, and

other sensing platforms. In addition, concluding remarks for further development of

graphene-based chemical and biosensors are provided.

In Chap. VI, molecularly imprinted polymers (MIPs) for sensing and diagnostics

of various biological species are expansively reviewed and analyzed. The design of

novel artificial MIPs and the limitations of the classical non-covalent imprinting

approach are discussed. Some novel strategies for the molecular imprinting of

macromolecules such as the use of complementary functional monomers and a

new electrochemical approach to the imprinting of peptides and proteins as well as

new concepts for the integration with transducers and sensors are described.

Chapter VII reports design, synthesis, fabrication, properties, and biomedical

diagnosis applications of nanometal structures including Au and Ag nanoparticles

(NPs) based on localized surface plasmon resonance (LSPR) biosensor platform.

The characteristics including enhanced sensitivity, label-free detection capability,

specific changes in their absorbance responses upon binding with various molecules

are demonstrated and discussed.

In Chap. VIII, DNA sensors (genosensors) employing nanomaterials for diagnostic

applications are extensively described. These DNA sensors employ electrochemical

impedance principle to detect hybridization of a target clinical diagnostic-related gene

with the complementary probe genes with no labeling. The use of nanocomponents

to improve sensor performance, mainly CNTs integrated in the sensor platform,

or nanoparticles, for signal amplification and their diagnostic applications will be

reviewed.

Chapter IX describes novel nanoprobes for in vivo cell tracking used for

evaluating the therapeutic efficacy by measuring the changes in tumor volume

and tumor markers after cell-based immunotherapy. Various molecular probes

and imaging modalities including intrinsic or extrinsic therapeutic cells’ modifica-

tion with proper molecular probes and in vitro amplification as well as recent

advances in molecular imaging probes are discussed. Their application in relation

to in vivo tracking of dendritic cells (DCs), natural killer (NK) cells, and T cells are

then addressed.

Chapter X includes optical chemical gas sensor and electronic nose based on

optically active organic nanomaterials made of metallo-porphyrin (MP) and

metallo-phthalocyanine (MPc). The gas-sensing mechanism, preparation methods

of sensors, the optical absorption spectral measurement under ambient conditions,

and application to electronic nose with principal component analysis (PCA) are

described.

In Chap. XI, the uses of nanotechnology to attain highly sensitive detection in

electrochemical microdevices are reviewed. Issues relating to miniaturization of

electrochemical electrode and system are discussed. Various techniques applicable

to fabrication and integration of nanoelectrodes are included.
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2 Perspective of Nanomaterial Development for Sensing

Applications

The development of nanomaterials for sensing applications is still in an early stage

and there remains much more work to be done and some challenging issues to be

overcome before nanomaterials can successfully be commercialized. Novel func-

tional nanomaterials and new synthesis methods are still being further explored to

achieve sensors with ultra-high sensitivity. Among novel nanomaterials, graphene

and its composites are especially promising and their research in sensing applications

has been growing tremendously [167–169]. Moreover, several nanomaterials have

not yet been studied in many gas/chemical/biological applications due to application

diversity, and these explorations are highly needed. Among these, new biological

sensing applications such as virus-causing newly born infectious diseases and dan-

gerous diseases such as cancer are of particular interest [170–172]. In addition,

nanomaterials have not yet been applied in several sensing platforms to optimize

their sensing capability. Thus, the integration of nanomaterials in novel sensing

platforms such as plasmonic-based sensors is another important research direction

[173, 174]. Furthermore, nanomaterial-based sensors should be integrated into

processing systems such as microfluidics or lab-on-a-chip so that sample

preprocessing and analysis can be automated. Presently, only some nanomaterial-

based sensors have been successfully embedded in microfluidic devices [175–177].

Thus, fabrication of microfluidic devices with integrated nanomaterial-based sensors

should be further developed.

One of the most important problems of nanomaterial-based sensors is their poor

reproducibility because it is difficult to control the structure and arrangement of

nanomaterial on sensor. Highly controlled synthesis and manipulation of

nanomaterials are still major technological challenges [178]. Therefore, highly

ordered nanomaterials and their implementation in sensing platforms are among

the most important research topics in nanomaterials [179]. This leads to a new

research field, namely Nanoarchitectonics, which is a conceptual paradigm for

design and synthesis of dimension-controlled functional nanomaterials [180].

Self-assembled processes for various nanomaterials and structures are the most

promising keys to achieve these nanostructures [46, 181–183]. However, effective

methods and supporting instrumentation are still lacking and require significant

technological development such as novel methods for arbitrary guiding assembly

[184–187].

Another potential difficulty is high mass manufacturing cost due to sophisticated

processing and instrumentation. Thus, development of fabrication process for low-

cost and well-controlled large-scale nanostructure in sensing devices is another

important future research topic. Chemical route syntheses [188–190] and printing

techniques [191, 192] such as inkjet, gravure, and screen printing on low-cost,

flexible substrates such as polymers and paper are among potential solutions to

realize low-cost and disposable nanomaterial-based sensors, and research in this

area should earn particular attention. Moreover, the integration of flexible and
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printed nanosensors with organic and printed electronics (OPE) for full functional

sensing devices and systems will be a very active research field due to their

important applications in smart textile, smart clothing, smart paper, and so on [193].
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Signal Amplification Using Nanomaterials

for Biosensing

Jianping Lei and Huangxian Ju

Abstract Signal amplification based on biofunctional nanomaterials has recently

attracted considerable attention due to the need for ultrasensitive bioassays. Espe-

cially, most nanoscaled materials are biocompatible, which permits them to act in

direct contact with the environment as carriers of biological recognition elements

for obtaining lower and lower detection limit. In order to achieve the good perfor-

mance for biosensing, two approaches including noncovalent interaction and cova-

lent route have been introduced for the functionalization of nanomaterials with

biomolecules. The biofunctional nanomaterials with the abilities of specific recog-

nition and signal triggering can be employed as not only excellent carriers, but also

electronic and optical signal tags to amplify the detection signal. These advantages

provide a new avenue to construct a sensitive and specific platform in nanobiosensing.

Keywords Biosensing, Functionalization, Nanomaterials, Signal amplification
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1 Introduction

The need for ultrasensitive bioassays and the trend towards miniaturized assays

make the biofunctionalization of nanomaterials become one of the hottest fields

[1, 2]. These biofunctionalized nanomaterials can be used as carriers or tracers to

obtain the amplified detection signal and the stabilized recognition probes. Based

on the unique properties of nanomaterials, the biofunctional nanoparticles can

produce a synergic effect among catalytic activity, conductivity, and biocompati-

bility to result in significantly signal amplification for designing a new generation of

nanobiosensing device.

A lot of nanomaterials, such as metal nanoparticles, carbon-based nanostructures,

and magnetic nanoparticles have been introduced as carriers for the signal amplifica-

tion. In particularly, carbon-based nanomaterials and metal nanoparticles show to

promote the direct electron transfer between the biomolecules and electrode surface.

For example, based on excellent conductivity, the single-walled carbon nanotubes

(SWNTs) can act as a nanoconnector that electrically contacts the active site of the

enzyme and the electrode with the interfacial electron transfer rate constant of 42 s�1,

which provides a significant potential for constructing an electrochemical biosensor

[3]. Using superparamagnetic particle as carrier for signal amplification, surface

plasmon resonance (SPR) immunoassay has been achieved for the detection of cancer

biomarker prostate specific antigen (PSA) in serum at an ultralow detection limit of

10 fg mL�1 [4].

As a signal trace, the biofunctionalized nanomaterials have the abilities of

specific recognition and signal amplification in optical, electrochemical, and

photoelectrochemical assays [5, 6]. In optical assay, nanoparticle probes such as

fluorescence energy transfer nanobeads and quantum dots (QDs) provide significant

advantages of signal brightness, photostability, wide dynamic range, and

multiplexing capabilities comparison with organic dyes and fluorescent proteins.

Electrochemical assays based on nanoprobes are attractive because of their low

cost, high sensitivity, simplicity, and easy miniaturization. The electrochemilu-

minescent (ECL) and photoelectrochemical assays hold the advantages of both

optical and electrochemical detections are a promising perspective.
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