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Holly Whiteside has been an extraordinary 
RD Symposium Coordinator for 16 years, 
from RD2000 through the RD2014 meeting. 
For most of these symposia, she managed all 
aspects of the meetings, their selection sites, 
the design and maintenance of the meeting 
website, all interactions with participants 
and Travel Awardees, as well as assisting the 
preparation and submission of the confer-
ence grant from the NEI and the proceedings 
volume. For many, Holly has been the face 
of the meetings, and she showed remarkable 
dedication to the meetings and their partici-
pants, often giving much of her personal time 
to be sure the symposia were successful. In 
so doing, she helped mostly during the period 
of doubling the size of the biennial meeting. 
Holly has decided to step down from her 
involvement with the RD Symposia to devote 
her time to other aspects of her research and 
administrative tasks and her personal inter-
ests. We will miss her and are honored to 
dedicate this proceedings volume to her.

Holly Jo Whiteside

Dedication
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Preface

The International Symposia on Retinal Degeneration have been held in conjunc-
tion with the biennial meeting of the International Society of Eye Research (ISER) 
since 1984. These RD Symposia have allowed basic and clinician scientists from 
around the world to convene and present their new research findings. They have 
been organized to allow substantial time for discussions and one-on-one interac-
tions in a relaxed atmosphere, where international friendships and collaborations 
can be fostered.

The XVI International Symposium on Retinal Degeneration (also known as 
RD2014) was held from July 13–18, 2014 at the Asilomar Conference Center in 
the beautiful city of Pacific Grove, California, USA. The meeting brought together 
272 basic and clinician scientists, retinal specialists in ophthalmology, and trainees 
in the field from all parts of the world. In the course of the meeting, 43 platform 
and 159 poster presentations were given, and a majority of these are presented in 
this proceedings volume. New discoveries and state of the art findings from most 
research areas in the field of retinal degenerations were presented. This was the 
largest of all of the RD Symposia, with the greatest number of attendees and pre-
sentations.

The RD2014 meeting was highlighted by three special keynote lectures. The 
first was given by John Flannery, PhD, of the University of California, Berkeley, 
Berkeley, CA. Dr. Flannery discussed “Engineering AAV vectors to target specific 
functional subclasses of retinal neurons and glia.” Dr. Flannery’s talk was the first 
named keynote lecture of the RD Symposia in 32 years, the Edward H. Gollob 
Lecture, named for the President of the Foundation Fighting Blindness. The second 
keynote lecture was given by Sally Temple, PhD, Director of the Neural Stem Cell 
Institute, Regenerative Research Foundation, Rensselaer, NY. Dr. Temple discussed 
“Endogenous RPE stem cells, their surprising plasticity and implications for thera-
peutic applications.” The third keynote lecture was given by Samuel G. Jacob-
son, MD, PhD, of the University of Pennsylvania, Philadelphia, PA. Dr. Jacobson 
discussed “A treatment trial for an inherited retinal degeneration: what have we 
learned?”
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The scientific meeting ended with a “Welcome to RD2016” by Prof. Nagahisa 
Yoshimura of Kyoto, Japan, along with the organizers primarily responsible for the 
meeting, Drs. John Ash and Robert E. Anderson.

We thank the outstanding management and staff of the beautiful Asilomar Con-
ference Center for their assistance in making this an exceptionally smooth-running 
conference and a truly memorable experience for all of the attendees. These includ-
ed, in particular, Suzan Carabarin, Vivian Garcia, Sammy Ramos and Carlene 
Miller. We also thank Kelly Gilford and Jason McIntosh for providing audio/
visual equipment and services that resulted in a flawless flow of platform presenta-
tions. We thank Steve Henry of Associated Hosts, Inc. for planning and implement-
ing transportation of most of the attendees to and from the Asilomar meeting venue, 
the memorable whale watching excursion, as well as for providing the dynamic 
“Beach Boys Band” for the end-of-meeting Gala for a truly California experience. 
Lastly, we thank Franz Badura of Pro Retina Germany for serenading the attend-
ees at the Gala with his beautiful trumpet solos.

The Symposium received international financial support from a number of orga-
nizations. We are particularly pleased to thank The Foundation Fighting Blindness, 
Columbia, Maryland, for its continuing support of this and all previous biennial 
Symposia, without which we could not have held these important meetings. In ad-
dition, for the seventh time, the National Eye Institute of the National Institutes of 
Health contributed in a major way to the meeting. In the past, funds from these two 
organizations allowed us to provide 25–35 Travel Awards to young investigators 
and trainees working in the field of retinal degenerations. However, the response 
to the Travel Awards program was extraordinary, with 110 applicants, many more 
than in the past. For this reason, we sought additional support for the Travel Awards 
program. We are extremely appreciative for the contributions from Pro Retina Ger-
many, the Fritz Tobler Foundation Switzerland and from Ed and Sandy Gollob. In 
total, we were able to fund 49 Travel Awards, the largest number ever an RD Sym-
posia held in North America. We are grateful to the BrightFocus Foundation, which 
supported the important poster sessions. Many of the contributing foundations sent 
members of their organizations to attend the meeting. Their participation and com-
ments in the scientific sessions were instructive to many, offering new perspectives 
to some of the problems being discussed. The Travel Awardees were selected on the 
basis of 9 independent scores of their submitted abstracts, 6 from each of the orga-
nizers and 3 from the other members of the Travel Awards Committee for RD2014, 
Drs. Jacque Duncan, Machelle Pardue and XianJie Yang.

We also acknowledge the diligent and outstanding efforts of Ms. Holly White-
side, who along with Dr. John Ash, carried out most of the administrative aspects 
of the RD2014 Symposium, and designed and maintained the meeting website. 
Holly is the Administrative Manager of Dr. Anderson’s laboratory at the University 
of Oklahoma Health Sciences Center. For this Symposium, Ms. Melody Marcum, 
Director of Development of the Dean McGee Eye Institute, worked closely and ex-
tensively in selecting and negotiating the meeting venue, and in planning the meals, 
entertainment and various events. Melody and Holly were crucial to the success 
of the RD2014 symposium. Also, Dr. Michael Matthes in Dr. LaVail’s laboratory 
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played a major role in all aspects in the production of this volume, along with the 
assistance of Ms. Cathy Lau-Villacorta, also in Dr. LaVail’s laboratory.

Finally, we honor the monumental efforts of Holly Whiteside. Holly has been 
the RD Symposium Coordinator since 2000, and during that time she has been the 
“face” of the RD Symposia. She has been responsible for virtually all of the admin-
istrative aspects of the RD Symposia for 16 years, and most repeat attendees feel a 
close relationship with Holly. She is now stepping back from the efforts of the RD 
Symposia to pursue personal and professional avenues. We have valued Holly’s ef-
forts enormously over these years, and we are proud to dedicate this volume to her.

Catherine Bowes Rickman 
Matthew M. LaVail
Robert E. Anderson

Christian Grimm
Joe G. Hollyfield

John D. Ash
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Travel Awards

We gratefully acknowledge National Eye Institute, NIH, USA; the Foundation 
Fighting Blindness, USA; Pro Retina Germany; the Fritz Tobler Foundation, Swit-
zerland; and Ed and Sandy Gollob for their generous support of 49 Travel Awards 
to allow young investigators and trainees to attend this meeting. Eligibility was re-
stricted to graduate students, postdoctoral fellows, instructors and assistant profes-
sors actively involved in retinal degeneration research. These awards were based on 
the quality of the abstract submitted by each application. Catherine Bowes Rickman 
chaired the Travel Awards Committee of 9 senior retinal degeneration investigators, 
the 6 organizers and Drs. Jacque Duncan, Machelle Pardue and Xian-Jie Yang. The 
travel awardees are listed below.

Carolina Abrahan
University of Florida, Gainesville, USA

Martin-Paul Agbaga
University of Oklahoma HSC, Oklahoma City, USA

Monica Aguila
University College of London, London, United Kingdom

Marcel Alavi
University of California, San Francisco, San Francisco, USA

Seifollah Azadi
University of Oklahoma HSC, Oklahoma City, USA

Emran Bashar
University of British Columbia, Vancouver, Canada

Lea Bennett
Retina Foundation of the Southwest, Dallas, USA

Manas Biswal
University of Florida, College of Medicine, Gainesville, USA

Shannon Boye
University of Florida, Gainesville, USA
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Melissa Calton
Stanford University School of Medicine, San Francisco, USA

Livia Carvalho
Schepens Eye Research Institute/MEEI, Boston, USA

Wei-Chieh Chiang
University of California, San Diego, LaJolla, USA

Rob Collin
Radboud University Medical Centre, Nijmegen, Netherlands

Janise Deming
University of Southern California, Los Angeles, USA

Louise Downs
University of Pennsylvania, Philadelphia, USA

Lindsey Ebke
Cleveland Clinic Cole Eye Institute, Cleveland, USA

Michael Elliott
University of Oklahoma HSC, Oklahoma City, USA

Michael Gale
Oregon Health and Science University, Portland, USA

Xavier Gerard
Institut Imagine, Paris, France

Rosario Fernandez Godino
MEEI-Harvard Medical School, Boston, USA

Christin Hanke
University of Utah, Salt Lake City, USA

Stefanie Hauck
Helmholtz Zentrum Müchen, Neuherberg, Germany

Roni Hazim
University of California, Los Angeles, Los Angeles, USA

Claire Hippert
UCL Institute of Ophthalmology, London, United Kingdom

John Hulleman
Univ. of Texas Southwestern Medical Center, Dallas, USA

Xiaojie Ji
The Jackson Laboratory, Bar Harbor, USA

Mark Kleinman
University of Kentucky, Lexington, USA
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Elod Kortvely
Universität Tübingen, Tübingen, Germany

Ruanne Lai
University of British Columbia, Vancouver, Canada

Christopher Langlo
Medical College of Wisconsin, Milwaukee, USA

Jennifer Lentz
Louisiana State University HSC, New Orleans, USA

Yao Li
Columbia University, New York City, USA

Hongwei Ma
University of Oklahoma HSC, Oklahoma City, USA

Alexander Marneros
Massachusetts General Hospital, Charlestown, USA

Alex McKeown
University of Alabama at Birmingham, Birmingham, USA

Claudia Müller
Fordham University, New York City, USA

Celia Parinot
Institut de la Vision, Paris, France

David Parfitt
UCL Institute of Ophthalmology, London, United Kingdom

Diana Pauly
Universität Regensburg, Regensburg, Germany

Beryl Royer-Bertrand
University of Lausanne, Lausanne, Switzerland

Matt Rutar
The Australian National University, Canberra, Australia

Marijana Samardzija
University of Zurich, Schlieren, Switzerland

Kimberly Toops
University of Wisconsin—Madison, Madison, USA

Christopher Tracy
University of Missouri, School of Medicine, Columbia, USA

Mallika Valapala
Johns Hopkins University School of Medicine, Baltimore, USA
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Lei Wang
Johns Hopkins University, Baltimore, USA

Qingjie Wang
Regenerative Research Foundation, Rensselaer, USA

Wenjun Xiong
Harvard Medical School, Boston, USA

Lei Xu
University of Florida, Gainesville, USA
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Chapter 1
Apolipoprotein E Isoforms and AMD

Kimberly A Toops, Li Xuan Tan and Aparna Lakkaraju

Abstract  The cholesterol transporting protein apolipoprotein E (ApoE) occurs in 
three allelic variants in humans unlike in other species. The resulting protein iso-
forms E2, E3 and E4 exhibit differences in lipid binding, integrating into lipoprotein 
particles and affinity for lipoprotein receptors. ApoE isoforms confer genetic risk 
for several diseases of aging including atherosclerosis, Alzheimer’s disease, and 
age-related macular degeneration (AMD). A single E4 allele increases the risk of 
developing Alzheimer’s disease, whereas the E2 allele is protective. Intriguingly, 
the E4 allele is protective in AMD. Current thinking about different functions of 
ApoE isoforms comes largely from studies on Alzheimer’s disease. These data 
cannot be directly extrapolated to AMD since the primary cells affected in these 
diseases (neurons vs. retinal pigment epithelium) are so different. Here, we pro-
pose that ApoE serves a fundamentally different purpose in regulating cholesterol 
homeostasis in the retinal pigment epithelium and this could explain why allelic risk 
factors are flipped for AMD compared to Alzheimer’s disease.

Keywords  Apolipoprotein E · ApoE isoforms · Age-related macular degeneration ·  
Retinal pigment epithelium · Cholesterol
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1.1 � Introduction

Age-related macular degeneration (AMD), like other multifactorial diseases of ag-
ing, has no simple genetic underpinning. A complex mixture of environmental fac-
tors, lifestyle choices, and genes influence whether AMD will develop, how rapidly 
it will advance, and how severe the resulting visual dysfunction will be (Fritsche 
et  al. 2014). Vision loss in AMD results from death of the photoreceptors, par-
ticularly in the macula. Photoreceptor loss reflects the terminal step in a cascading 
pathology whose genesis is in the posterior-most portion of the retina: the RPE, 
Bruch’s membrane (BM) and choroid complex.

The tissue that is the initial site of damage in AMD, the RPE, forms the outer 
blood-retinal barrier and is responsible for the health and maintenance of the pho-
toreceptors and the choriocapillaris (Toops et al. 2014). One of the many functions 
of the RPE is to act as the central organizing hub for cholesterol homeostasis for 
the outer retina (Fliesler and Bretillon 2010; Pikuleva and Curcio 2014). Several 
independent lines of evidence indicate that cholesterol homeostasis in the RPE and 
adjacent Bruch’s membrane is dysregulated in AMD: one, cholesterol-rich lesions 
with material at least partly derived from the RPE are found in both sub-retinal and 
sub-RPE deposits (Bowes Rickman et al. 2013; Pikuleva and Curcio 2014). Two, 
several critical members of the cholesterol homeostasis pathway including hepatic 
lipase (LIPC), cholesteryl ester transfer protein (CETP), ATP-binding cassette sub-
family A member 1 (ABCA1), and apolipoprotein E (ApoE) have been implicated 
in modulating AMD susceptibility (Katta et al. 2009; Liu et al. 2012; Fritsche et al. 
2014). Of these, how ApoE gene variants alter AMD risk is especially intriguing 
because of the opposite allele-risk associations between AMD and Alzheimer’s dis-
ease (AD) (Thakkinstian et al. 2006; McKay et al. 2011; Sivak 2013).

1.2 � ApoE Isoforms Structure and Function

The human ApoE gene occurs in three allelic variants E2, E3 and E4 that vary by 
just two nucleotides resulting in three protein isoforms with amino acid variations 
at positions 112 and 158. These single amino acid changes profoundly effect protein 
function because they modify salt bridges within different helices of ApoE leading to 
altered receptor binding and lipid binding (Mahley and Rall 2000; Huang 2010). Key 
differences between the three ApoE isoforms are summarized in Table 1.1. The E2 
isoform binds poorly to the low-density lipoprotein receptor (LDL-R) compared to E3 
or E4 (< 2 %). E4 associates preferentially with very low-density lipoproteins (VLDL) 
whereas E2 and E3 associate with high-density lipoproteins (HDL) (Mahley and Rall 
2000; Huang 2010). Humans are the only known species that express multiple ApoE 
isoforms. ApoE expressed by non-human primates and mice is structurally homolo-
gous to human ApoE4 with Arg at positions 112 and 158; however, these sequences 
have Thr at position 61 instead of Arg. This single amino acid switch prevents the for-
mation of an N- and C- terminal domain interaction and results in non-human ApoE 
functioning more like human ApoE3 (Mahley and Rall 2000; Raffai et al. 2001).
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1.3 � Evidence for ApoE in Human Diseases

1.3.1 � Hyperlipidemia

ApoE was first implicated in regulating the balance of serum cholesterol and tri-
glyceride levels (Huang 2010). In this context, ApoE, a component of lipoproteins 
(primarily chylomicrons, VLDL, and a subset of HDL particles), facilitates entry 
into cells by acting as a ligand for the low-density lipoprotein receptor (LDL-R), 
LDL-R like protein (LRP), heparan sulfate proteoglycans, and additional non-ca-
nonical receptors (Mahley and Rall 2000; Carlo et al. 2013). E4 is highly enriched 
in VLDL particles due to its altered lipid-binding region that shows a preference 
for binding triglyceride-enriched particles. E2 and E3 are more common in HDL 
particles due to a preference in their lipid-binding regions for phospholipids (Huang 
2010). Both E2 and E4 alleles are associated with the development of hyperlipid-
emia and downstream atherosclerotic lesions, but for different reasons (Mahley and 
Rall 2000; Huang 2010). Because E2 is a much poorer ligand than E4 for LDL-R, 
effective uptake of HDL particles is prevented, leading to hyperlipidemia type III 
in E2 homozygotes. The preferential binding of E4 to VLDL particles leads to a 
feedback loop of decreased cellular uptake of LDL particles, which can result in 
hyperlipidemia.

1.3.2 � Alzheimer’s Disease

In contrast to the above scenario, in individuals with either one or two copies of E4 
the risk of developing AD increases by 4- or 12-fold respectively compared to E3 
homozygotes (Huang 2010). ApoE4 is the best-characterized risk factor for early-
onset familial AD and an estimated 65–80 % of AD patients have at least one E4 al-
lele (Carter 2007). Conversely, ApoE2 has been proposed to be mildly protective for 
AD, although this remains a weak association without a clear mechanism (Maezawa 
et al. 2004). ApoE4 is thought to contribute to AD mainly by altering how neurons 

Table 1.1   General properties of the three different human ApoE isoforms are summarized.  
aPopulation frequency is reported for having at least one allele of a given isoform; total estimated 
frequencies of the six possible ApoE phenotypes are 55 % E3/E3, 25 % E3/E4, 15 % E3/E2, with 
E4/E4, E2/2, and E4/E2 being rare phenotypes with 1–2 % occurrence (Mahley and Rall 2000).  
bSingle polymorphisms lead to alternate amino acids at positions 112 and 158 in the human ApoE 
isoforms protein primary sequence. c ApoE2 has been reported to have less than 2 % of the binding 
capability to LDL-R compared to E3 or E4 (Mahley and Rall 2000)
Properties of human ApoE isoforms
Isoform Population 

frequency (%)a
Sequenceb 
112 158

LDL-R affinity Lipoprotein 
binding

ApoE2 7 Cys Cys Very lowc HDL
ApoE3 78 Cys Arg High HDL
ApoE4 15 Arg Arg High VLDL, HDL
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process the amyloid precursor protein (APP) through a cholesterol-mediated path-
way. This pathway results in the accumulation of intra- and extra- neuronal toxic 
amyloid beta (Aβ) fragments, which eventually kill hippocampal neurons (Carter 
2007; de Chaves and Narayanaswami 2008; Huang 2010; Leduc et al. 2010). The 
mechanism for this is complex and depends on interactions between ApoE, ApoE 
cell surface receptors, cholesterol, APP and Aβ, within neurons and in the surround-
ing astrocytes and extracellular space. E4 appears to stabilize toxic Aβ oligomers, 
which renders them resistant to lysosomal degradation (Cerf et al. 2011). E4 con-
tributes to AD via other mechanisms that are independent of Aβ: one, E4 is a poor 
supplier of cholesterol for membrane repair in damaged neurons (Rapp et al. 2006; 
de Chaves and Narayanaswami 2008; Leduc et al. 2010); and two, E4 acts as a pro-
inflammatory molecule to exacerbate neuronal damage (Guo et al. 2004).

1.3.3 � Age-Related Macular Degeneration

Epidemiological studies suggest that ApoE2 confers risk in AMD, whereas ApoE4 
appears to be protective, although the association of E4 with protection is stronger 
than E2 with risk (McKay et al. 2011). ApoE and its cargo, cholesterol, are abundant 
components of drusen, the protein- and lipid-rich lesions in the Bruch’s membrane 
characteristic of AMD (Anderson et al. 2001; Curcio et al. 2011; Bowes Rickman 
et al. 2013; Pikuleva and Curcio 2014). ApoE in drusen could originate from either 
the retina or the choroidal circulation (or both, since these sources are not mutu-
ally exclusive). However, mounting evidence indicates that the material that forms 
drusen, including ApoE, is secreted from the RPE (even if it is initially transported 
into the retina from the circulation, as may be the case for certain lipids) (Pikuleva 
and Curcio 2014). Thus, the retina is an active cholesterol producing and processing 
tissue and cholesterol efflux mechanisms are critical for maintaining retinal choles-
terol homeostasis (Fliesler and Bretillon 2010; Pikuleva and Curcio 2014).

1.4 � Cellular Identity and Differential ApoE Function 
Contributing to Risk

How ApoE4 can be detrimental to neuronal health has been studied extensively 
in AD. Little is currently known regarding isoform-specific functions of ApoE in 
the RPE and how these could contribute to AMD. Local sources of ApoE within 
the retina are the RPE and the Muller glia, indicating that ApoE is a major cho-
lesterol transport in the retina (Anderson et al. 2001; Li et al. 2006; Johnson et al. 
2011). RPE cells express the uptake receptors for ApoE (LDL-R and LRP) as well 
as the machinery for cholesterol efflux (ABCA1 and ABCG1) (Ebrahimi and Handa 
2011; Pikuleva and Curcio 2014). Since cholesterol (free, esterified, and oxidized) 
is a core component of drusen (Curcio et  al. 2005), dysregulation of cholesterol 
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homeostasis seems to be a key player in AMD pathology (Curcio et al. 2011; Ebra-
himi and Handa 2011; Pikuleva and Curcio 2014). And it is in this characteristic that 
hippocampal neurons and RPE cells most likely diverge.

First, whereas RPE have the capacity to synthesize and take up ApoE-contain-
ing lipoproteins, neurons are largely at the mercy of the astrocytes for ApoE pro-
duction and lipid transport (Leduc et al. 2010). This is a critical distinction since 
very little cholesterol enters the CNS from the circulation and neurons rely on 
local synthesis and transport of cholesterol to generate and maintain their long 
membrane-rich axons. As a reflection of this, neuronal plasma membrane has high 
levels of lipoprotein receptors particularly LRP, which has a strong preference for 
ApoE2 and E3 (Rapp et al. 2006). On the other hand, although RPE cells express 
ApoE receptors, they seem to be spatially discreet (i.e., apical vs. basolateral distri-
butions) and with a different abundance (Tserentsoodol et al. 2006a; Tserentsoodol 
et al. 2006b; Zheng et al. 2012). A comprehensive analysis of this expression re-
mains to be done.

The RPE therefore acts as a hub for ingress and egress of ApoE-cholesterol, 
while neurons are largely a terminal acceptor. This implies that as far as ApoE is 
concerned, RPE may be more similar to astrocytes then neurons. Astrocytes are also 
active producers of ApoE-cholesterol particles and like the RPE, express ABCA1 
and ABCG1, which participate in efflux of ApoE rich pseudo-HDL particles (Wu 
et al. 2010; Johnson et al. 2011; Ito et al. 2014). Astrocytes express LDL-R and LRP 
but appear to preferentially bind and uptake ApoE4 and E3 containing lipoproteins 
(Rapp et  al. 2006). Astrocytes exposed to ApoE2-, E3- or E4-loaded cholesterol 
exhibited ApoE isoform-dependent uptake (E4 = E3 > E2) that was exactly opposite 
to that seen in neurons (E2 = E3 > E4). Further, astrocytes internalized their choles-
terol efficiently, whereas in neurons, the cholesterol was retained on the plasma 
membrane.

1.5 � Implications

If the RPE is functionally similar to astrocytes with regard to cholesterol handling, 
rather than neurons, then the reversed risk alleles for AD and AMD may not be such 
a puzzle after all. The RPE and astrocytes can preferentially efflux ApoE containing 
pseudo-HDL particles for efficient intercellular cholesterol transport. In the brain, 
this becomes problematic for neurons in ApoE4 expressors because poor cholester-
ol efflux both increases Aβ generation and decreases its degradation. In the retina, a 
different balance is struck because the RPE is capable of both efflux and re-uptake. 
This will be more efficient for E4 than E2 due to the presence of LDL-R in RPE, 
which avidly binds E3 and E4 but has almost no affinity for E2. Experiments aimed 
at testing how efficiently different ApoE isoforms traffic cholesterol in and out of 
the RPE will help establish a cellular, mechanistic basis for puzzling epidemiologi-
cal data.
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Chapter 2
Role of Chemokines in Shaping Macrophage 
Activity in AMD

Matt Rutar and Jan M Provis

Abstract  Age-related macular degeneration (AMD) is a multifactorial disorder 
that affects millions of individuals worldwide. While the advent of anti-VEGF 
therapy has allowed for effective treatment of neovascular ‘wet’ AMD, no treat-
ments are available to mitigate the more prevalent ‘dry’ forms of the disease. A role 
for inflammatory processes in the progression of AMD has emerged over a period 
of many years, particularly the characterisation of leukocyte infiltrates in AMD-
affected eyes, as well as in animal models. This review focuses on the burgeoning 
understanding of chemokines in the retina, and their potential role in shaping the 
recruitment and activation of macrophages in AMD. Understanding the mecha-
nisms which promote macrophage activity in the degenerating retina may be key 
to controlling the potentially devastating consequences of inflammation in diseases 
such as AMD.

Keywords  Retinal degenerations · Age-related macular degeneration (AMD) · 
Inflammation · Macrophages · Microglia · Chemokines

2.1 � Introduction

Age-related macular degeneration (AMD) affects millions of individuals world-
wide, and is the leading cause of blindness in the industrialised world (Ambati 
et al. 2003a). AMD is a multifactorial disorder, involving complex interaction 
between environmental and genetic factors. Evidence for a role of inflammation 
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in progression AMD has been accruing over a period of many years, particu-
larly through the observations of leukocyte infiltrates within AMD-affected eyes 
(Penfold et al. 2001; Forrester 2003).

2.2 � Macrophage Recruitment in AMD

The involvement of inflammatory processes in the histopathology of AMD was first 
noted almost 100 years ago (Hegner 1916), and several histological studies since 
have established the presence of aggregations of choroidal leukocyte infiltrates in 
association with disciform macular lesions (Hegner 1916; Paul 1927; Green and 
Key 1977).

Those early observations were confirmed and extended in a number of electron 
microscopical investigations which demonstrated the involvement of a number of 
inflammatory cells—including macrophages, lymphocytes, and mast cells—in RPE 
atrophy, and breakdown of Bruch’s membrane (Penfold et al. 1984, 1985). Macro-
phages and other leukocytes have also been described in excised neovascular mem-
branes (Lopez et al. 1991; Gehrs et al. 1992; Seregard et al. 1994). Ultrastructural 
studies also identified a close relationship between macrophages and the formation 
of choroidal neovascular membranes in wet AMD (Penfold et al. 1987). Multinucle-
ated giant cells—which may form through union of multiple macrophages or mi-
croglia (Dickson 1986)—have also been found to correlate spatially with regions 
of breakdown in Bruch’s membrane and with CNV (choroidal neovascularisation) 
(Penfold et al. 1985). Chronic involvement of macrophages and giant cells has also 
been shown in atrophic AMD lesions, and on the expanding edges (Penfold et al. 
1987; Cherepanoff et al. 2009). Other investigations have shown changes in paren-
chymal microglia in association with early AMD, including increased MHC-II ex-
pression and morphological changes suggestive of activation (Penfold et al. 1997). 
In advanced AMD, activated amoeboid microglia infiltrate the ONL and subretinal 
space in the degenerating outer retina, where they are associated with neovascular 
structures (Combadiere et al. 2007), and appear to have a role in the phagocytosis of 
photoreceptor debris (Gupta et al. 2003; Combadiere et al. 2007).

2.3 � Role of Chemokines

First discovered in 1987 (Walz et al. 1987; Yoshimura et al. 1987), chemokines are 
a large, growing family comprising more than 50 molecules interacting with at least 
20 chemokine receptors, that play an important role in the chemotactic guidance of 
leukocyte migration and activation (Moser and Loetscher 2001; Bajetto et al. 2002). 
Chemokines are small molecules grouped according to the relative position of their 
first N-terminal cysteine residues, comprising C (γ chemokines), CC (β chemo-
kines), CXC (α chemokines), and CX3C (δ chemokines) families (Loetscher et al. 
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2000; Murphy et al. 2000; Zlotnik and Yoshie 2000; Bajetto et al. 2002). These may 
be expressed by endothelial cells, resident macrophages (including microglia), as 
well as infiltrating leukocytes (Crane and Liversidge 2008). Chemokines exert their 
biological activity through binding cell surface chemokine receptors, which are part 
of the superfamily of seven transmembrane domain receptors that signal through 
coupled heterotrimeric G-proteins, consisting of C, CC, CXC, CX3C receptor sub-
classes (Bajetto et al. 2002). Many of these receptors show a degree of redundancy, 
as multiple chemokines may bind several receptors; although interactions are main-
ly restricted to within particular subclasses (Bajetto et al. 2002). Chemokine expres-
sion typically generates chemical ligand gradients, which serve as directional cues 
for guidance of leukocytes bearing the appropriate chemokine receptors to sites of 
injury, and are also thought to aid in extravasation of leukocytes (Luster 1998).

The expression of chemokines in the guidance and activation of macrophages 
has garnered considerable interest in AMD. Retinas from human donors show in-
creased expression of both α (Cxcl1, Cxcl1) and β (Ccl2) chemokine genes in ‘wet’ 
and ‘dry’ AMD (Newman et  al. 2012), while elevated levels of Ccl2 protein—a 
potent chemoattractant for monocytes (Matsushima et al. 1989; Yoshimura et al. 
1989)—have been detected in aqueous humour samples taken from patients in ad-
vanced stages of AMD (Jonas et al. 2010; Kramer et al. 2011). Additionally, eleva-
tion in Ccl2 is evident within atrophic ‘dry’ AMD lesions and is accompanied by 
influxes of monocytes expressing Ccr2 (Sennlaub et al. 2013), which is the receptor 
for Ccl2 signalling (Yoshimura and Leonard 1990).

A direct for role of chemokines has been elucidated with animal models of AMD 
(Patel and Chan 2008). Investigations using laser-induced CNV in mice have fo-
cused on the role of β chemokine signalling in neovascular AMD. Ablation of Ccl2 
using target gene knockout has been shown to inhibit the infiltration of macro-
phages and results in reduced lesion size following laser-induced CNV compared to 
controls (Luhmann et al. 2009). Moreover, a mouse knockout of the receptor Ccr2 
exhibits decreased macrophage recruitment and vastly reduced neovascularisation 
following experimental laser-induced CNV (Tsutsumi et  al. 2003). In models of 
atrophic ‘dry’ AMD which utilise bright light as a damaging stimulus (Marc et al. 
2008; Rutar et al. 2010), the suppression of Ccl2 using either ablation or siRNA-
mediated knockdown reduces macrophage recruitment and the extent of cell death 
(Rutar et al. 2012; Sennlaub et al. 2013). Conversely, other studies suggest that a 
degree of β chemokine signalling may be necessary for the maintenance retinal 
homeostasis, and prevention of AMD. An investigation in aged, dual Ccl2/Ccr2 
knockout mice showed retinal features similar to AMD including formation of lipo-
fuscin, drusen, photoreceptor degeneration, and neovascularisation (Ambati et al. 
2003b), although the AMD-like phenotype in this model has been questioned (Luh-
mann et al. 2009). Ccl2/Ccr2 knockout results in the accumulation of hypertrophied 
subretinal macrophages, possibly because of impaired monocyte trafficking (Luh-
mann et al. 2009).

The only δ chemokine receptor characterised, Cx3cr1, has also been implicated 
in maintenance of homeostasis and genesis of AMD-like pathology. Cx3cr1 is a 
chemokine receptor found on microglia, macrophages, astrocytes, and T-cells (Patel 
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and Chan 2008), whose ligand chemokine Cx3cl1 is constitutively expressed on 
many cell types in the retina, and together are thought to mediate the trafficking of 
microglia and macrophages in the clearance of extracellular deposits (Fong et al. 
1998; Silverman et al. 2003). Targeted knockout of Cx3cr1 in light-stressed mice 
induces progressive degeneration of photoreceptors in correlation with an accumu-
lation of engorged subretinal microglia/macrophages and other AMD-like features 
(Combadiere et al. 2007). Moreover, ablation of Cx3cr1 is associated with an in-
crease in lesion size following experimental neovascularisation (Combadiere et al. 
2007).

2.4 � Summary

Over a period of many years, the role of inflammation in AMD has gradually 
emerged as an important factor underpinning its pathogenesis. This is exemplified 
by traditional histological examinations and electron microscopy identifying mac-
rophage/microglial infiltration in AMD-effected eyes, and more recently through 
investigations utilising animal models. The expression of chemokine-related genes 
is prodigious in all forms of AMD pathology, and animal models of both and ‘dry’ 
and ‘wet’ AMD indicate that chemokine expression modulates both the recruitment 
and activation of macrophages, as well as the extent of retinal degeneration. Reduc-
ing inflammation by altering macrophage activity in retina may prove an important 
therapeutic tool in ameliorating degeneration in AMD.
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Chapter 3
Biology of p62/sequestosome-1 in Age-Related 
Macular Degeneration (AMD)

Lei Wang, Katayoon B Ebrahimi, Michelle Chyn, Marisol Cano and James T 
Handa

Abstract  p62/sequestosome-1 is a multidimensional protein that interacts with 
many signaling factors, and regulates a variety of cellular functions including 
inflammation, apoptosis, and autophagy. Our previous work has revealed in the 
retinal pigment epithelium (RPE) that p62 promotes autophagy and simultaneously 
enhances an Nrf2-mediated antioxidant response to protect against acute oxidative 
stress. Several recent studies demonstrated that p62 contributes to NFkB mediated 
inflammation and inflammasome activation under certain circumstances, raising 
the question of whether p62 protects against or contributes to tissue injury. Herein, 
we will review the general characteristics of p62, focusing on its pro- and anti-cell 
survival roles within different physiological/pathological contexts, and discuss the 
potential of p62 as a therapeutic target for AMD.

Keywords  AMD · RPE · p62 · sqstm1 · Autophagy · Nrf2 · Neurodegeneration · 
NFkB · PB1
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3.1  Introduction

AMD is the most common cause of blindness among the elderly in western coun-
tries (Kaarniranta et  al. 2011), and is characterized by dysfunction of the retinal 
pigment epithelium (RPE). The RPE is under constant oxidative challenge due to 
phagocytosis and exposure to UV light. Removal of oxidized/misfolded proteins 
relies on the proteasome and autophagy. We showed that acute stress inhibits the 
proteasome, but up-regulates anti-oxidant and autophagy related genes, including 
p62 (Cano et al. 2014). We also confirmed p62’s protective role in the RPE, via 
both autophagic clearance and activation of Nrf2 antioxidant signaling (Wang et al. 
2014). As AMD shares pathological and mechanistic features with other adult-onset 
neurodegenerative diseases (Glass et al. 2010; Kaarniranta et al. 2011), our studies 
on p62’s role in AMD could contribute to the understanding of these diseases.

3.2  Structure and Functions of p62

p62 was initially discovered as an interacting partner of atypical protein kinase 
C (aPKC) (Puls et  al. 1997; Sanchez et  al. 1998) via its N-terminal Phox/Bem 
1p (PB1) domain, and mediating the activation of NFkB signaling. The follow-
ing ZZ zinc-finger domain binds receptor interacting protein (RIP), also linking 
p62 to NFkB signaling. The TRAF6 binding (TB) domain binds TRAF6, which is 
relevant in osteoclastogenesis, as well as Ras-induced tumorigenesis (Nakamura 
et al. 2010). Downstream of TB domain, the LC3-interacting region (LIR) interacts 
with autophagosome protein Atg8/LC3, and the Keap1-interacting region (KIR) is 
involved with Nrf2 regulation. At the C-terminus, the ubiquitin-associated (UBA) 
domain regulates p62’s interaction with polyubiquitinated proteins targeted for au-
tophagic degradation (Matsumoto et al. 2011). As Table 3.1 shows, p62 is rich in 
protein-interacting sequences. Its N-terminal region mainly regulates inflammatory 
responses, and the C-terminal domains mostly contribute to stress reduction. (See 
Fig. 3.1)

Multiple p62 isoforms have been identified in different species. The rat express-
es three p62 protein isoforms (Gong 1999; Croci et al. 2003). The ratio of rat p62 

Fig. 3.1   p62 can be either 
protective or damaging. 
Its role is determined by 
its interacting partners, in 
different pathological context 
and tissue types
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isoform1/isoform2 is tissue specific, and is dynamically regulated in response to 
stimulation. Humans express two p62 isoforms, of which isoform2 is 84 amino 
acids shorter at the N-terminus, equivalent to the loss of PB1 domain. Our studies 
demonstrated that all p62 mRNA species are expressed in cultured human RPE 
cells, but isoform2 is barely translated (Wang et al. 2014), thus its functional role 
requires further investigation in AMD patients.

3.3  p62 Protects by Enhancing Autophagic Clearance and 
Activating Nrf2 Signaling

Aggregates of misfolded/damaged proteins are transported to the autophagy ma-
chinery for degradation (Matsumoto et al. 2011). p62 functions as a cargo receptor, 
binding to polyubiquitinated proteins and guiding them to the autophagosome. Our 
studies confirmed in RPE cells, that p62 silencing caused cargo loading failure and 
inefficient autophagy, as demonstrated by a reduced LC3 conversion ratio. Overex-
pression of p62 gave the opposite results. Interestingly, p62’s influence on selective 
autophagy was observed only when cells were under oxidative stress. We speculate 
that under basal conditions, RPE cells rely on other protective mechanisms such 
as the proteasome, and that p62 mediated autophagy is recruited to deal with over-
whelming stress.

Along with the p62 mediated autophagic clearance, the antioxidant transcrip-
tion factor Nrf2 is activated to help maintaining redox homeostasis. Keap1, known 
to sequester Nrf2 in the cytosol and inhibit its activity, is bound by p62, thus 
releasing Nrf2 to activate the antioxidant genes (Komatsu et al. 2010). Our stud-
ies confirmed in RPE that p62 enhanced Nrf2 activity, and Nrf2 upregulated p62 
expression at transcriptional level, thus forming a positive feedback loop. These 
findings indicate that in response to an acute stress, p62 provides dual cytoprotec-
tion to RPE, via autophagic clearance of insoluble proteins and activation of Nrf2 
signaling.

Table 3.1   Studies on p62 functional domains and covalent modifications
References Studies on individual domain or mutation
(Puls et al. 1997) p62 interacts with aPKC via the N-terminal PB1 domain
(Bjorkoy et al. 2005) LC3 interacts with p62
(Jain et al. 2010) KIR (keap1 interacting region) is mapped
(Linares et al. 2011) Phosphorylation at T269, S272 influences mitosis and cell 

proliferation
(Matsumoto et al. 2011) Phosphorylation at S403 determines its affinity for ubiquitinated 

cargo
(Ichimura et al. 2013) Phosphorylation at S351 in an mTORC-1 dependent manner deter-

mines its affinity to Keap1
(Shi et al. 2013) p62 cleavage at TB disrupts autophagy and impairs NFkB signaling
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3.4  p62, A Double Edged Sword

With aging, the p62 promoter undergoes oxidative damage (Du et al. 2009b; Du 
et  al. 2009a), consistent with our observation of reduced p62 mRNA expression 
in elderly mouse RPE (unpublished data). We would predict a decline of p62 in 
the AMD mouse model (Cano et  al. 2010) and AMD patients, but p62 accumu-
lation was observed instead (unpublished data). Similar observations were made 
in neurodegenerative patients (see Table 3.2). This contradiction could result from 
post-transcriptional up-regulation of p62 to rescue damaged cells, but it is question-
able whether p62 can still promote clearance of protein aggregates when the whole 
autophagy machinery undergoes irreversible failure. It was reported that in autoph-
agy-deficient livers, p62 ablation actually reduced toxicity and prevented cell death 
(Komatsu et al. 2007).

In vitro studies revealed p62’s role in NFkB signaling and inflammasome activa-
tion (Takeda-Watanabe et al. 2012; Park et al. 2013). p62 could be a double edged 
sword - it fights against stress, yet it can promote inflammation, exacerbating cel-
lular crisis. (see Fig. 3.1) Since autophagy failure and a weakened Nrf2 response 
in the RPE is a component of AMD, the accumulated p62 in disease area possibly 
exerts a harmful effect by aggravating chronic inflammation, a common feature of 
neurodegenerative diseases.

Table 3.2   p62 dysregulation is associated with a number of diseases
References Studies on p62 function Disease
(Rea et al. 2006) K378X mutation in p62 is 

associated with increased 
NFkB signaling and osteoclast 
formation

Paget’s disease of bone

(Ramesh Babu et al. 2008) p62 KO leads to accumulation 
of hyperphosphorylated tau

Alzheimer’s disease

(Daroszewska et al. 2011) p62 mutation (P394L) is asso-
ciated with bone lesions

Paget’s disease of bone

(Braak et al. 2011) p62 immunostaining in the 
neurosecretory cells of the 
paraventricular nucleus

Parkinson’s disease

(Salminen et al. 2012) Lack of p62 provokes the tau 
pathology; reduced p62 levels 
were observed in the frontal 
cortex of AD patients

Alzheimer’s disease

(Hirano et al. 2013) p62 mutations (Ala53Thr, 
Pro439Leu) are associated 
with ALS

Amyotrophic lateral sclerosis

(Rue et al. 2013) p62 accumulation occurs in 
neuronal nuclei, colocalizing 
with huntingtin inclusions

Huntington’s disease
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3.5  Future Experimental Approaches

To evaluate p62’s potential as a therapeutic target for AMD, we must elucidate its 
role under chronic stress (Cano et al. 2010; Wang and Neufeld 2010), to determine:

1)	 if p62 undergoes posttranscriptional alteration, such as mRNA splicing;
2)	 if p62 activity is regulated by novel covalent modifications;
3)	 if p62 has unidentified interacting protein partners under pathological conditions.

A thorough understanding of p62’s regulatory mechanism could lead to new thera-
peutic methods for AMD.
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Abstract  Age-related macular degeneration (AMD) is a sight-threatening disorder 
of the central retina. Being the leading cause of visual impairment in senior citizens, 
it represents a major public health issue in developed countries. Genetic studies 
of AMD identified two major susceptibility loci on chromosomes 1 and 10. The 
high-risk allele of the 10q26 locus encompasses three genes, PLEKHA1, ARMS2, 
and HTRA1 with high linkage disequilibrium and the individual contribution of 
the encoded proteins to disease etiology remains controversial. While PLEKHA1 
and HTRA1 are highly conserved proteins, ARMS2 is only present in primates and 
can be detected by using RT-PCR. On the other hand, there is no unequivocal evi-
dence for the existence of the encoded protein. However, it has been reported that 
risk haplotypes only affect the expression of ARMS2 (but not of HTRA1), making 
ARMS2 the best candidate for being the genuine AMD gene within this locus. Yet, 
homozygous carriers of a common haplotype carry a premature stop codon in the 
ARMS2 gene (R38X) and therefore lack ARMS2, but this variant is not associated 
with AMD. In this work we aimed at characterizing the diversity of transcripts orig-
inating from this locus, in order to find new hints on how to resolve this perplexing 
paradox. We found chimeric transcripts originating from the PLEKHA1 gene but 
ending in ARMS2. This finding may give a new explanation as to how variants in 
this locus contribute to AMD.

Keywords  Age-related macular degeneration · HTRA1 · ARMS2 · PLEKHA1 · 
Chimeric transcripts · Gene transcription · Alternative splicing · rs10490924 · 
rs11200638 · rs2736911
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4.1 � Introduction

Age-related macular degeneration (AMD) is a common blinding disease of the el-
derly with an exceedingly intricate etiology. An interplay of non-modifiable (i.e. 
multiple genetic variants) and modifiable (i.e. environmental) factors contribute to 
disease risk (Seddon and Chen 2004).

The involvement of the complement system had been already proposed in 2001 
(Hageman et  al. 2001), and four years later genome-wide linkage scans indeed 
identified complement factor H (CFH) as the first major susceptibility gene for 
AMD (Edwards et  al. 2005; Haines et  al. 2005; Klein et  al. 2005). The second 
major susceptibility locus was identified shortly after the publication of the above 
results (Jakobsdottir et al. 2005). This locus on chromosome 10q26 exhibits an even 
stronger association signal overlying three genes: Pleckstrin Homology Domain 
Containing, Family A Member 1 (PLEKHA1), Age-Related Maculopathy Suscep-
tibility 2 (ARMS2), and HtrA serine peptidase 1 (HTRA1). Because of the close 
vicinity of these genes, association studies lack the required discriminative power to 
determine the causative gene/variant. PLEKHA1 is apparently outside the linkage 
disequilibrium block exhibiting the peak association. In contrast, there are numer-
ous papers suggesting a role for ARMS2 (Rivera et al. 2005; Fritsche et al. 2008) or 
for HTRA1 (Dewan et al. 2006; Yang et al. 2006) in AMD. Furthermore, Yang et al. 
suggests a two-hit model, claiming that both genes are simultaneously affected by 
the risk haplotype (Yang et al. 2010).

It has been reported in numerous Mendelian diseases that protein products of 
causal genes tend to physically interact (Brunner and van Driel 2004; Franke et al. 
2006). Similarly, growing evidence suggests that products of genes in complex 
trait-associated loci establish functional protein-protein bindings. The dominance 
of components belonging to the alternative complement pathway among the pro-
teins implicated in AMD strongly supports this concept. Taking this idea one step 
further, the sought-after gene within the PLEKHA1/ARMS2/HTRA1 locus should 
code for a protein that is linked to one of the few disease pathways implicated in 
AMD (Kortvely and Ueffing 2012). From this vantage point, HTRA1 seems to be 
the most attracting candidate, because it is involved in the remodeling of the extra-
cellular matrix and participates in TGF beta signaling hinting toward involvement 
in choroidal neovascularization, a hallmark of the wet form of AMD (Clausen et al. 
2011).

In this work we set out to characterize the transcripts generated from the 10q26 
locus in order to disentangle the individual effects of these genes on AMD risk. 
Understanding the regulation of gene expression within this chromosomal region 
may offer a new explanatory framework to resolve the debate about the AMD gene 
conferring the highest risk.
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4.2 � Materials and Methods

4.2.1 � Phylogenetic Analysis

To identify the potential homologs/paralogs for the ARMS2 gene and the corre-
sponding putative protein, BLAST searches were performed on the public data-
bases at NIH. Alignments of deduced protein sequences were carried out with the 
multiple alignment software Geneious (version 7.1). The evolutionary dendrogram 
(unrooted tree) was calculated by using the Neighbor-Joining method.

4.2.2 � RT-PCR

Total RNA was extracted from human term placenta. The RT reaction was per-
formed using 2 ∝g RNA with an oligo(dT) primer using the Omniscript RT kit 
(Qiagen, GmbH, Hilden, Germany) according to the manufacturer’s manual. The 
following primers were used to detect chimeric transcripts: 5’-ATAACCTAAGTC-
GCCATGGTG-3’ (PLEKHA1 forward), 5’-CAGTTGAGGCAGCTGGAGGG-3’ 
(ARMS2, reverse). Amplified products were cloned and sequenced.

4.3 � Results and Discussion

4.3.1 � Phylogeny of ARMS2

While the other two genes (PLEKHA1 and HTRA1) of the 10q26 locus are con-
served throughout the vertebrates and beyond, ARMS2 is only found in higher pri-
mates (more precisely in simians, Fig. 4.1). Strikingly, the evolutionary appearance 
of ARMS2 parallels the anatomical specialization of the macula. Most importantly, 
this specialization represents a tradeoff between performance and vulnerability. The 
restricted blood supply and the concomitant metabolic stress may even play a role in 
macular differentiation (Provis et al. 2005; Yu et al. 2010). Like humans, macaque 
monkeys possess a macula and develop age-related macular pathologies and share 
risk variants with humans (Francis et al. 2008).

Although the vast majority of genes present in any species descend from a gene 
present in an ancestor, some genes originate from ancestrally non-genic sequences 
(Carvunis et al. 2012). In fact, de novo gene birth from a pool of pre-existing open 
reading frames may be more prevalent than sporadic gene duplication. Accordingly, 
ARMS2 may be evolved from a placeholder sequence separating PLEKHA1 and 
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HTRA1. Primate-specific transcriptional units were found (1) to have transcript 
lengths comparable with the average length of human cDNAs, and few exons, (2) 
preferentially expressed in the reproductive system, and (3) to be frequently inter-
calated in the introns of known protein-coding genes (Tay et  al. 2009). To what 
extent does ARMS2 fit this profile? ARMS2 is indeed composed of only two ex-
ons, though the length of the transcript is below the average. Studies suggest that 

Exon 1 Exon 2

a

b

Fig. 4.1   a Multiple alignment of predicted ARMS2 amino acid sequences. The putative transcrip-
tion initiation site in human is marked with a broken arrow. Identical residues are indicated by red 
letters on yellow background and similar residues are indicated by green background. A vertical 
line shows the boundary between the regions encoded by exon 1 and 2. Note that the deduced tar-
sier sequence (a species not belonging to the simian infraorder) only exhibits a weak similarity to 
the consensus, thus it is unlikely to exist at protein level. b Evolutionary dendrograms of ARMS2 
orthologs generated using the Geneious program. Shorter branches indicate larger similarities Tar-
sier seems to be diverged before the appearance of the functional ARMS2 gene
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ARMS2 is primarily expressed in the placenta, being a part of the female repro-
ductive system. Furthermore, we found chimeric transcripts containing exons from 
both PLEKHA1 and ARMS2 (see below).

4.3.2 � Transcript Diversity Originating from the 10q26 Locus

Since it can be easily amplified by RT-PCR, it is generally accepted that ARMS2 
exists at RNA level. Beside moderate expression in the placenta, weak expression 
was detected in the retina (Rivera et al. 2005). Similarly, the transcript was detected 
in various cell lines (Kanda et al. 2007) and its characteristics fulfill the definition 
of being a messenger RNA: It possesses a well-defined transcription start site (Frit-
sche et al. 2008), 5ʹ- and 3ʹ-untranslated regions, two exons separated by a GT-AG 
intron, and finally a canonical polyadenylation signal and a poly (A) tail. Neverthe-
less, the detection of the native transcript by Northern analysis still has to be done.

Notably, it has been hypothesized that the defective processing of ARMS2 
pre-mRNA due to the removal of the polyadenylation signal by an insertion/dele-
tion in carriers of the risk haplotype is the underlying cause for AMD (Fritsche 
et al. 2008). Adding to the confusion is the fact that yet another haplotype (R38X) 
also leads to the failure of ARMS2 synthesis (Fig. 4.2), but this variant is neutral 
in AMD, thereby contradicting the degradation hypothesis (Allikmets and Dean 
2008). Furthermore, in-depth reporter gene assays and the analysis of a large series 
of human post-mortem retina/RPE samples revealed that the risk haplotype affects 
ARMS2 but not HTRA1 mRNA expression (Friedrich et  al. 2011). Because the 
lack of ARMS2 does not necessarily leads to AMD and the expression of HTRA1 
is not changed in risk vs. non-risk haplotypes, the authors conclude that currently 
unknown mechanisms mediate the pathogenic effects of the risk-associated vari-
ants at the 10q26 AMD locus. It has been also speculated that ARMS2 exists as a 
non-coding mRNA only. However, antibodies against different epitopes of ARMS2 

PLEKHA1

5 6 7 8 9 10

5 6 7 8 9 10

5 6 7

11 12 1 2 1 2 3

ARMS2 HTRA1

5 6 7 8 9 10 11 12 1 2 1 2 3

2

2

STOP

STOP

STOPSTOP

indel

22.3 kb 4.1 kb
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b
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d

Fig. 4.2   Schematic representation of PLEKHA1/ARMS2 transcript chimerism. Transcription 
start and stop signals are marked with broken arrows and stop signs, respectively. a Genomic 
organization of the 10q26 locus. Only distal exons of PLEKHA1 and proximal exons of HTRA1 
are shown. b Canonical transcripts of the three genes. c and d Different spliced isoforms. Note 
that the indel variant most probably influences the expression of these mRNAs, while the R38X 
mutation in the first exon of ARMS2 does not
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gave rise to identical staining pattern in the choroid layer of human eyes (Kortvely 
et al. 2010) and Western analyses using the same monoclonals also reveal a single 
band of the expected size in placental lysates (our unpublished data), supporting the 
presence of ARMS2 proteins.

Here we propose that the phylogeny of ARMS2 may hold the key to resolve this 
controversy. Alternative transcript variants have already been described for ARMS2 
(Wang et al. 2012). We also examined the exon-intron structure of the transcripts 
for the entire 10q26 region aimed at finding novel alternative variants also affected 
by the presence of the risk haplotype. This approach has led to the identification of 
PLEKHA1/ARMS2 chimeric transcripts (Fig. 4.2). With respect to chimeric pro-
teins, the ENCODE project discovered that gene boundaries extend well beyond the 
annotated termini in 65 % of cases, often encompassing parts of neighboring genes 
and at least 4–5 % of the tandem genes in the human genome can be transcribed into 
a single RNA sequence (Gingeras 2009). Such chimeric mRNAs can augment the 
number of gene products (Akiva et al. 2006; Parra et al. 2006).

PLEKHA1 and ARMS2 are two adjacent genes in the same orientation that are 
usually transcribed independently, but occasionally transcribed into a single RNA 
sequence whose splicing product encodes a protein including coding exons from 
the two genes. Consequently, the risk variants of the 10q26 locus may also affect 
the expression of these fusion transcripts, even if the majority of the corresponding 
gene is outside the linkage block. Since these chimeric RNAs are significantly more 
tissue-specific than non-chimeric transcripts (Frenkel-Morgenstern et  al. 2012), 
they can exert their biological function restricted, for example, to the eye.

It is of note that we could not detect transcripts containing exons from both 
ARMS2 and HTRA1, although the intergenic segment is significantly shorter than 
the one between PLEKHA1 and ARMS2.

In conclusion, the risk variant of the 10q26 locus may influence the expression of 
these chimeric transcripts and this can exert a pathogenic effect in the eye. Further 
experiments are warranted to determine the relevance of the corresponding putative 
chimeric proteins in AMD pathology.
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