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Foreword

This volume is based on the research focus at the IMA during the Fall semester of
2014. The Annual Thematic Program covering this period was “Discrete Structures:
Analysis and Applications”. The program was organized by Sergey Bobkov, Jerrold
Griggs, Penny Haxell, Michel Ledoux, Benny Sudakov, and Prasad Tetali. Many of
the topics presented in this volume were discussed in the first three workshops that
took place during the year. We thank the organizers of the workshops, the speakers,
workshop participants, and visitors to the IMA who contributed to the scientific
life at the institute and to the successful program. In particular, we thank Andrew
Beveridge, Jerrold Griggs, Leslie Hogben, Gregg Musiker, and Prasad Tetali for
taking the lead to edit this volume. We also thank the National Science Foundation
for its support of the IMA.

Minneapolis, MN, USA Fadil Santosa






Preface

Combinatorics is a research field driven by collaboration, with a large number of
applications to different areas of pure and applied mathematics. The Institute for
Mathematics and Its Applications (IMA) is an ideal setting for such collaborations
and applications to develop.

The 2014-2015 Annual Thematic Program at the IMA was Discrete Structures:
Analysis and Applications. The program was organized by Sergey Bobkov (Uni-
versity of Minnesota), Jerrold Griggs (University of South Carolina), Penny Haxell
(University of Waterloo), Michel Ledoux (Paul Sabatier University of Toulouse),
Benny Sudakov (University of California, Los Angeles), and Prasad Tetali (Georgia
Institute of Technology).

Combinatorics was the focus during Fall 2014, and this volume presents some
of the research topics discussed during this intense semester. We have particularly
encouraged authors to write surveys of research problems, thus making state-of-the-
art results more conveniently and widely available.

This volume is organized into parts, following the themes of the three workshops
held during Fall 2014:

* Probabilistic and Extremal Combinatorics, held September 8—12, 2014, at
IMA and organized by Penny Haxell (University of Waterloo), Eyal Lubetzky
(Microsoft Research), Dhruv Mubayi (University of Illinois, Chicago), and
Benny Sudakov (Eidgenossische TH Ziirich-Zentrum).

* Additive and Analytic Combinatorics, held September 29—October 3, 2014,
at IMA and organized by David Conlon (University of Oxford), Ernie Croot
(Georgia Institute of Technology), Van Vu (Yale University), and Tamar Ziegler
(Hebrew University).

e Geometric and Enumerative Combinatorics, held November 10-14, 2014, at
IMA and organized by Zoltan Furedi (Hungarian Academy of Sciences MTA),
Jerrold Griggs (University of South Carolina), Victor Reiner (University of
Minnesota, Twin Cities), and Carla Savage (North Carolina State University).

Part 1: Extremal and probabilistic combinatorics. Extremal and probabilistic
combinatorics are central to modern combinatorial theory, and both have developed

vii



viii Preface

dramatically over the last few decades. Extremal combinatorics studies problems
of finding the maximum or minimum possible cardinality of a set of finite
objects satisfying certain requirements. Frequently such problems originate in other
areas, such as computer science, information theory, analysis, number theory, and
geometry. Probabilistic combinatorics, as the name suggests, blends combinatorics
and probability. It is the foundation of the study of random graphs and other
random discrete structures, and probabilistic arguments have been very powerfully
applied to problems in other areas of combinatorics and in theoretical computer
science. Major research topics in extremal and probabilistic combinatorics include
extremal problems for graphs and set systems, Ramsey theory, random graphs, and
application of probabilistic methods.

Part 2: Additive and analytic combinatorics. Additive combinatorics counts
additive structures in sets; there have been exciting developments in recent years.
Tools from Fourier and harmonic analysis have expanded the realm of additive
combinatorics into the analytic while contributing to more effective applications.
Many combinatorial ideas known to the combinatorics community can be used
effectively to attack difficult problems in other areas of mathematics. For example,
a famous theorem of Szemerédi on arithmetic progressions in dense sets is a key
tool for the proof of the Green-Tao theorem on the existence of long arithmetic
progressions in primes. The work of Breuillard, Green, and Tao, which established
an analogue of the Freiman inverse theorem for noncommutative groups, is another
example. This theorem was first stated and proved for integers by Freiman. Ruzsa’s
subsequent different proof was extended to abelian groups by Green and Ruzsa a
few years ago. The extension to noncommutative groups is much more difficult.
Research in additive and analytic combinatorics is also of interest to computer
scientists; techniques and results have been applied to communication complexity,
property testing, and the design of randomness extractors.

Part 3: Enumerative and geometric combinatorics. Geometric combinatorics
studies discrete objects with geometric or topological structure, such as convex
polytopes, arrangements of vectors, points, subspaces, triangulations, tilings, and
partially ordered sets. Enumerative combinatorics, often called the mathematics
of counting, has broad applications to probability, statistical physics, optimization,
and computer science. Problems in geometric combinatorics give rise to counting
problems that are sometimes difficult even to estimate and sometimes involve
objects with interesting symmetry groups. Such problems often dovetail nicely
with topics from enumerative combinatorics via calculations of partition functions,
f-vectors, Ehrhart polynomials, and other quantities. Enumerative combinatorics
also includes the study of permutation patterns, the complexity of tilings, and
bijections between families of objects counted by the same numerical sequences
or with related generating functions. In recent years, problems in both of these
areas have stimulated the development of many new results and tools and enhanced
connections with other areas of mathematics.

Discrete Structures: Analysis and Applications attracted intense interest from
the mathematical sciences community, with each of the three workshops drawing
more than 100 visitors and often filling Keller 3-180 to capacity. There are many
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other aspects to an annual thematic year at the IMA besides workshops, with the
relaxed but stimulating environment of the IMA fostering new collaborations and
approaches to solving problems old and new. This program drew an eclectic mix of
experts and junior researchers in various aspects of combinatorics together with
numerous people who apply combinatorics to other fields. This volume reflects
many of the aspects of the semester, with chapters drawn from workshop talks,
annual program seminars, and research interests of the many visitors.

No single volume could possibly cover all the active and important areas of
combinatorics research that were presented at the IMA, and we make no claim
of comprehensiveness. But we think this volume presents a reasonable selection of
interesting areas, written by leading experts who have surveyed the current state of
knowledge and posed conjectures and open questions to stimulate further research.
We thank the authors for their generous donations of time and expertise; needless to
say, without them this volume would not have been possible.

We thank the IMA for wonderfully stimulating and productive long-term visits.
We believe that the IMA is a critical national resource for mathematics. The
Discrete Structures: Analysis and Applications program will have a lasting impact
on research in combinatorics and related fields, and we hope this volume will
enhance that impact. We are grateful for the opportunity to be part of it.

St. Paul, MN, USA Andrew Beveridge
Columbia, SC, USA Jerrold R. Griggs
Ames, IA, USA Leslie Hogben
Minneapolis, MN, USA Gregg Musiker

Atlanta, GA, USA Prasad Tetali
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Problems related to graph indices in trees

Laszlo Székely, Stephan Wagner, and Hua Wang

Abstract In this chapter we explore recent development on various problems
related to graph indices in trees. We focus on indices based on distances between
vertices, vertex degrees, or on counting vertex or edge subsets of different kinds.
Some of the indices arise naturally in applications, e.g., in chemistry, statistical
physics, bioinformatics, and other fields, and connections are also made to other
branches of graph theory, such as spectral graph theory. We will be particularly
interested in the extremal values (maxima and minima) for different families of trees
and the corresponding extremal trees. Moreover, we review results for random trees,
consider localized versions of different graph indices and the associated notions of
centrality, and finally discuss inverse problems, where one wants to find trees for
which a specific graph index has a prescribed value.

Keywords Wiener index ¢ Randic index ¢ Merrifield-Simmons index ¢ Hosoya
index ¢ Random tree * Inverse problems ¢ Dominating set * Number of subtrees

Mathematics Subject Classification (2000): Primary: 05C05, Secondary 05C12,
05C31, 05C35, 05C69, 05C70, 05C80, 92E10

1 Introduction

Enumeration of trees [27, 116] and of spanning trees [80] goes back to the XIxth
century. The concepts of the center and centroid are also that old [77]. However,
the topic of this survey really starts with the papers of Wiener [153, 154]. He noted
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that the boiling temperatures of alkanes correlate with the sum of the lengths of the
shortest paths between all pairs of vertices in the chemical graph representing the
non-hydrogen atoms in the molecule. This quantity (now called the Wiener index),
and its variants will be discussed in Section 2.

The Wiener index started chemical graph theory. Graphs arise as representation
of atoms with vertices, bonds with edges, usually suppressing hydrogen atoms.
(Such representation appeared already in [26], as pointed out in [12].) The point
of chemical graph theory is to come up with graph invariants, which have predictive
power for chemical properties of the molecule, if computed for the molecular graph.
In chemical graph theory such invariants are called (topological) indices, as the
expectation is that the shape of the molecule is the ultimate source of information.
The discriminating power of an index is high, if different tree shapes tend to show
distinct indices. The range of an index limits its discriminating power. A chemical
graph (resp. tree) is understood to have maximum degree four, reflecting the valence
of a carbon atom. Several books are fully or partly devoted to chemical graph theory
[8, 132, 133]. Our survey is focused on indices of trees although many of these
indices have been investigated on graphs as well. This survey does not even try to
be complete, as the number of indices is exploding: one of the main organizing
principles of selection is the interest of the authors.

Randi¢ [111] introduced a very influential index, which is now named after him.
Earlier it was called the branching index or connectivity index. The Randi¢ index,
which is the prototype of degree-based indices, and its variants will be reviewed in
Section 4. The survey papers [58] and [94] are particularly informative about degree-
based indices. There are even three books devoted to the Randi¢ index [78, 79, 95].
Unexpectedly, the generalized Randi¢ index turned useful in an entirely different
context: to find an analogue of the Crossing Lemma to set lower bounds for the
minor crossing number of graphs [14].

The Merrifield-Simmons index of a graph is the number of its independent vertex
sets [103] and the Hosoya index (also called topological Z index) of a graph is
the number of its independent edge sets, i.e., matchings without size restriction
[66]. These quantities have been relevant in statistical physics in the hard square
model [10] and the monomer-dimer model [64]. The number of subtrees of a tree
came from bioinformatics [85], where the number of subtrees of a binary tree
containing at least one leaf was involved in the complexity of an algorithm. The
maximum of the number of subtrees among binary trees was determined in [125],
and the systematic study of this quantity determined these maximum values exactly
using a novel number representation [124]. The original problem of determining the
maximum number of subtrees of a binary tree containing at least one leaf was also
solved [123]. It turned out that for several classes of trees, those trees that minimize
the Wiener index happen to maximize the number of subtrees and vice versa.
A similar phenomenon is present for the Merrifield-Simmons and Hosoya indices,
see Section 3. The paper [136] contains an analysis of the correlation between pairs
of tree indices, and found the highest (negative) correlation between the Wiener
index and the number of subtrees. An intriguing problem would be to give an
“explanation” for the negative correlation between the number of subtrees and the
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Wiener index—although we admit that we cannot tell criteria for a “satisfactory”
explanation.

From a practical point of view, identifying the extremal structures alone is far
from being sufficient for understanding the behavior of an index. A natural and
important question appears to be the following.

For a given index, what is the distribution of its value over all possible
trees under given restriction (i.e., of given order, with given degree sequence,
etc..)?

The answer to this question more specifically presents the behavior of a graph
index and hence can be used to further examine the similarities or differences
between different indices.

How similar or different are two indices according to the distributions of their
values over different categories of trees?

Random trees are a huge topic of their own right, there is a whole book [43]
devoted to them. In Section 5 we focus on only a few questions about expected
values and distributions of tree indices that we consider in this survey.

There are several centrality concepts for trees. Two of them, the center and the
centroid, are age-old [77]. Section 6 investigates the behavior of some local versions
of the indices in central positions compared to the behavior elsewhere.

Lepovi¢ and Gutman [91] made the beautiful conjecture that almost all positive
integers are the Wiener indices of some trees. This conjecture was verified about a
decade later, in [135] and [152]. The conference paper [55] proposed a more general
problem, the inverse problem of indices in combinatorial chemistry: when we have
to synthesize a new molecule with expected properties, we may want to create first
molecular graphs with prescribed indices to narrow the search. Inverse problems
will be discussed in Section 7.

2 Distance-Based Graph Indices

The most classic and widely used distance-based index is the Wiener index, named
after the chemist Harry Wiener, who proposed this concept in 1947 [153, 154]. For
a graph G, the Wiener index of G is

WG) = > du.v)

u,veV(G)
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where d(u, v) is the distance between vertices # and v in G. The mathematical
examination of this concept frequently happened independently of applications in
chemistry. Because of the many acyclic molecular structures in applications of the
Wiener index, the study of its behavior in trees has been of particular interest.
Over the past several decades, many interesting results have been obtained regarding
the Wiener index of trees under various restrictions as well as variations of the
Wiener index. An early informative survey on the Wiener index is [42].

2.1 The Wiener index

Among general trees of given order, the trees with maximum and minimum Wiener
index have been characterized:

Theorem 1 ([44], [99, Ex. 6.23]). Among all trees of the same order, the star
minimizes the Wiener index and the path maximizes the Wiener index.

As we will see, the star and the path are the extremal trees for many other indices
as well. In fact, [30] argues that any acceptable branching index should attain the
unique minimum for a star and the unique maximum for the path (or vice versa)
among trees on the same number of vertices. If the degrees of vertices in the graph
correspond to valences of atoms in a molecule, then they are severely restricted.
Hence it is relevant to consider the extremal values of the Wiener index when the tree
has a bounded maximum degree. Fischermann, Hoffmann, Rautenbach, Székely and
Volkmann [52], and independently Jelen and Triesch [76] identified the trees with
minimum Wiener index among all trees (of given order) with a bounded maximum
degree, and the trees with maximum Wiener index among all trees (of given order)
whose vertex degrees are 1 or k.

The work in [52] was further generalized to trees with a given degree sequence.
For a tree T, the degree sequence is simply the non-increasing sequence of vertex
degrees. In [149] and [164], respectively, it is shown that the minimum Wiener index
is attained by the so-called greedy tree.

Definition 1 (Greedy trees). Given a tree degree sequence d, the greedy tree is
achieved through the following “greedy” algorithm:

1) Start with a single vertex v as the root and give v the appropriate number of

children so that it has the largest degree;

ii) Label the neighbors of v as vy, vy, ..., and assign to them the largest available
degrees such that d(v;) > d(vy) > ---;

iii) Label the neighbors of v; (except v) as vij, V12, ... such that they take all the
largest degrees available and that d(vy;) > d(v) > ---, then do the same for
V2, U3, ...,

iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of
the labeled vertex with largest degree whose neighbors are not labeled yet.
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For example, Fig. | shows a greedy tree with degree sequence

(4,4.4,3,3,3,3,3,3,3.2.2,1,...1}.

V1 V4

eV

V11 VIZAVIS VZIAVZZ V23

Fig. 1 A greedy tree.

Theorem 2 ([149, 164]). Among all trees with a given degree sequence (and hence
given order), the greedy tree minimizes the Wiener index.

To maximize the Wiener index among trees with a given degree sequence turned
out to be a much more difficult question. Such extremal trees were examined in
detail in both [118] and [163]. While the extremal structure was already shown by
Shi [117] to be a caterpillar (a tree for which the removal of leaves yields a path)
with certain properties, the specific characteristics of such extremal trees depend
on the particular degree sequence. This question was also examined as a quadratic
assignment problem in [28], where an efficient algorithm was provided.

2.2 Variations of the Wiener index

In the past three decades many variations of the Wiener index have been introduced,
including, but certainly not limited to the following:

e In 1993, the hyper-Wiener index [112] was introduced for trees and later
generalized to cyclic graphs [84]:

W =) Y () + dwv)?),

u,veV(T)
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e the Harary index was defined in [71, 109]:

1
H(T)= ) d.v)’

u,veV(T)

* and the terminal Wiener index was proposed in [61]:

TW(T) = > d(u.v).

u,veL(T)

where L(T) stands for the set of leaves of 7. In addition to its application
in chemistry, the terminal Wiener index, being simply the sum of distances
between leaves, is also found to be of importance in the study of phylogenetic
trees and is known there as the gamma index [128].

Much work has been done on these indices. Among general trees of given order,
it has been shown that the star minimizes WW(T) [57, 59] and maximizes H(T)
[57, 158], while the path maximizes WW(T) [57, 59], minimizes TW(T) [61], and
minimizes H(T) [57, 158].

Besides finding extremal trees with the maximum (or minimum) value of these
indices, a significant amount of work has also been done on characterizing trees
with the first few largest or smallest values of a certain index. For a summary of
such studies on the aforementioned indices we suggest Section 3 of [159].

2.3 General results and unified approaches

Given all these different graph indices defined in terms of distances with identical
extremal structures, it is natural to explore unified approaches that provide more
general results on such extremal questions. While studying TW(T) of trees with
given degree sequence, a “semi-regular” property was introduced that is satisfied by
the extremal trees with a given degree sequence with respect to many indices [128].
Furthermore, satisfying this semi-regular property forces the tree to be a greedy tree.

Theorem 3 ([128]). Among all trees of given degree sequence, TW(T) is minimized
by the greedy tree.

Shortly thereafter, it was shown in [115] that if a tree is a level-greedy tree
(defined below) with respect to any choice of root, then it satisfies the semi-regular

property.

Definition 2. [Level-greedy trees] Fori = 0, 1, ..., H, partition a degree sequence
into multisets {a;1, apn, ..., ai,} such that £, = 1, £ = ap;, andfor 1 <i < H

L
bipr = ) (a;—1).
=1
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Assume that the elements of each multiset are sorted, i.e., a1 > ap > -+ > ay,.
The level-greedy tree corresponding to this sequence of multisets is the rooted tree
whose j-th vertex at level 7 has degree a;;.

Likewise, for a degree sequence that is given as sorted multisets {a;i, i, . . . , @i¢, }
fori =0,1,...,Hsuchthat {o = 2andfor0 <i < H

4

bipr = Y (a;— 1),

J=1

the level-greedy tree corresponding to this sequence is the edge-rooted tree (i.e.,
there are two vertices at level 0, connected by an edge) whose j-th vertex at level i
has degree a;;.

It is obvious that every greedy tree is also level greedy, but not necessarily vice
versa. Fig. 2 shows a level-greedy tree with the level degree sequences: {ay; = 3},
{ai1 = 5,a1n = 3,a13 = 2},{3,3,3,2,2,1,1},{2,2,1,1,1,1,1, 1}, and {1, 1}.
This level-greedy tree is not greedy.

However, it was shown in [115] that a tree that is level-greedy with respect to
any choice of vertex root or edge root must indeed be greedy. This led in particular
to the following stability results for the extremal trees:

Theorem 4 ([115, 147]). Let f(x) be any non-negative, non-decreasing function
of x. Then the graph invariant

Wi T) = Y flduv)

u,veV(T)

is minimized by the greedy tree among all trees with given degree sequence.

Fig. 2 A level-greedy tree.
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Likewise, if f (x) is any non-negative, non-increasing function of x, then the graph
invariant Wy is maximized by the greedy tree among all trees with given degree
sequence.

With different choices of the function f, the result above provides a general
statement for various indices, including the Wiener index, the hyper-Wiener index,
and the Harary index.

An important partial order of degree sequences is defined by a relation known as
majorization:

Definition 3. For non-increasing sequences = = (dp,...,d,—1) and 7’ =
d,....d_)), 7' is said to majorize & if Yigdi = Y-, d, and for
k=0,....n—2

k k
Y odi<) d.
i=0 i=0

The notion of majorization provides a means of comparing the extremal trees for
different degree sequences, which yields a number of corollaries. Specifically, we
have

Theorem 5 ([147]). Let f(x) be any non-negative, non-decreasing function of x,
and let w and 7' be two degree sequences of trees of the same length such that
7" majorizes . If G(r) and G(x') are the greedy trees associated with 7 and 7',
respectively, we have

W/ (G(m) = Wy(G(')).
Likewise, if f is a non-negative, non-increasing function, then

W (G(m)) < W (G(')).

Among other things, this shows that the star is always extremal, that the greedy tree
associated with the sequence (A, A, ..., A,r, 1,1,...,1) is extremal among trees
of given order whose maximum degree is A (here, r € {1,2,..., A} is chosen in
such a way that the correct number of vertices is obtained), and that the greedy tree
associated with the sequence (£,2,2,...,2,1,1,...,1) is extremal among trees
with exactly £ leaves. A similar comparison works for the Merrifield-Simmons and
Hosoya indices, although the extremal trees in those cases are not greedy trees, see
Section 3.

2.4 Other distance-based indices

Besides variations of the Wiener index, some other distance-based indices were also
of interest. For example, the sum of distances between internal vertices and leaves is
studied in [151], the sum of the eccentricity (the largest distance from any vertex to a
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given vertex) and equivalently the average eccentricity in trees are considered in [70,
121, 129]. The star, path, greedy trees, and caterpillars continue to be extremal with
respect to these indices. Some lesser known distance-based indices are mentioned
in [159].

3 Graph Indices Based on Counting

3.1 Independent sets and matchings

Several important graph invariants are based on counting particular sets of vertices
or edges. Two prominent examples in chemical graph theory are the Merrifield-
Simmons index and the Hosoya index, defined as the number of independent sets and
matchings, respectively. There is a vast amount of literature devoted to the extremal
values of these invariants in various families of graphs, enough to fill a survey of
its own (see [143]). This includes in particular trees with various restrictions on the
maximum degree, diameter, number of leaves, etc. Remarkably, one observes the
general phenomenon that the graphs that maximize the Merrifield-Simmons index
in some given class of graphs also minimize the Hosoya index, and vice versa. While
there are many examples (and a few counterexamples) of this connection, it is still
poorly understood. The paper [136] makes an attempt by studying the correlation
of the two for random trees, and [53] gives a number of inequalities between the
number of independent or 2-independent sets and matchings. It would be highly
desirable to have a better understanding of the relation between the two indices.

The connection applies in particular to trees: unsurprisingly, if we do not impose
any further restrictions, the extremal trees are the star and the path. The star S, has
the greatest number of independent sets (namely 2"~! 4 1) and the smallest number
of matchings (namely n), while the path P, has the greatest number of matchings and
the smallest number of independent sets. Both are Fibonacci numbers: the number
of independent sets of a path with n vertices is the Fibonacci number F,+, (where
Fi, =F, =1, Fiy1 = F, + F,—1), while the number of matchings is F,+;.
This illustrates the general fact that the Hosoya index of a graph is the Merrifield-
Simmons index of the line graph, since matchings of the original graph correspond
exactly to independent sets of the line graph. The occurrence of Fibonacci numbers
is also the reason why the number of independent sets was called the Fibonacci
number of a graph in what is probably its earliest occurrence in the mathematical
literature [110].

Let us remark that the Merrifield-Simmons index and the Hosoya index are
intimately tied to two important graph polynomials. If m(G, k) denotes the number
of matchings of cardinality k in a graph G, the matching polynomial of G is
defined as

> (=D m(G. k),

k>0
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Remarkably, the matching polynomial coincides with the characteristic polynomial
(of the adjacency matrix) for trees (see, e.g., Section 5 in [47]). This is also one
of the reasons for the way the matching polynomial is defined, which is perhaps
somewhat less intuitive than the definition of the matching-generating polynomial

> m(G. k.

k>0

Note that the Hosoya index, henceforth denoted by Z(G), is simply the value of this
polynomial at x = 1, i.e., Z(G) = Y ,.,m(G, k). Since the Hosoya index is so
closely related to the characteristic polynomial, it is also unsurprising that there are
connections to graph invariants based on the spectrum, such as the graph energy (the
sum of the absolute values of all eigenvalues, see the recent book [97]). Likewise,
the Merrifield-Simmons index is the value of the independence polynomial at x = 1:
if i(G, k) is the number of independent sets of cardinality & in G, this polynomial is
defined by

> (G )k,

k>0

see [92] for a survey on this polynomial. The Merrifield-Simmons index, in the
following denoted by o (G), is of course given by a(G) = >, i(G, k).

While it is impossible to give a complete account of extremal results on the
Merrifield-Simmons index and the Hosoya index of trees (the reader is again
referred to [143] for a more comprehensive survey), let us state a fairly general
theorem due to Andriantiana [4] that implies many other results as corollaries. Since
the path and the star are extremal trees, as they are for the Wiener index, one might
assume that the greedy trees (see Theorem 2 in Section 2) are also extremal again,
but this is not the case.

Definition 4. Let (di,d>,...,di, 1,1,...,1) be a degree sequence of a tree, where
dy > 2, in non-increasing order. Let the associated tree .#(di,ds,...,d, 1,
1,...,1) be defined recursively as follows: if k < dj + 1, then .#Z (d}, d,, ..., d, 1,
1,...,1) is the tree obtained from a star S, +; with d leaves by identifying k — 1 of
its leaves with the centers of stars Sy, Sg,, . - ., Sq,_,» respectively.

The internal vertices (non-leaves) are labeled vy, ..., v in such a way that their
degrees are exactly d, da, . . . , di (in particular, v; is the center of the star Sy, 4 that
started the construction).

If k > dy + 2, we define A4 (d,ds,...,d, 1,1,...,1) as follows: let / be the
greatest integer such that v; is a label in .#Z (dy,, ..., dr—1,1,1,...,1), and let s be
the smallest integer such that v, is adjacent to aleafin .# (dg,, ..., di—1, 1,1, ..., 1).
Now . (d\,da, . ..,dy, 1,1,...,1) is obtained from .#Z (dy,,...,dr—1,1,1,...,1)
by connecting a leaf that is adjacent to v, to the centers of dy — 1 disjoint stars
Sa1sSdys - - ,dek_l. The centers of these stars receive the labels vi41, ..., Vitd,—1,
in increasing order of degree.
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Fig. 3 Construction of the tree .#(5,4,4,4,4,3,3,2,2,2,2,2,1,1,...,1).

See Figure 3 for an example of this step-by-step construction. Note that unlike
greedy trees, large and small degrees alternate in .Z (d,, da, . . . ,d,).

Theorem 6. Among all trees with degree sequence (d\,d,,...,d,), the tree
M (dy, dy,...,d,) has the greatest number of independent sets and the least
number of matchings (and it is unique with either of these two properties).

In spite of the fact that the extremal trees in this scenario are no longer the greedy
trees of Section 2, a majorization result (see Definition 3) akin to greedy trees holds.

Theorem 7. If a degree sequence (dy.d5, ..., d,) majorizes another degree se-
quence (dy,ds, . ..,d,), then we have

o(AM(d1,ds,....d,)) <o(Hd,, ’zd;))
and
Z(AM(dy,da, ..., dy)) > Z(///(d’,dé, e ,d:l)).

As an immediate application, one finds (in a similar way as for distance-based
indices, see Theorem 5) that the tree .Z (A, A,...,A,r,1,1,...,1) is extremal
among trees whose maximum degreeis A, #(€,2,2,...,2,1,1,..., 1) is extremal
among trees with exactly £ leaves, and #(n — D + 1,2,2,...,2,1,1,...,1) is
extremal among trees with diameter D (and fixed number n of vertices in all cases).

The analogous problems for the minimum of the Merrifield-Simmons index
and the maximum of the Hosoya index generally appear to be harder. A complete
characterization is known for trees with given maximum degree [139], and partial
results are available for trees with given number of leaves [40, 160].

If one is interested in the maximum or minimum number of independent sets
or matchings, it makes sense to include a restriction on the independence number
or matching number. Note that in view of the Konig-Egervary theorem, these two
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quantities are related: the sum of the matching number and the independence
number in trees (and, more generally, in bipartite graphs) equals the number of
vertices.

The trees of given order and independence number that maximize the number
of independent sets were determined by Bruyere and Mélot [21] as part of a more
general result, and a partial characterization for the minimum was given by Bruyere,
Joret, and Mélot in [22]. The number of matchings in trees with given matching
number, on the other hand, was studied in [67].

Instead of imposing additional restrictions on the trees, it is also natural and
interesting to restrict the sets that are counted. In particular, independent sets and
matchings that are maximal (with respect to set inclusion, i.e., not contained in
any larger independent set or matching) or maximum (i.e., of greatest possible
cardinality) have been studied. Things change considerably in that the extremal trees
are no longer simply the star and the path.

While the star has the minimum number of maximal independent sets (namely 2)
and the minimum number of maximum independent sets (namely 1, but it is not the
only tree with this property), the path is not extremal for these two quantities. Wilf
[155] showed that a tree of order n has at most 2("~1/2 maximal independent sets
if n is odd, and 2"=?/2 + 1 if n is even. Sagan [113] gave an alternative proof and
also characterized the extremal graphs. For odd order, they are simply subdivided
stars, for even order they are batons, obtained by attaching one or more paths of
length 2 to the two ends of a path of length 1 or 3. The maximum of the number of
maximum independent sets is also 2""?/2 + 1 if n is even, but only 2"=3/2 for odd
n, as proven by Zito in [168]. These results have been extended further to graphs
with at most 7 cycles [114].

For maximal and maximum matchings, the situation is even more complicated.
The number of maximum matchings is trivially bounded below by 1, and this value
is attained for any tree with a perfect matching. On the other hand, the trees with
the greatest number of maximum matchings have one of seven different shapes
(depending on the number of vertices modulo 7) composed of a repeated pattern of
seven vertices, see [65]. There are also exceptions to the general pattern up to order
34 and two different extremal trees if the number of vertices is either 6 or 34. The
maximum is of order ©(1.391664"), the exact constant being (} (11 + +/85))!/7.
This also gives a lower bound for the maximum number of maximal matchings
in a tree (since every maximum matching is automatically maximal), and an
upper bound of O(1.395337") was given for this maximum number by Gorska
and Skupien [56]. The exact shape of the trees with greatest number of maximal
matchings and the asymptotic behavior of this greatest number remain an open
problem.

Finally, we mention one further variant, namely the number of independent or
maximal independent sets containing the leaves of a tree, which was studied in [156]
and [157].
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3.2 Subtrees and related invariants

Research on the number of subtrees (connected induced subgraphs of a tree) and
a related quantity, the number of subtrees containing at least one leaf, started
with [123-125], motivated by the study of the complexity of an algorithm in
bioinformatics [85]. Remarkably, trees that maximize the number of subtrees are
typically also those that minimize the Wiener index and vice versa, a similar
connection as mentioned earlier for the Merrifield-Simmons index and the Hosoya
index. In particular, a tree with n vertices has at least ("} ') and at most 2" ! +n— 1
subtrees (the minimum occurs for the path, the maximum for the star).

A lot of further work was done in particular on trees with given degree sequence
[81, 166, 167], where the greedy trees of Theorem 2 occur again as extremal
structures. In fact, as shown in [7], they have the greatest number of subtrees of
any given cardinality among trees with a specific degree sequence. The situation
for the minimum is more complicated, but it is known that it always occurs for a
caterpillar, and partial results on the precise structure have been obtained as well
[119, 165]. Other families of trees (with given number of leaves, bipartition, etc.)
were considered in [93].

Some closely related concepts can be found in two much earlier papers of
Jamison [72, 73], who studied the average subtree order (average number of vertices
in a subtree). Among other things, he showed that the path has the smallest average
subtree order among trees with n vertices, namely ”';2. He posed many open
questions, some of which were only resolved recently [63, 134, 144, 145] or are still
open. In particular, it is not known which trees maximize the average subtree order.
The star is only extremal if the number of vertices is very small, while the extremal
trees for larger orders are quite “path-like” (in that they must have many vertices
of degree 2). Jamison conjectured that the maximum might always be attained for a
caterpillar. Since the average subtree order is also a relatively complicated parameter
to calculate, not a lot of evidence for or against this conjecture is available.

As a final remark, let us mention an interesting variant obtained by counting
subtrees only up to isomorphism. In this context, the path and star of order n are
“equally bad,” in that they only have n non-isomorphic subtrees, which is clearly
also the minimum. As it turns out, the maximum is of order @(5"/%), see [37].
A simple construction yields trees that reach this bound: take a path of length
and attach a leaf and a path of length 2 to each vertex.

3.3 Dominating sets

The number of dominating sets is again very different from the other quantities
mentioned in this section so far. An important feature is the fact that leaves can
only be dominated by their neighbors or themselves, which often severely limits the
possibilities. Interestingly, the number of dominating sets of any graph is always
odd, see [20].
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The maximum number of dominating sets among trees of order # is obtained for
a star (and also for the path if the number of vertices is at most 5, see [18]), but the
lower bound of 5"/3,9.50"=9/3_or 3.5=2/3 (depending on whether 7 is congruent
to 0, 1, or 2 modulo 3) is attained for a rich class of trees: the condition is simply
that each internal vertex must be adjacent to exactly two leaves, with one exception
(adjacent to only one leaf) if » = 2 mod 3 and one exception (adjacent to three
leaves) or two exceptions (each adjacent to one leaf) if » = 1 mod 3. However,
there is nothing particularly special about trees in this context, as was pointed out in
[141] (see also [120]): the same values are extremal for connected graphs (and even
for graphs without isolated vertices), and the characterization of extremal connected
graphs is also essentially the same.

Similar observations can be made for the number of efficient dominating sets
(i.e., dominating sets with the property that no vertex is dominated by more than
one of the vertices in the dominating set) and fotal dominating sets. Similar to the
3-periodicity for the total number of dominating sets, a period of 7 can be observed
in the structure of the extremal trees, see [19] and [89].

Krzywkowski [86—88] studied several other types of domination and provided
algorithms for listing minimal dominating sets, minimal 2-dominating sets, or
minimal double dominating sets. The running time analysis of these algorithms
provides upper bounds for the respective numbers.

3.4 Walks

Let A(G) denote the adjacency matrix of a graph. It is well known that the entries
of the k-th power A(G)* count the number of walks of length k in G starting and
ending at specified vertices. In particular, the total number of closed walks of length
k (each with a fixed starting vertex), which we denote by wi(G), equals the trace of
A(G)¥ (which in turn is equal to the k-th spectral moment), and the total number of
all walks of length k, denoted by wy(G), is the sum of all entries in A(G)¥, which is
17A(G)*1.

The number of walks is closely connected to the spectrum, in particular the
spectral radius, which is equal to the limits limg— oo Wi (G)l/ K and limy— oo Wk (G)l/ k.
in the latter case, the limit needs to be taken only over even numbers k if G is
bipartite (in particular if it is a tree). There are also explicit inequalities relating
the spectral radius and the number of walks of different lengths, see [107] and the
references therein. Spectral graph theory is of course a vast area of its own right,
and a lot more could be said about spectral parameters of trees, but since our space
is limited, let us refer to the books [29, 34, 35] and the surveys in [33].

We specifically mention two recent papers [130, 131] by Taubig et al. that also
deal with inequalities for walks in graphs, especially because of an interesting
conjecture on trees. It is shown in [130] that

Waat e (CIWaat2b+¢(G) < Waa(G)Wa(atb+¢)(G)
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for all graphs G and non-negative integers a, b, ¢, which generalizes several inequal-
ities proved earlier by other authors. Since wy(G) = |V(G)| and w;(G) = 2|E(G)|,
this implies in particular that

2|E(G)]
V(G| wi—1(G) = wi(G)
for all graphs G if k is even. Taubig et al. [130] conjecture that this inequality holds
for all positive integers k if G is a tree. It is noteworthy that it is not valid for arbitrary
graphs or even for the narrower class of bipartite graphs, and counterexamples are
given in [130]. On the other hand, it is proven for trees in the special cases k = 3
and k = 5in [130].

The problem of maximizing the number of closed walks in trees was motivated in
particular by the aforementioned connection to spectral moments and thus also the
so-called Estrada index [62]. Csikvari [31] proved that the path has the minimum
number of closed walks of any fixed length among trees of given order, and the star
has the maximum number of such walks. This was generalized to arbitrary walks by
Bollobds and Tyomkyn [17], who also gave an alternative proof. Csikvari’s proof is
based on defining a poset structure on trees of given order, and he showed [32] that
this idea could also be applied to many other tree invariants (specifically, coefficients
and roots of different graph polynomials).

Trees with given degree sequence were studied in [5], and it turns out that greedy
trees as defined in Section 2 are extremal once again, which has several implications
on spectral invariants: they maximize all spectral moments, thus also the spectral
radius (which was proven earlier in [13]) and also any invariant of the form

E/(G) =Y _f(M(G)).

where A1(G), 12(G), ... are the eigenvalues of G and f is any entire function
whose Taylor series at 0 has only non-negative coefficients. This includes the
aforementioned Estrada index (corresponding to f(x) = ¢*) as a particular instance.
Again, a majorization theorem holds as well, which implies one half of Csikvéri’s
result (extremality of the star).

It is very likely that the greedy trees also have the greatest possible total number
of walks (not necessarily closed), but it seems that this is more difficult to prove (the
proof for closed walks is already quite long and technical).

3.5 Rooted trees regarded as posets

A rooted tree in its standard drawing can be interpreted in a natural way as the Hasse
diagram of a partially ordered set, so it makes sense to study concepts stemming
from the theory of posets, such as chains and antichains.



18 L. Székely et al.

There is a natural bijection between antichains in a rooted tree and subtrees
containing the root (the leaves of such a subtree forming the corresponding
antichain), so the results of [7] also show that greedy trees (with their natural root)
also maximize the number of antichains, even antichains of any fixed cardinality.

Another invariant of a similar nature that was studied recently is the number of
transversals, i.e., subsets of vertices with the property that every path from the root
to a leaf contains at least one of the elements (this can be the root or leaf itself). Thus
removal of a transversal “destroys” the connection between the root and the leaves,
and in fact one of the motivations for the authors of [23] to study transversals was a
mathematical model in counterterrorism. Among other results, the d-ary trees with
minimum and maximum number of transversals are characterized in [23]: they are
caterpillars and full d-ary trees, respectively.

Finally, let us mention a problem due to Klazar [83] that was only solved very
recently [6]. An infima closed set in a poset is a set with the property that the
infimum (greatest common lower bound) of any subset exists and is contained in
the set as well. In the context of rooted trees, this means that the closest common
ancestor of any two vertices in such a set must be contained in the set as well.
Both the star and the path have “many” infima closed sets: in fact, all subsets of a
path, rooted at one of its ends, are infima closed, and all sets containing the root
of a star, rooted at its center, are infima closed. Klazar’s question was therefore to
characterize the trees with the least number of infima closed sets, and it turns out
that these trees are essentially complete binary trees (all internal vertices have two
children), except for the vertices that are directly adjacent to leaves: these vertices
must have three leaves as children, with a bounded number of exceptions (that
depend on the precise order of the tree).

4 Degree-Based Graph Indices

Randié¢ [111] studied a new index, earlier called branching index or connectivity
index,

R(G) = ) (dowdg(v))*,

{u,v}€E(G)

where the summation is over all edges of the graph, dg(u) denotes the degree of
vertex u in graph G, and « = —1/2. This is known today as Randi¢ index, and
for other values of « it is known as the generalized Randi¢ index. (When o < 0,
the index is undefined for graphs with isolated vertices, but molecular graphs are
connected.) R} (G) is also known as the second Zagreb index. (The first Zagreb index
is just the sum of degree squares; more general versions of it allow any exponent
instead of 2.)

There could be many graphs with the same degree sequence, and they could
look strikingly different, depending on whether vertices of similar or very different
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degrees tend to be connected. In network science the concepts of assortativity and
disassortativity describe this phenomenon, where assortativity is usually measured
by the Pearson correlation coefficient of degree pairs of adjacent vertices. Assorta-
tivity is determined by the joint degree matrix [38], whose entries give the number
m;; of edges between degree i and degree j vertices. The Randi¢ index can be written
alternatively as

1 1 \
Ra(G) = ) D do@F' = % my(i® =), (D
ueV(G) i<j
in which the first sum turns just n for « = —1/2. We suspect that the power of the

Randi¢ index comes from using information from the whole joint degree matrix.

The Randi¢ index became better known among graph theorists after the work of
Bollobds and Erdés [15, 16]. They [15] proved that among graphs on n vertices with
minimum degree at least 1, the star minimizes R_1,5. [94] discusses the development
of minimizing R/, among graphs on n vertices with minimum degree at least k, as
this problem is not yet completely solved. On the other hand, formula (1) shows that
among graphs on n vertices, the regular graphs maximize R_1,. Further restricting
graphs to trees, the path maximizes R_> [25, 161].

Adding an edge to the graph, R_j/» can go up or down. This is a delicate
quantity, and it is no surprise that a few published conjectures about it were refuted.
Conjecture making and proving software like Graffiti [46], and AutographiX [3, 24]
included R_;/, among the graph parameters they compared. Aouchiche et al.
[3] made the conjecture that for any connected graph of order n > 3 with
diameter D(G),

n+1 R_i2(G) _ n—3+242
R_12(G) = D(G) > V2 — d >
A =DG) 2 V2= T and T =

and equality holds in any of them iff G is a path. [100] proved a stronger result that
easily implies this conjecture: for any connected graph of order n > 3 with diameter
D(G), R_1/2(G) — éD(G) > /2 — 1, and equality holds iff G is a path.
Fajtlowicz [46] conjectured for connected graphs that R_,2(G) > uz(n();),
2

where the average distance on the RHS is written with the Wiener index in the
numerator. Caporossi and Hansen [24] strengthened this conjecture to R—j/, >

W(HG) +n—1+ i — 2, which, if true, is tight. They [24] also conjectured that

r(zG) < R_12(G), where r(G) is the radius of the graph G, unless G is an even path,
and verified this conjecture if G is a tree.

The survey [94] further discusses extremal results for R_,>(T), where (a) T is
a tree with given number of vertices and leaves; (b) T is a tree with given diameter
and number of vertices; (c) T is a chemical tree with given number of vertices; (d)
T is a chemical tree with given number of vertices and leaves. As chemical trees
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are the relevant trees for chemical graph theory, [60] worked out the three largest
possible and the three smallest possible values of R_/>(T), where T is a chemical
tree with given number of vertices, and the realizing trees.

For the generalized Randi¢ index R, the minimizing tree is a path for positive o
and n > 5, and is a star for negative o [68]. Randi¢ himself considered R—; [111].
Building on considerable earlier work, [108] and [69] showed that the maximum of
R_, on trees with n vertices is égn—i-o(n). The survey [94] further discusses extremal
results for R_;(T), where (a) T is a tree with given number of vertices and leaves;
(b) T is a tree with given number of vertices and has maximum degree 3; (c) T is a
chemical tree with given number of vertices.

Gutman [58] lists a number of variants of the Randi¢ index and notes “we have
far too many descriptors, and there seems to lack a firm criterion to stop or slow
down their proliferation.” We include here one more, the higher order Randi¢ index
proposed in [78]:

‘RG) = Y !

w5 VAo (o)dg(v1) -+ dg(v)

where the sum is taken over paths vov; ... v; of length i in the graph G. i = 1
gives back R_;,2(G), while i = 0 gives >, dg(v)™/2, the first Zagreb index with
exponent —1/2. We note that there is some ambiguity in the definition of higher
order Randi¢ indices, as some papers allow any vgv; ... v; walks that do not repeat
edges—for i > 3, if the graph has cycles, this may bring extra terms. Regarding
the second order Randi¢ index, [100] showed that among trees on n vertices, the
star maximizes the second order Randi¢ index, and among trees on n vertices with
maximum degree 3, the path is the unique minimizer of the second order Randi¢
index.

As for many other graph indices discussed in this survey, trees with a given
degree sequence have been considered as well. The first article of this kind is [39],
where the trees with given degree sequence that maximize R; were found. This was
further generalized to arbitrary « in [148]. It is noteworthy that the extremal trees
are generally not unique, and it would be interesting to find necessary and sufficient
conditions on the degree sequence for the extremal tree to be unique. Finally, an
even more general type of graph invariant, where (dg(u)dg(v))* is replaced by a
symmetric function f(dg(u), dg(v)) (so that the Randi¢ index occurs as a special
case) is studied in [150].

5 Random Trees

To have an idea whether the Wiener index of a tree is “small” or “large,” and to
facilitate statistical analysis, it is desirable to know the expectation and the variance
of the Wiener index of a randomly selected tree.
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Entringer et al. [45] gave a method to compute the asymptotics for the expected
Wiener index of a random tree selected uniformly from a simply generated family
of trees and found that the asymptotics is constant times n/2. Simply generated
families include several important families, for example, binary trees, ordered trees,
and unordered labeled trees. Asymptotic results for the average Wiener index of
star-like trees were obtained in [135], and results relevant for chemical trees can be
found in [41] and [137].

Janson [74] obtained asymptotics for the mean, variance, and higher moments
as well as for the distribution of the Wiener index of a random tree from a
simply generated family. This distribution can be expressed in terms of a Brownian
excursion. He also determined the joint asymptotic distribution of the Wiener index
and the internal path length, as well as asymptotics for the covariance and other
mixed moments.

The study of the expected Wiener index extended to classes of random trees
relevant in computer science. For them, the motivation is no longer chemical
graph theory. Neininger [106] investigated the Wiener index of uniformly selected
random recursive trees and random binary search trees, obtained asymptotics for the
expectation, the variance, and also for the correlation and covariance with the path
length. Munsonius [104] investigated the Wiener index and path length of random
split trees asymptotically; Fuchs and Lee [54] obtained asymptotic expansions of
moments of the Wiener index and showed a central limit law for the Wiener index
of digital search trees, tries and PATRICIA tries.

Upper bounds for the tail distribution of the Wiener index in several models were
obtained by [1, 51, 75], and [105].

Comparatively little work has been done on other graph invariants mentioned in
this survey: [48] studies the distribution of the Randi¢ index, proving a normal limit
law for different random binary tree models. Central limit theorems for the (first)
Zagreb index (i.e., the sum of the squared degrees) are proven in [49, 50].

Averages of various enumerative invariants (independent sets, matchings, sub-
trees, etc.) have been determined for different types of trees. A whole collection of
results of this type can be found in a paper of Klazar [83]; see also [82, 101, 102, 138]
for other instances. For the number of subtrees, the distribution was shown to be
log-normal in a recent paper [142]. Although the results in this paper are quite
general, they do not seem to apply directly to similar invariants such as the number
of independent sets.

6 Localized Tree Indices and Concepts of Centrality

Recall that the function eccy(.) tells the largest distance from a vertex in the tree 7.
The center C(T) of the tree T is the set of vertices where eccy(.) is minimized.
The distance o7(.) of a vertex (unrelated to the Merrifield-Simmons index o (T
that was defined in Section 3) in a tree T is the sum of distances from the variable
vertex to all other vertices. Clearly, W(T) = ; >, 0or(v). According to Zelinka
[162], the centroid CT(T) of a tree coincides with the set of vertices minimizing the
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distance function. Let F(T') denote the number of subtrees of the tree T, and Fr(v)
denote the number of subtrees of the tree T that contain vertex v.

Let the function F7(.) assign to vertex v of the tree T the number of subtrees
of T containing the vertex v. [124] defined the subtree core Core(T) of the tree
T, a new concept analogous to, but different from the concepts of center C(7T") and
centroid CT(T), where Fr(v) is maximized. We see here an interaction of “local”
and “global” tree indices: o7(.) is the local version of the Wiener index, Fr(.) is the
local version of the number of subtrees; while eccr(.) is inherently local, one can
define the global version by Ecc(T) = ), eccr(v).

The center, the centroid, and the subtree core contain either a single vertex or
two adjacent vertices of the tree. The reason is the following. Given the vertices
along any path of a tree, the sequence of the values of Fr(.) is strictly concave
down ([124, proof to Theorem 9.1]), the sequence of the values of or(.) is strictly
concave up ([99, Ex. 6.22]), and the sequence of the values of eccr(.) is concave
up ([99, Ex. 6.21]). Strict concavity immediately implies that Core(T) and CT(T)
consist of one or two adjacent vertices. The fact that C(T') also consists of one or
two adjacent vertices was already known to Jordan [77] (see also [99, Ex. 6.21a]). It
is well known that the center and centroid are generally distinct, and moreover, they
can be arbitrary far from each other ([99, Ex. 6.22c]). The paper [122] investigates
how far these different middle parts can be in a tree.

Behavior of ratios of local and global indices can be subtle. The investigation
of extreme values of ratios started in [9], which determined extremal values of
W(T)/or(v), W(T)/or(w), ar(w)/or(v), and or(w)/or(u), where T is a tree on
n vertices, v is in the centroid of the tree T, and u,w are leaves in 7. The two
papers [126] and [127] went further to see how far the negative correlation between
distances and subtrees, discovered in [136], goes. They characterized the extremal
values of F(T)/Fr(v), F(T)/Fr(w), Fr(w)/Fr(v), and Fr(w)/Fr(u), where T is a
tree on n vertices, v is in the subtree core of the tree 7', and u, w are leaves in T—the
complete analogue of [9], changing distances to subtrees. It is instructive to look at
the table in [126] to see the extremal trees corresponding to “dual” problems—there
is a striking similarity.

The most recent investigation in this area [121] characterized the extremal val-
ues of Ecc(T)/eccr(v), Ecc(T)/eccr(w), eccr(w)/eccr(v), and eccr(w)/eccr(u),
where T is a tree on n vertices, v is in the center of the tree 7, and u, w are leaves in
T—another complete analogue of [9], changing distances to eccentricities.

7 Inverse Problems

Perhaps [55] was the first paper that called for the systematic study of inverse
problems in combinatorial chemistry: create molecular graphs with prescribed
topological index. [91], however, asked for trees with a given Wiener index, and
made the conjecture that with a finite number of exceptions all positive integers are
Wiener indices of some trees.
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Li et al. [96] study four indices and show that all positive integers are the number
of cliques in some graphs. It discusses the first Zagreb index (sum of degree squares)
and observes that it is even for any graph, and shows that all even integers # 4, 8
are the sum of squares of the degrees of some tree. An early but relevant paper [98]
shows that any positive integer is the Merrifield-Simmons index of a bipartite graph,
and there is a conjecture that any sufficiently large positive integer is the Merrifield-
Simmons index of a tree (clearly every positive integer is the Hosoya index of some
star). An interesting feature of this conjecture (which is also one reason why the
problem might be very difficult) is the distribution of the Merrifield-Simmons index
in residue classes: it was shown in [140] (and by a slightly different method in [2])
that for every modulus m, almost all trees (in the sense that the proportion converges
to 1 as the order tends to infinity) have a number of independent sets that is divisible
by m. However, every residue class modulo m occurs for some tree, as was shown
by Law [90].

The Lepovi¢-Gutman conjecture that all sufficiently large numbers are Wiener
indices of some trees was proven independently in [152] and [135]. In fact, 49
exceptional numbers were found. Part of the difficulty of the problem is the large
number of tree shapes—the first paper only used short caterpillars, while the second
used star-like trees, which are obtained from a star by changing its leaves to
some stars. Both papers approached the problem through representation of integers
as values of certain quadratic forms. This approach had to use arbitrarily large
degree vertices, which is not an attractive approach for chemical graph theorists.
Combining their efforts the authors of these two papers [146] showed that every
sufficiently large integer n is the Wiener index of some caterpillar tree with degrees
at most 3, and every sufficiently large even integer is the Wiener index of some
hexagon type graph. [11] conjectures that every sufficiently large integer is the
Wiener index of a binary tree, a stronger form of the Lepovi¢-Gutman conjecture.

In analogy to the Lepovi¢-Gutman conjecture for the Wiener index, it was shown
in [36] that all but 34 positive integers are the number of subtrees of some trees.
In fact, the proof shows that all sufficiently large positive integers are equal to
the number of subtrees of a caterpillar tree, and then bridges the gap by explicit
computation. Here the quadratic form representation appears as a representation of
a number as a certain kind of sum of pentagonal numbers.

The paper [36] poses a metaconjecture: if a tree index on n vertices takes
sufficiently many values, and for rooted trees the index can be computed from
the indices of the subtrees rooted at the children of the root with a reasonable
polynomial formula (the paper gives a number of examples of such indices), and
if the values of the tree index are not constrained to some residue class, then every
sufficiently large positive integer is a value of this tree index.

A result of [135] is instructive to accept this conjecture: let

Wi(T) = Y dr(u.v)".

u,veV(T)
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where A is a positive integer, a variant of the Wiener index. If there is a star-like
tree T such that Wy (T) = r mod 2*(2* — 1), then all members of the residue class
r mod 2*(2* — 1)— with only finitely many exceptions—are Wiener indices of
trees. For A = 2,3,5,6,7,9, 10, this implies that all integers, with finitely many
exceptions, can be written as W, (T') for some star-like tree T, as all residue classes
mod 2*(2* — 1) are covered. (For A = 4 and all other multiples of 4, this is not the
case any more.)
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The edit distance in graphs: Methods, results,
and generalizations

Ryan R. Martin

Abstract The edit distance is a very simple and natural metric on the space of
graphs. In the edit distance problem, we fix a hereditary property of graphs and
compute the asymptotically largest edit distance of a graph from the property. This
quantity is very difficult to compute directly but in many cases, it can be derived as
the maximum of the edit distance function. Szemerédi’s regularity lemma, strongly
regular graphs, constructions related to the Zarankiewicz problem — all these play a
role in the computing of edit distance functions. The most powerful tool is derived
from symmetrization, which we use to optimize quadratic programs that define
the edit distance function. In this paper, we describe some of the most common
tools used for computing the edit distance function, summarize the major current
results, outline generalizations to other combinatorial structures, and pose some
open problems.

Keywords Edit distance * Colored regularity graphs ¢ Quadratic programming
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1 Introduction

The edit distance in graphs was originally studied to answer two different and
independent problems: one to answer questions on property testing [5] and the other,
to answer a question regarding consensus trees from evolutionary biology [10]. In
metabolic networks, the presence or absence of edges in a certain graph corresponds
to pairs of genes which activate or deactivate one another. In evolutionary theory,
avoiding forbidden induced subgraphs [23] is studied, which is equivalent to a
similar edit problem of bipartite graphs or matrices. Edit distance problems with
respect to more general classes of graphs are important in the algorithmic aspects of
property testing [3, 5-7] and in the techniques involved in computing the speed of
dense graph properties [19, 46].
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The (normalized) edit metric is a metric on the set of simple, labeled n-vertex
graphs. The distance between two graphs is the symmetric difference of the edge
sets divided by the total number of possible edges. If dist(G, G’) denotes the edit
distance between G and G’ on the same labeled vertex set, then

dist(G, G') = |[E(G)AE(G)|/(5).

As with any metric, we may take a property of graphs J# (that is, a set of graphs),
and compute the distance of a graph from that property:

dist(G, 2#) = min {dist(G,G') : V(G') = V(G)}. (1)

The properties that we study in this paper are hereditary properties. A property
of graphs is hereditary if is closed under isomorphism and deletion of vertices.
Alon and Stav [5] suggest that “In fact, almost all interesting graph properties are
hereditary.” Planarity having chromatic number at most k or not having a given H as
an induced subgraph all are commonly studied hereditary properties. The property
of having no graph H as an induced subgraph is called a principal hereditary
property and we denote it by Forb(H). For every hereditary property ¢ there exists
a family of graphs . () (“forbidden graphs”) such that 77 = ()¢ () Forb(H).
A hereditary property is said to be nontrivial if there is an infinite sequence of graphs
that is in the property.

In the seminal papers by Alon and Stav [4, 5] and by Axenovich, Kézdy, and
Martin [10], the fundamental question was the maximum distance of a graph
G on n vertices from hereditary property 7. In fact, the maximum distance is
asymptotically the same as that of the Erdés-Rényi random graph G(n, p), for some
value of p.

Theorem 1 (Alon-Stav [5]) Let 57 be an arbitrary graph property. There exists
p* =p%, €10, 1] such that

max {dist(G, ) : |V(G)| = n} = E[dist(G(n, p*), )] + o(1). )

We denote the limit of the quantity in (2) by d7%,. This is, asymptotically, the
maximum distance of a graph from .7#°. Although d7, is the quantity in which we
are most interested, determining its value is most often done by generalizing the
result in Theorem 1. We do so by instead finding the maximum edit distance of a
density-p graph from 7, for all values of p.

Balogh and Martin [11] introduced the edit distance function of a hereditary

property.

Definition 2 Let 5 be a nontrivial hereditary property of graphs. The edit distance
function of S is

edse(p) := lim max {dist(G, ) : |[V(G)| = n, |[E(G)| = |p(5) |} 3)
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The existence of the limit in (3) was proven in [11].!

Theorem 3 (Balogh-Martin [11]) Let 7 be an arbitrary nontrivial graph prop-
erty. Then

edr(p) = nlggo E[dist(G(n, p), F£)].

Theorems 1 and 3 make use of Szemerédi’s regularity lemma [48] but in a
way that detects induced subgraphs. The idea of applying Szemerédi’s regularity
lemma to hereditary properties has been studied in a number of contexts, including
pioneering work by Promel and Steger [40-42], Scheinerman and Zito [46], and
Bollobas and Thomason [18-20]. The essential technique is to apply the regularity
lemma twice — once to the graph itself and a second time to each of the graphs
induced by the non-exceptional clusters. More directly, one can use a variant of
Szemerédi’s regularity lemma due to Alon et al. [7] that has been used in a number
of papers, including the edit distance papers [5, 11].

The edit distance function is symmetric with respect to complementation. It is
easy to see that edporv () (P) = €dpo ) (1 — p) and, in fact, a general case is true.

Proposition 4 Let 7 = (¢ () FOrb(H) be a nontrivial hereditary property
and let ™ = (\ye 7 () Forb(H). Then ed » (p) = edse+(1 — p).

A very similar setting to the edit distance problem was studied by Richer [43]
and as further investigated by Marchant and Thomason [31, 32] regarding the two-
coloring of the edges of the complete graph. Many of the most vital results for
solving the edit distance problem come from this setting. In solving the problems
they pose on a hereditary property 7, they obtain the function 1 — ed_#(p).
The connection between the two settings is addressed in [32] as well as by
Thomason [49] in a survey.

2 Colored regularity graphs

The key observation in computing the edit distance is that a graph can be approx-
imated by a graph-like structure in which the clusters either behave like cliques or
independent sets and the e-regular pairs either behave like complete bipartite graphs,
empty bipartite graphs or random graphs with density bounded away from both 0
and 1.

Alon and Stav [5] defined a colored regularity graph (CRG) K to be a simple
complete graph, together with a partition of the vertices into white and black,

'Tt should be noted that early papers on the edit distance do not normalize the distance. That is, the
distance is merely |E(G) AE(G’)|. Normalization, however, is required in order to define the edit
distance function and it seems most natural to put the normalization in the metric itself, rather than
doing so in order to define ed .
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V(K) = VW(K) U VB(K) and a partition of the edges into white, gray, and black,
E(K) = EW(K) UEG(K) UEB(K).?

We say that a graph H embeds in K, writing H +— K, if there is a function
¢ : V(H) — V(K) so that the following occur:

e If hihy € E(H), then either ¢(h;) = ¢(hy) € VB(K) or p(hy)e(h;) € EB(K) U
EG(K).

o If hih, € E(H), then either ¢(h)) = ¢(hy) € VW(K) or ¢(h)e(h) €
EW(K) U EG(K).

A CRG K’ is said to be a sub-CRG of K if K’ can be obtained by deleting vertices
of K and is a proper sub-CRG if K’ # K.

If a graph H embeds in CRG K, then a large enough graph that is approximated
by K will have an induced copy of H. This is stated and proven more formally
in Section 4 of [11]. However, the main idea is that for any large graph in a
hereditary property 2 = (\ye F(H) Forb(H), the CRG K that approximates the
graph satisfies the property that H t4 K for all H € # (). We denote J# (J¢)
to be the subset of CRGs K such that no forbidden graph maps into K. Formally,
H(H)={K :Hvs K,VYH € F(H)}.

2.1 Thef and g functions

There is a matrix associated with a CRG called Mg (p) that plays a role similar to
the role the adjacency matrix does for graphs. We can use this matrix to help define
the functions fx and gk, that are essential for understanding edit distance.

Definition 5 Letr K be a CRG on vertex set {vi, ..., vy} with VW and VB denoting
the white and black vertices, respectively, and EW, EG, and EB denoting the white,

gray, and black edges, respectively. Let Mg (p) denote the matrix with entries
defined as follows:

D, ifi # jand vijv; e EWori=jand v; € VW;
mg(p)ij = 10, if i # jand v;v; € EG; 4)
1—p, ifi#jandv;v; € EBori=jandv; € VB.

The functions fx and gk are defined as follows:

1 1
fe(p) =, P(IVW] + 2[EW]) + (1 —p) (VB[ + 2[EB])] =, 1M (p)1
®)

2Papers by Bollobds and Thomason [18—20] and others such as [49] use the term “type” rather than
CRG.



The edit distance in graphs 35

gx(p) = min {XTMK(p)X x'1=1,x> 0} . (6)

The vector 0 is the all-zeroes vector, 1 is the all-ones vector, and vector inequalities
are coordinatewise.

Clearly, for any CRG K and any p € [0, 1], we have gx(p) < fx(p). Although
the linearity of fx makes proving general results about ed ;» possible, the g function
is more useful in computing the edit distance function. In fact, if an optimal vector
of (6) has a zero entry, we may obtain K’ by deleting the corresponding entry and
achieve gx/(p) = gk(p). We say that a CRG K is p-core if, for any proper sub-CRG
K’ of K, we have gi/(p) > gx(p).

The edit distance function can be defined in terms of the f and g functions:

Theorem 6 Let 57 be a nontrivial hereditary property. For any p € [0, 1],

edyr (p) = inf{fx(p) : K € #(H)} = inf{gk(p) : K € A ()} (7)
= min {gg(p) : K € H ()} (8)

Equation (7) is due to Balogh and Martin [11]. Equation (8) is from the results
of Marchant and Thomason [32] and gives rise to the question as to whether only
a finite set of p-core CRGs is sufficient to define the edit distance function for any
nontrivial hereditary property and all p € [0, 1].

There is some evidence (see Theorem 31(d) and Theorem 30(b) below) that
for some hereditary properties, determining the edit distance function requires
knowledge of an infinite sequence of CRGs. Nonetheless, we believe that the bulk
of the edit distance function can be determined from a finite number of CRGs. That
is, for any € > 0, we believe a finite set of CRGs can simultaneously define ed »
forall p € [e, 1 — €]. This is Conjecture 1 in Section 8.2.

2.2 Clique spectrum

Certain colored regularity graphs play a key role in the computation of the edit
distance. A gray-edge CRG is the CRG K with all (W(zK) |) edges gray. The gray-
edge CRG with r white vertices and s black vertices is denoted K(r, s). The clique
spectrum of J is the set

) E {(r,s)  Hib K(r,5), YH € F(H)}.

For example, if .72 = Forb(H) is a hereditary property, then pairs (r, s) are in the
clique spectrum of Forb(H) if and only if H cannot be partitioned into r independent
sets and s cliques.

The clique spectrum has a number of useful properties. For example, it is
monotone in the sense that if (r,s) € I'(#)and 0 < ¥ < rand0 < 5 < 5,
then (v, ') € I'(J€). As a result, the clique spectrum of a hereditary property can
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Fig. 1 A graph Hy on 9 vertices.

. . .(0,2)
00,
®

.(3,0)

Fig. 2 The Ferrers diagram of the clique spectrum of Hg with the extreme points labeled.

be expressed as a Ferrers diagram. An extreme point of the clique spectrum I” is a
pair (r,s) € I" for whichboth (r+1,s) ¢ I" and (r,s+ 1) & I". Figure 1 shows the
graph Hy, and Figure 2 shows its clique spectrum, expressed as a Ferrers diagram.

Since the matrix Mg 5 (p) is a diagonal matrix with r entries of value p and s
entries with value 1 — p, it is easy to compute that for all p € (0, 1)

s )_1: p(1—p)
r(1—p)+sp

We have the natural convention that if » = 0 then gg(5(0) = 1 and if s = 0 then
gK(r,x)(l) = L

In fact, we have a more general way of computing the edit distance function if
the matrix Mg (p) is block diagonal matrix, where the blocks correspond to a CRG
notion of components.

Sk () = (’ + ©)

p 1-p

Definition 7 A sub-CRG, K', of a CRG K is a component if it is maximal with
respect to the property that, for all v,w € V(K’), there exists a path consisting of
white and black edges entirely within K'.

More simply, components of K are the components of the graph G with vertex set
V(K) and the nonedges of G the gray edges of K. This leads to the generalization
of (9).

Proposition 8 (Martin [33]) Let K be a CRG with components Ky, ..., K. Then

l
@)™ =D (ek, @) 7"

i=1
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2.3 Characterization of p-core CRGs

Marchant and Thomason [32] gave a characterization of all p-core CRGs.
Theorem 9 (Marchant-Thomason [32]) Let K be a p-core CRG.

(a) If p < 1/2, then there are no black edges and the white edges are only incident
to black vertices.

(b) If p = 1/2, then there are no white edges and the black edges are only incident
to white vertices.

Consequently, if p = 1/2, then all edges are gray.

Theorem 9 is an essential tool and is used in most results on the edit distance
function as we shall see below.

3 Estimating the edit distance function

Although it is difficult to compute the edit distance function for general hereditary
properties, we can estimate the function through a variety of techniques. First, we
can use the clique spectrum and (9) to construct an upper bound.

3.1 Upper bound via the clique spectrum

We begin with a trio of results with elementary proofs, followed by a result
concerning the nature of the edit distance function.

Theorem 10 Let 57 be a nontrivial hereditary property and let I' () denote the
clique spectrum of €. If we define

. . p(1—p)
= min r,s = min ’ 10
Yo (P) (rel ) 8x(r)(P) (roere) r(l —p) + sp (o

then ed () < v (p).

There are three (not necessarily distinct) extreme points of a clique spectrum that
are of particular interest. First, if (r,0) € I'(J¢) but (r + 1,0) & I'(57), then
r + 1 is the chromatic number of 7, denoted y (7€) or just y, when the hereditary
property is understood. Second, if (0, s) € I' () but (0, s+ 1) & I'(SZ), then s+ 1
is the complementary chromatic number of 7, denoted y (%) or just y. Note that
if 72 = Forb(H) for some graph H, then x(7¢) = y(H) and () = x(H).

We observe that if y () > 2 then (y — 1,0) € I'(JZ) and if () > 2 then
(0, y — 1) € I'(57). Therefore, we have the following corollary.
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Corollary 11 Let 5 be a nontrivial hereditary property with chromatic number x
and complementary chromatic number .

(a) If x = 2, thenedyr(p) < p/(x —1).
(b) If x = 2, thenedyy(p) < (1=p)/(x = D).

The chromatic and complementary chromatic numbers of a hereditary property
A can be defined in terms of .% (J¢) as in Proposition 12.

Proposition 12 Let 5% = (), Forb(H) be a nontrivial hereditary property.
Then,

(a) x()=min{y(H):H € .} and
(b) () =min{y(H) : H € F}.

The third extreme point we address is evaluated as follows: the largest value of
r+ s+ 1 such that (r,s) € I'(J2) is called the binary chromatic number of 3¢ and
is denoted yp(S€) or just yp. This quantity has appeared in the literature previously.
Promel and Steger [40—42] called yp — 1 simply t. Bollobds and Thomason [18, 20]
called yp — 1 the coloring number.

Since Theorem 9 establishes that every 1/2-core CRG is a gray-edge CRG (that
is, of the form K(r, s)) we can compute ed s (1/2) in terms of y(#¢). Combining
this with other basic facts, we obtain Theorem 13.

Theorem 13 Let 7 be a nontrivial hereditary property.

(a) edyw(p) is continuous.
(b) edw(p) is concave down.

(c) edor(1/2) = 5, o)

Theorem 13(a) was established by Marchant and Thomason [32]. We note that a
different, analysis-based proof of this is in [11]. Theorem 13(b) was provenin [11].
Theorem 13(c) was proven in [10] in the case where .77 is a principal hereditary
property. More sophisticated knowledge of the edit distance function has made it a
simple corollary.

Using only Corollary 11 and Theorem 13 we can already find edit distance
functions for some important hereditary properties. If P4 denotes the path on 4
vertices, then edrorm(p,) (p) = min{p, 1 — p}. If Cs denotes the cycle on 5 vertices,
then edporm(cs) (P) = ; min{p, 1 — p}. More about hereditary properties forbidding
self-complementary graphs is below in Corollary 15.

Because ed (p) is continuous and concave down, the function achieves its
maximum on the interval [0, 1]. Thus, both 4%, and p*, are well-defined and the
coordinate (p%,,d%,) is the point at which ed s achieves its maximum value.

Note: Although p?*, is formally defined to be a closed interval, in all but a few
(very) interesting cases’ the interval is degenerate. That is, P’y is usually a single
value. We will often abuse notation and terminology by referring to p%, = p, rather
than p*%, = [p, p] and instead indicate explicitly where the interval is not degenerate.

3See, e.g., Section 5.5.2.
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3.2 Upper bound using xp(¢)

If 7 = (\yes Forb(H) is a hereditary property such that . contains no complete
graph and no empty graph, then it is trivial that ed ;(0) = ed z(1) = 0. Indeed,
Proposition 12 gives that y () > 2 and y(¢) > 2. The statement then follows
from the simple bounds given by Corollary 11.

Using only the y s function, we may narrow down the possible values for p%,
and for d%,.

Theorem 14 Let 7 = (|4 Forb(H) with (r,s) € I'() such thatr + s = xp

() — 1.

(a) edyr(p) < z/jf(p) < r(‘l’(_llgp_:sp forallp € [0,1].
*

(b) d%” = r+s+24/rs’

. l_
(c) eds(p) = mm{xwpf)—l’ (51 }
(d) Ifr <s, thenp?, € [H'_X, é]

(e) Ifs <r, thenp®, € B, rj_s].

Theorem 14(a) comes from Theorem 10. Theorem 14(b) is simply the maximum
value of gk () (p). Theorem 14(c) follows from Theorem 13 — continuity, concavity,
and the value of ed;r(1/2) — and the fact that edr(0) = edyp (1) = 0.
Theorem 14(d) and (e) follow from the fact that these are the intervals over which
gx0(p) = 1/Qus(H) — 1).

Corollary 15 gives the values of p%, and of d%, if 7 = Forb(H) for a self-
complementary graph H.

Corollary 15 Let 7 = (\ycq Forb(H) with (r1,s1) € I'(J€) and (r2,5,) €
() (not necessarily distinct) such that ry +s; = ry+s, = yp(F€)—1,r1 <s,
and ry > s,. Then

P =1/2  and  d% =1/Q(xs()—1).

In particular, if ¢ = Forb(H), where H is a self-complementary graph, then
P =1/2and d%, = 1/Q2(xs(H) — 1)).

4 Symmetrization

The most powerful tool for determining the edit distance function of a hereditary
property is called symmetrization. This is a term Pikhurko [38] used for a method
due to Sidorenko [47]. In fact, symmetrization can be traced back to Zykov [50] and
his proof of Turdn’s theorem. Our version of symmetrization comes directly from
the matrix defined by a CRG.
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Theorem 16 (Martin [33]) Let p € [0,1] and let K be a p-core CRG with
associated matrix Mg(p), as defined in (4). If X* is an optimal solution of
the quadratic program from (6), namely that x* > 0, x*1 = 1, and gg(p) = (x*)T
Mg (p)x*, then

Mk (p) - x* = gk(p)1.

In addition, by virtue of K being p-core, the vector x* has no zero entries and x* is
unique for any fixed labeling of the vertices of K.

4.1 The weighted gray degree of a vertex

In order to interpret Theorem 16, we define the white neighborhood of vertex v in
CRG K to be Ny (v) := {v' € V(K) : vv' € EW(K)} U {v : if v € VW(K)}.
The black neighborhood of v is Ng(v) := {v' € V(K) : vv’ € EB(K)} U {v : if
v € VB(K)}. The gray neighborhood of v is Ng(v) := {v' € V(K) : vv’ € EG(K)}.

If x is the optimum weight vector in the quadratic program (6) that defines gx(p),
then the weighted white degree of vertex v € V(K) is dw(v) 1= 3 en,, ) X))
The weighted black degree of vertex v € V(K) is dg(v) := ZU,GNB(U) x(v’). The
weighted gray degree of vertex v € V(K) is dg(v) 1= }_, en, () X(V)-

Theorem 16 gives that, for any v € VW(K),

pdw(v) + (I —p)dp(v) = gk (p). (1)
Using the characterization of p-core CRGs from Theorem 9, we can apply (11) to
compute the gray degree of each vertex.

Theorem 17 (Martin [33]) Let p € (0,1) and K be a p-core CRG with optimum
weight vector X.

(a) If p < 1/2, then x(v) = gx(p)/p forall v € VW(K) and

- 1-2
p ix(p)+ P

(b) If p > 1/2, then x(v) = gx(p)/(1 — p) forall v € VB(K) and

dg(v) = x(v), forallv € VB(K).

—p— 2p—1
pgK(p)+p

1
d fr—
6(v) 1—p 1—p

x(v), forallv € VW(K).

Most of the results below use Theorem 17 as a primary tool. Intuitively, if gx(p)
is small, then dg(v) is large for each vertex and so K has a large amount of gray.
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However, if K has too much gray, then some H € % (¢) would map to K, which
contradicts the choice of K € JZ (7). This general paradigm is made more precise
by knowing more about the structure of the CRGs K € J# (5¢).

4.2 Basic structural facts of p-core CRGs

We can use Theorem 17 to obtain some basic helpful results on certain types of
CRGs:

Corollary 18 Lett > 2 and k > 2 be integers.
(a) Let p < 1/2 and let K be a p-core CRG on k black vertices.

(i) If K has no gray edges, then gx(p) = ll( [1 4+ (k—2)p].
(ii) If K has no gray clique of order t, then gg(p) > p/(t — 1).

(b) Letp > 1/2 and let K be a p-core CRG on k white vertices.

(i) If K has no gray edges, then gx(p) = ll( 14+ (k-=2)1-p)]
(ii) If K has no gray clique of order t, then gg(p) > (1 —p)/(t —1).

Proof By symmetry, it is sufficient to prove (a). For (a)(i) we observe that, by
Theorem 9(a), all edges are white and it is easy to see that the optimum weight
vector in equation (6) is constant. Thus, all vertices have the same weight and the
result follows.

For (a)(ii), we use a well-worn trick, used, e.g., in [35]. Let the maximum-sized
clique of K (in terms of the number of vertices) be on vertex set {vy, ..., v.} where
¢ > 2. Foreveryw & {vi,...,v.} we know that wy; is a gray edge for at most ¢ — 1
values of i. Using Theorem 17(a), we have

Z“: (p —gk(p) 1 _szX(v,-)) <(c—-1 (1 - ix(vi))

i=1 p i=1

(c=3+1/p) > x() +1 < ;gK(p).

i=1
Sincec—3 4+ 1/p > ¢ —1 > 0, we can conclude that gx(p) > p/c > p/(t — 1),
which concludes the proof. O

Remark 19 The bound in Corollary 18(a)(ii) can be approached by a CRG on
black vertices where the gray edges induce a blow-up of K;—,.
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5 Known results

5.1 Hereditary properties that forbid either a complete
or an empty graph

If 2 C Forb(K}), then ed (1) > 0 and, by Proposition 4, if 5# C Forb(K},),
then ed_»(0) > 0. We can produce bounds on the edit distance function for such
properties.

Theorem 20 (Martin [33]) Let 5 = (. F() Forb(H) be a nontrivial heredi-
tary property with 7 C Forb(K},) for some h > 2 such that

* m is the least positive integer such that F () contains a complete multipartite
graph with m parts, and
* x is the chromatic number of .

Note y > 2 because F€ is nontrivial and y < m < h. Then
(a) edy(p) = X’_’l,forallp €1[0,1/2], and

(b) ' + 27! < edsp(p) < min {1 —p+ Xfl},forallp e[1/2,1].

In particular, if # = Forb(K},), then ed »(p) = ,”,.

Remark 21 The bound ed»(p) < p/(x — 1) in Theorem 20 was not expressed
explicitly in [33] but follows directly from the concavity of the edit distance
function. By Proposition 4, there are similar bounds for 5 where 7 C Forb(K},).

Consequently, edgy, k) () = (1 —p)/(h—1).

5.2 C¢ and Hy
5.2.1 Forb(CY)

In [32], Marchant and Thomason address the graph C;, which is the 6-cycle with
a diagonal. The extreme points of the clique spectrum of Forb(Cy) are (1, 1) and
(0,2). Thus, if 77 = Forb(CY), then y.»(p) = min{p(1 —p), (1 —p)/2}.

In fact, the edit distance function has a smaller value for p € (0, 1).

Theorem 22 (Marchant-Thomason [32]) Let 7 = Forb(Cy), where Cg is the
6-cycle with a diagonal.

(a) edse (p) = min{, £, '3"}, for p € [0.1].
(b) p% = 1/2and d’, = 1/4.
The CRG that corresponds to the p/(1 4 2p) part of the function has 1 white vertex,

2 black vertices, one white edge between the black vertices, and two gray edges
incident to the white vertex. See Figure 3. Although the edit distance function cannot
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O

Fig. 3 The 3-vertex CRG that gives p/(1 4 2p) in Theorem 22. The white edge is indicated, the
two gray edges are not.

COm )
O
COm )

Fig. 4 The 5-vertex CRG that gives p/(1 4 4p) in Theorem 23. The two black edges are indicated,
the eight gray edges are not.

be determined by the clique spectrum, the values of p%, = 1/2 and d%, = 1/4 can
be computed by knowing only the clique spectrum.

Using the tools in Section 4, the proof of Theorem 22 is much easier than the
original proof.

Proof By Theorem 13, we may use continuity, concavity, and the knowledge of the
value at p = 1/2 to conclude that ed j»(p) = (1 —p)/2 for all p € [1/2,1]. Let
p €[0,1/2) and K be a p-core CRG. If C{ % K and K has no white vertices, then
it has no gray triangle and Corollary 18(a)(ii) gives that gx(p) > p/2.If C¥ >
K and K has one white vertex, then there are at most two black vertices, which
cannot have a gray edge. Corollary 18(a)(ii) and Proposition 8§ give that gg(p) >

'+ (1/2)_1)_1 = p/(1 + 2p), as required. O

5.2.2 Forb(Hy)

Balogh and Martin [11] introduced the graph Hoy, which is drawn in Figure 1. For
A = Forb(Hy), the values of p%, and d%, cannot be determined by the clique
spectrum and this was established in [11]. Later, the author determined the edit
distance function completely.

Theorem 23 (Martin [34]) Let Hy be the graph drawn in Figure 1 and let 70 =
Forb(Hy).
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(a) edyr(p) = m1n{3, 14p° 12"}f0rp e[o0,1].
(b) p%p = s(L+ V17) and &%, = L (7 — /17).

The CRG that corresponds to the p/(1+44p) part of the function has 5 white vertices,
2 nonadjacent white edges, and the remaining 8 edges gray. See Figure 4.

5.3 Cycles

The case of Forb(Cj), where C; is a cycle on h > 3 vertices, has
been widely investigated. Theorem 20 gives immediately that edpom(cy)
() = edForb(K3)(p) =p/2.

In her Master’s thesis, Peck almost completely settled the edit distance function
for hereditary properties that forbid a cycle. Utilizing techniques inspired by the
cycle arguments of Pésa [39], she determined the edit distance function for Forb(C},)
for odd & > 5. For even h > 4, she was able to determine enough of the function to
find the maximum.

Theorem 24 (Peck [37]) Let 7 = Forb(Cy) where Cy, is the cycle on h > 4
vertices.

(a) If his odd, then ed e (p) = min {4, /B 1r 1} forall p € [0, 1].
(b) If h is even, then edy(p) = mln{ _p+(rh/P3)] D Fh/21 1} for all p €
[[R/317",1].
Marchant and Thomason [32] first proved the case of 4 = 4 and, in fact, proved
Theorem 25 (Marchant-Thomason [32]) edrowm(c,)(p) = p(1 — p) for all
p € [0,1].

Marchant [31] proved the case for # = 5,7. The cases of h = 6,8, 9, 10 were first
proven in [33] and, in fact, a larger range of p was proven in [33] for small even A.

Theorem 26 (Martin [33]) Let 5 = Forb(Cy), where Cy, is the cycle on h > 4
vertices.

(a) If h = 6, then ed s (p) = min {p(l -p). ! "}for allp € [0, 1].

(b) Ifh = 8, then ed z (p) = min {Pglﬂf’, 1;"}f0r all p € [0, 1].

(¢) Ifh = 10, then ed  (p) = min {Pf;f?, lgf’}for allp € [1/7,1].
Corollary 27 Let 5 = Forb(C},) where Cy, is the cycle on h > 4 vertices.
(a) Ifh €4{4,7,8,10, 16}, then

_ | _ [h/21~Th/3]
Poe = thjal—fn3141 and — de = (o112l T34
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(b) Ifh € {4,7,8,10, 16}, then

* 1 * 1
Pw = 144/ h/31—1 and A5 = [h/31424/Th/31-1"
It is interesting that p;mb(ch) and d;orb(ch) are both rational and result from
the intersection of the g functions of two p-core CRGs, except in the cases
h e {7,8,10,16}.

5.4 Powers of cycles

A natural extension of hereditary properties defined by forbidding certain cycles are
hereditary properties defined by forbidding certain powers of cycles. For h > 2¢+1,
we define Cj, to be the graph with vertex set {1, ..., h} and ij € E(C},) if and only if
|i —j] <t (mod h). We consider the case for t = 2, that is, the case of the squared
cycle.

Forh =5, Cg is complete and from Theorem 20 we see that

edForb(cg)(p) = edrorb(ks) (P) = p/4.

In the case of Cé, the complement is a perfect matching and we can use
Proposition 4 if we know the edit distance function for Forb(Mg), where Mg is the
perfect matching on 6 vertices. It is easy to see that the CRGs K € .% (Forb(Mp))
have at most 2 black vertices and no pair of white vertices can have a gray edge
between them, otherwise Mg +— K. By Theorem 9(a), we can conclude that
edrorb(mg) = ”(1 ”) for p € [0,1/2]. Some more work verifies that edpomr,) =

p(l—p) forp € [1 /2 1] also. Hence,

_ p(l —p) )

edForb(Cz)(p) = edForb(Mf,)(l —p) = p

The complement of C% is simply C; and so Proposition 4 gives

. 1—p) 1—
edporm(c2) (P) = edror(c;) (1 — p) = min {‘3’, oY } :

Peck established some more values of edg,q,c2)(p) for 2 € {8,9,10}, which we
give in Theorem 28.

Theorem 28 (Peck [37]) Let 7 = Forb(C7) where Ca is the square of the cycle
on h vertices.

(a) If # = Forb(C2), then ed » (p) = min {f;, P 1’} forall p € [0,1].

(b) If A = Forb(C2), then ed (p) = min {Pgl_‘[? : Pglﬂf’} forall p € [0, 1].
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3° 3
(d) If # = Forb(C2,), then edy(p) = mm{g p(l P’} forall p € [0,1/2] and
edz (p) < min {P“2 ” lgp}for allp € [1/2,1].
(e) If # = Forb(CL,), then ed s (p) = "' forallp € [0,1/2] and ed(p) <
min {P“Z‘P’, lgf’}for allp € [1/2,1].

() If # = Forb(C%,), then ed s (p) = min {1’ 1—1’} forallp € [0,1].

Theorem 28, together with Theorem 13, is enough to determine the value of p;()rb ©
h

and ofd; () forh € {5,...,12}.
h
In work in progress, Berikkyzy, Peck, and Martin have extended the results
from [37] to apply to powers of cycles, provided the number of vertices is large

enough.

Theorem 29 (Berikkyzy-Martin-Peck [17]) Let 5 = Forb(C}) where C} is
the t‘h power of the cycle on h vertices. For t > 1 and h sufficiently large, let
=[h/(t+ 1], €& = [h/Q2t+ 1)), and py = £

(a) If (t + 1) } h, then ed s (p) = min {r+l’ T(I—Z)(}l-_(z,)—l)p tol l}forp € [0,1].
(b) If (t + 1) | h, then ed s (p) = min{r(l_p)ir(z)_l)p P l}forp € [po, 1].

If t = 2, then h > 13 suffices for Theorem 29. In general, the bound that is proven
to suffice is 1 > 41> + £2(t) although this is likely not best possible.

5.5 Complete bipartite graphs
5.5.1 Forb(K;y)

The case of 7 = Forb(K,,) was established by Marchant and Thomason [32]
where it was shown that edrom(k, ,) () = p(1 —p) forall p € [0, 1].

In the case of .77 = Forb(K3 3), the values Oprorb(Kz N = = 2—1and d;orb(K} =
3 — 24/2 were established by Balogh and Martin [11].
For p not too small, the edit distance function for Forb(K33) coincides with

YForb(ks ) (P) = "(1 ") , but for p very small, the edit distance function is strictly
smaller.

Theorem 30 (Marchant-Thomason [32]) Let 7 = Forb(K33) where K3 3 is the
complete bipartite graph with 3 vertices in each part.

(a) edye(p) = "7, forp € [1/9, 1]

(b) edye(p) < P70, forp € (0,1/124].

The CRGs used to establish Theorem 30(b) are defined by constructions due to
Brown [22] to address a related Zarankiewicz problem. Specifically, for a prime
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power r, the constructions are (7> — r)-regular bipartite graphs on 23 vertices. Such
graphs have no copy of K3 3 and, of course, no copy of K3. For such a graph G, we
construct the CRG K for which the vertices of G are (black) vertices of K, the edges
of G are gray edges of K, and the nonedges of G are white edges of K. By (5), this
construction gives

fx(p) = 213 [1+p@2r—r+r-2)].

With r = 19, we obtain strict inequality for p = 1/124 and the continuity and
concavity of the edit distance function give Theorem 30(b) for all p < 1/124.

It is also established in [32] that the value of d;orb( k,,) cannot be determined by
the clique spectrum. The only extreme point of the clique spectrum is (1, s — 1) and
the resulting CRG has gk 1) = li(‘;?)p = YForb(k, ) (?). The construction is a
CRG K“~Y on 25 — 2 black vertices consisting of s — 1 disjoint white edges. It is
easy to show that K, ; & K~ and since the g function of each component is 1/2,
Proposition 8 gives gxes— (p) = 1/(2s — 2).

So, gxes—» (p) is less than the maximum value of Yrom(x, ) (p) for s > 7. We ask
in Problem 2 if 1/(2s—2) is, indeed, the maximum value of edrom(x, ) (») and if that
value is achieved for a positive length interval.

5.5.2 Forb(K;,)

McKay and Martin [35] establish some surprising results for the hereditary property
Forb(K5 ).

Theorem 31 (Martin-McKay [35]) Let 5 = Forb(K,,) where K,; is the
complete bipartite graph with 2 vertices in one part and t vertices in the other part.

Forallt =2, y(p) = min{p(1 —p), (1 —p)/(t = 1)}.

(a) If t = 3, then ed »(p) = min {p(l -p), l;”}for allp € [0, 1].

(b) If t = 4, then ed - (p) = min {p(l —p), I;P}for all p € [0, 1].
(c) Ift = 5 and is odd, then d*%, = Hl_l and p%, 2 [ -l 2 ]

1(t+1) t+1
(d) If t = 9, there exists a po(t) < 1/2 such that ed »(p) < p(1 —p).

There are a number of interesting consequences arising from the study of these
hereditary properties. First, we note that the CRG that gives the portion of the
function in Theorem 31(b) corresponding to (1 + 7p)/15 results from a strongly
regular graph construction.

Definition 32 A (n,k, A, p)-strongly regular graph or (n,k, A, u)-SRG is a
k-regular graph on n vertices for which each pair of adjacent vertices has exactly A
common neighbors and for which each pair of nonadjacent vertices has exactly |4
common neighbors.
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Fig. 5 The complete bipartite graph K 4.

Fig. 6 The 15-vertex CRG that gives (1 4 7p)/15 in Theorem 31(b). The white edges are shown.
The remaining edges are gray, and form a graph isomorphic to GQ(2, 2).

The CRG we use for Theorem 31(b) is constructed from a (15,6, 1, 3)-SRG,
commonly called GQ(2,2). It is a member of the family of so-called generalized
quadrangles. Given a GQ(2, 2) G, the CRG K’ has 15 white vertices that correspond
to the vertices of the graph. An edge of K’ is gray if and only if the corresponding
pairs of vertices are adjacent in G’. See Figure 5 for the graph K, 4 and Figure 6
for the 15-vertex CRG mentioned above. In [35], it is shown that K> 4 & K’ and
gx'(p) = (1 +7p)/15.

Similar constructions from strongly regular graphs are in ¢ (Forb(K,,)) and
have a smaller g function than y - (p) = min {p(1 — p), (1 — p)/(¢t — 1)} for certain
values of ¢ and p.

For Theorem 31(c), the corresponding CRG K has ¢ + 1 black vertices and a
perfect matching of (¢ + 1)/2 white edges. The remaining edges are gray. It is easy
to show that K>, A KUFD and grern (p) = 1/(t + 1).

For Theorem 31(d), the constructions are due to Fiiredi [28] to address a related
Zarankiewicz problem. If ¢ is a prime power such that r — 1 divides g — 1, then there
exists a graph on 2(¢> — 1) /(¢ — 1) vertices that is g-regular with no copy of K, ; and
no triangle. This is enough to ensure that K, , does not map to the corresponding
CRG. By (5), this construction gives

S 2P —1)
f"(”)_zwz—n[l“’( (1 _q_z)]

With 7 > 9, we can find a sufficiently large prime power g so that f;.(p) < p(1 — p).
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5.6 Split graphs

A graph H on at least two vertices is a split graph if there is a partition of V(H) into
one independent set and one clique. For a split graph with independence number
o > 2 and clique number w > 2, eithero¢ +w = hora +w = h + 1. We can
compute the edit distance function of hereditary properties defined by such graphs.

Theorem 33 (Martin [34]) Let H be a split graph which has independence number
o = a(H) > 2 and clique number w = w(H) > 2. If ¢ = Forb(H), then
1—
eds»(p) = min P , P .
o—1 a—1

Hence p%, = (0 —1)/(@ +®w —2)and d%, = 1/(a + w —2).

6 Quantities related to the edit distance function

We get the following notation from Balogh et al. [14]. For a graph property* .7, the
labeled slice of F¢ is the set " of graphs in ¢ with vertex set {1,...,n}. The
labeled speed of A is the function n — |F"|.

Theorem 34 ([12, 13, 16, 19]) If JZ is a hereditary property of graphs, then one
of the following holds:

(i) There exist N,k € N and polynomials {p;(n)}*_, such that, for all n > N,
A = Yy i)
(ii) For some t € N, t > 1, we have || = p1~1/+o()n,
(iii) For n sufficiently large, n0 o < | z7m| < 2007%),
(iv) For some k € N, k > 1, we have | 7"| = 2(1=1/k+o()n?/2,

Here k = yp(I7) — 1.

This partition of hereditary properties was first discovered by Scheinerman and
Zito [46]. As for the precise results, parts (i) and (ii) were established by Balogh,
Bollobés, and Weinreich [16], part (iii) was also established by Balogh, Bollobads,
and Weinreich [12, 13], and part (iv) was established by Bollobds and Thoma-
son [19].

Part (iv) has been well-studied, including the o(1) error term [15]. It has also
been generalized. Bollobas and Thomason [20] define ¢,(57) as follows:

cow(p) = nl_i)ngo—logz Pr(G(n,p) € )/ (5). (12)

“4For us, the property will be hereditary, although that is not necessary in order to define the speed.
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They showed that the limit exists, based on work by Alekseev [1] (see also [2]).
Thomason [49] compiled these results to show the relationship to the edit distance
function:

Theorem 35 (Thomason [49]) Let 57 be a nontrivial hereditary property and let
¢ (p) be defined as in (12). Then
log, (1 —p)
cor ) = (~Togspl1 = pede (0% .
log, p(1—p)

As we see, ¢ (p) can be derived directly from the edit distance function.

Remark 36 The function c s (p) is not necessarily concave down, however ed z#(p)
is. Concavity is a key tool in finding the elusive lower bounds on the edit distance
function which can then be used to compute lower bounds for ¢y (p).

Perhaps other functions of hereditary properties can be defined from the edit
distance function. We are particularly interested in other metrics. For each positive
integer n, let d be a metric on the space of graphs with vertex set {1, ..., n}. For any
hereditary property 57, define

d(G,.#) = min {d(G.G') : V(G') = V(G).G € Y},
and define the function

¢ (p) == limsup max {d(G, ) : [V(G)| = n.|E@G)| = |p(5) ]} (13)

n—>o0o

In Question 3 from Section 8.2, we ask whether ¢~ (p) can be expressed as a
function of p and ed »(-) if d satisfies a natural property. Recall that dist represents
the edit metric. It is clear that in order for any such result to exist, the metric d should
be continuous with respect to the edit metric. That is, for every € > 0, there exists
a § such that d(G, G') < e whenever dist(G, G’) < §. This is a natural restriction
because, for example, the trivial metric where d(G, G) = 0 but d(G, G’) = 1 when
G # G’ produces no useful results.

A well-studied metric is the so-called cut metric (or cut norm). Frieze and
Kannan [27] introduced the cut norm and it is used extensively in the theorey of
graph limits (see, e.g., Borgs et al. [21]). The cut norm is defined as follows for
graphs on the same labeled vertex set V = {1,...,n}:

1
do(G.G) = max , le(S.T) —ea(S. T

where eg(S, T) is the number of ordered pairs (i,j) with i € S andj € T and
ij € E(G). If S and T are disjoint, it counts the number of edges between S and T
in G. The cut metric is useful for comparing random graphs. Although two typical
graphs selected according to G(n, p) have edit distance close to 2p(1 — p), their dg
distance is O(1/n).
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7 Generalizations of edit distance

Axenovich and Martin have investigated natural generalizations of the edit distance
problem. The paper [8] addressed editing matrices (Section 7.1 below). The
paper [9] addressed both editing the edges of multicolorings of a complete graph
(Section 7.2) and editing the edges of a directed graph (Section 7.3).

7.1 Matrices

Leto/ = {A,...,A,} be a partition of pairs from [m] X [n] into r nonemtpy classes.
An m x n matrix A = (ay) is said to have a pattern </ provided that a; = ayy if
and only if (i, /), (i',j') € A, forsome 7 € {1,...,r}. A pattern is nontrivial if r > 2.
For a matrix M, if there is a submatrix M’ with pattern <, then we say that M has a
subpattern < .

For a pattern ./ and positive integers m, n, s, we define Forb(m, n;s, 27) to be
the set of all m x n matrices with at most s distinct entries and not containing
subpattern .7 .

For two matrices A and B of the same dimensions, we say that dist(A, B) is the
number of positions in which A and B differ; i.e., it is the matrix Hamming distance.
For a class of matrices .% and a matrix A, all of the same dimensions, we denote
dist(4, .Z) = min{dist(4, .%) : F € .%}. Finally,

f(m,n;s, o) := max {dist(A, F) : A € M (m,n;s), F# = Forb(m, n;s, o)} /mn.
(14)

The function f in (14) counts the maximum proportion of edits required to
remove a pattern with r places from an m x n matrix with s distinct entries.?

Theorem 37 (Axenovich-Martin [8]) Let s, r be positive integers, s > r. Let by, b
be positive constants such that by < m/n < b,. Let &/ be a nontrivial pattern with
r distinct entries. Then

Fmonzs. o) = (1 + o(1)) (s_’s“).

Without loss of generality, the case of s = 2 corresponds to a {0, 1}-matrix. If
the pattern has both zeros and ones, then r = 2 and the edit distance is 1/2; i.e.,
an asymptotically most efficient editing algorithm is to make all entries zero or all
entries one, whichever is most prevalent and the worst case is that there is the same

SIn [8], f counts the number of edits, but we normalize by dividing by mn to make it consistent
with the rest of this paper.
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number of each. If the pattern has, say only zeroes, then the edit distance is 1 because
the worst case is that the original matrix is all zeros and almost all of them must be
changed to one.

The setting for matrices is identical to the case of editing the m x n complete
bipartite graph in which the edges are colored with s distinct colors.

7.2  Multicolor edit distance

We will use slightly different terminology from [9] so as not to confuse it with
similar notation for hypergraphs in Section 8.1. For any integer r > 2, an r-colored
graph is pair (V,c) such that V is a finite labeled set and ¢ : E — {1,...,r}.
For r-colored graph G and p € {1, ..., r}, we denote E,(G) to be the set of edges
colored p.

If G and G’ are two r-colored graphs on the same labeled vertex set, then the
edit distance between them, dist(G, G') is the proportion of edges that receives a
different color. For example, if r = 2, then graphs correspond to black edges and
the complement corresponds to white edges. The following definitions for » = 2 are
consistent with the graph case.

Further, we may define dist(G, 7) for any hereditary property of r-colored
graphs as in (1). In this setting, a property is still hereditary if it is closed under
isomorphism and the deletion of vertices. For any r-colored graph H, we write
Forb(H) to be the set of all r-colored graphs that have no copy of H. Note that
“induced” is not necessary here because all edges receive a color. For an integer
r > 2, a density vector p = (p1,...,p,) is a nonnegative real vector with the
property that Z;zl pi = L. The domain of r dimensional density vectors is the
(standard) (r — 1)-simplex.

If JZ is a hereditary property of r-colored graphs, then we may define the edit
distance function parallel to (3) as follows.

ed(p) := lim max {dist(G, ) : |V(G)| = n,|E,(G)| = pp(5).p=1,....1}.

The limit was proven to exist in [9]. We omit floors and ceilings in defining |E,(G)|
because they play no role in the limit.

We can also define the equivalent of CRGs in this setting. In [9], the term fype is
used, though for consistency of this paper, we will just call them r-CRGs.5

Definition 38 An r-CRG K is a pair (U, ¢) where U is a finite set of vertices and

sub-r-CRG induced by W C U is the r-CRG that results from deleting U — W.

%In Section 8.1, we refer to r-CRHs when discussing the edit distance on r-uniform hypergraphs.
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We say that an r-colored-graph H = (V, ¢) embeds in r-CRG K, and write H —
K, ifthereisamap y : V. — U such that c(vv') = ¢y implies ¢y € ¢ (y(v)y(v')).
For any hereditary property 5 = mHeﬂ(%) Forb(H), let J¢ (H) be the set of
r-CRGs for which none of % (7€) embeds in that r-CRG.

The notion of the binary chromatic number is more complicated in the r-colored
graph case when r > 2. There are weak and strong colorings.

Definition 39 Ler 57 = ﬂHeﬁ‘(ﬁ”) Forb(H) be a hereditary property of r-colored-
graphs.

e An r-tuple (ay,...,a,) of nonnegative integers is weakly good if for some
H € F () the vertex set V(H) can be partitioned into sets Sy, ..., S, such
that for each p € {1,...,r} with a, # 0, the partition can be further refined
Sp=VoaU---UV,, where each edge in V, ; does not have color p.

e An r-tuple (ay,...,a,) of nonnegative integers is strongly good if for some
H € F(J) the vertex set V(H) can be partitioned into sets Sy, ..., S, such
that for each p € {1, ...,r} with a, # 0, the partitioned can be further refined
Sp=Vo1U---UV,, where each edge in 'V, ; must have color p.

We can then define spectra and r-ary chromatic numbers based on weak and
strong colorings.
Definition 40 Let 77 = ﬂHeﬁ‘(ﬁ”) Forb(H) be a hereditary property of r-colored-
graphs.

* The weak clique spectrum of J€ is the set of all tuples (ay, ..., a,) that are not
weakly good. The weak r-ary chromatic number of J, denoted y** (), is the
largest ay + -+ + a, + 1 such that (ay, ..., a,) is in the weak clique spectrum
of .

* The strong clique spectrum of ¢ is the set of all tuples (ay, ... ,a,) that are
not strongly good. The strong r-ary chromatic number of ¢, denoted y5'(),
is the largest a; + -+ + a, + 1 such that (ay,...,a,) is in the strong clique
spectrum of €.

The f and g functions are defined similar to the graph case.

Definition 41 Let K = ({uy,...,ux}, ¢) be an r-CRG and for p = (p1,...,p:), let
Mg (p) denote the matrix with entries defined as follows:

m@y=1— Y pp

pEP (ujuj)
The functions fx and gk are defined as follows:
1
fe® = 1" Mx(p)1 (15)

gx(p) = min {x'Mg(p)x : x'1=1,x > 0}. (16)

We say that a CRG K is p-core if, for any proper sub-r-CRG K’ of K, gx
(P) > gk (p).
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We summarize the basic properties of this version of the edit distance function
that generalize Theorems 13, 3, and 6. For p = (py, ..., p;), the random r-colored

graph G(n, p) is the complete graph on n vertices in which each edge independently
receives color p with probability p,.

Theorem 42 (Axenovich-Martin [9]) Let 7 be a hereditary property of
r-colored graphs.

(a) ed ¢ (p) is continuous over the (r — 1)-simplex.
(b) ed ¢ (p) is concave down over the (r — 1)-simplex.
(c) edye (') = 1/(r() () = 1)).
(d) edse(p) < 1/ ()Y () — 1) for all p in the (r — 1)-simplex.
(e) ed s (p) = lim,— o E[dist(G(n, p), )] for all p in the (r — 1)-simplex.
(f) edoe(p) = inf{fx(p) : K € ()} = inf{gg(p) : K € ()} for all p in
the (r — 1)-simplex.
Finally, we give some examples of results in the case r = 3.

Theorem 43 (Axenovich-Martin [9]) Let r = 3 and let 7 = ()4 Forb(H) be

a hereditary property of r-colored graphs. Let d¥, = max{ed»(p) : p'1 = 1,

p=0j

(a) If F is a family that consists of a single monochromatic triangle, then
dy, =1/2.

(b) If F is a family that consists of a single triangle with two edges colored 1 and
the other edge colored 2, then d*,, = 1/2.

(c) If F is afamily that consists of two monochromatic triangles of different colors,
then d’, = 1/2.

(d) If 7 is a family that consists of all six bi-chromatic triangles, then d%, = 2/3.

(e) If Z is a family that consists of a single rainbow triangle, then d*,, = 1/3.

7.3 Directed edit distance

A simple directed graph or digraph G is a pair (V, c) such that V is a finite labeled
setand, if (V), =V xV —{(v,v):v € V}thenc: (V), > {O,—, <, —} where

e ¢(v,w) = c(w, v) if and only if c(v,w) € {O, —} and
e ¢(v,w) =— if and only if c(w, v) =<«.

In the standard representation of digraphs as a pair (V,E) where E C (V),, we
interpret c(v, w) = () to mean that neither (v, w) nor (w,v) isin E, c(v,w) = — to
mean that both (v, w) and (w, v) are in E, and ¢(v, w) =— to mean that (v,w) € E
but (w, v) ¢ E. We also define the following for any digraph G:

* En(G) is the set of all unordered pairs {v, w} such that c(v, w) = O.
* E(G) is the set of all ordered pairs {v, w} such that c(v, w) =<«.

¢ E_,(G) is the set of all ordered pairs {v, w} such that c(v, w) =—.

* E_(G) is the set of all unordered pairs {v, w} such that c(v, w) = —.
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If G = (V,c) and G’ = (V,¢) are two digraphs on the same labeled vertex set
with the same fixed palette, then the edit distance between them, dist(G, G') is the
proportion of ordered pairs on which G and G’ differ. We define dist(G, #) for any
hereditary property of digraphs on any palette as in (1). A property is, of course,
hereditary if it is closed under isomorphism and the deletion of vertices. For any
digraph, we write Forb(H) to be the set of all digraphs that have no induced copy
of H.

The digraph case encompasses several well-studied subclasses of digraphs. Just
as the number of colors must be specified in Section 7.2, the palette must be
specified for the digraph case.

Definition 44 We say that & C {(), —, <, —} is a palette if either none or both
of “<=" and “—" are in &. There are 5 possible nontrivial palettes:

©0) Py ={0,—, <, —} is the general case.

(1) Peompl = {—, <, —} is the case of simple digraphs such that every pair of
vertices has at least one arc between them.

2) Poien = {O, <, —} is the case of oriented graphs.

B) Pungir = {Q, —} is the usual case of simple, undirected graphs.

4) Pioun = {<, —} is the case of tournaments.

Definition 45 A directed density vector (p, q) is a pair such that p > 0, g > 0, and
p + 2q < 1. For different palettes, there are further restrictions.

0) If & = Peompl, thenp +2g = 1.

(1) If P = Pyien, thenp = 0and g < 1/2.

2) If & = Pyudir, then g = 0 and p < 1; i.e., the usual graph case.
3) If £ = Pioum, thenp =0and g = 1/2.

If JZ is a hereditary property of digraphs with palette &, then for all directed
density vectors p = (p,q), we define the edit distance function for hereditary
property 7 as follows:

V(G =n.|E-(G)] = [p()].
|E<(G)] = |[E=(G)| = q(3)]

ed(p) ;= lim max {dist(G, 57) :
n—>oQo

The limit was proven to exist in [9].

In [9], the equivalent of CRGs (called dir-types in [9], but it would be natural to
call them £-dir-CRGs for palette &) are defined as well as the notion of H > K
for any digraph H and any K a #?-dir-CRG. The matrix Mg (p) and functions fx (p)
and gk (p) are defined analogously. In addition, the strong directed clique spectrum,
strong directed chromatic number X}d‘r(%), weak directed clique spectrum, and
weak directed chromatic number )(V;f’dir () are defined for each palette, although
for Punair and Py “strong” and “weak” are the same, where we use the notation

X5 ().
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We will not give the detailed definitions of these quantities or of the random
digraph G(n, p). The natural notions are defined precisely in [9]. We have similar
basic results for the directed case as for the multicolored case in Theorem 42.

Theorem 46 (Axenovich-Martin [9]) Let &2 be a palette and let S be a hered-
itary property of digraphs with palette 2. Let the domain be defined as in
Definition 45.

(a) ed ¢ (p) is continuous over the domain.

(b) ed s (p) is concave down over the domain.

(¢) edoe (r~'1) = 1/ (r(x5 " () — 1)).

(d) edw (p) < 1/(x ™ () — 1) for all p in the domain.

(e) ed e (p) = lim,— o0 E[dist(G(n, p), )] for all p in the domain.

(f) edse (p) = inf{fx(p) : K € A ()} = inf{gk(p) : K € H ()} for all p in

the domain.
We give some examples involving triangles.

Theorem 47 (Axenovich-Martin [9]) Let 77 be a hereditary property of digraphs
with palette &.

(a) If # = Forb(Hyi;) where Hgi is a directed triangle, then d*,, = 1/2 regardless
of Z.

(b) If # = Forb(Hy,) where Hy, is a transitive triangle, then ¢ is a trivial
hereditary property as long as & = Pioum-

(c) If # = Forb(H\,) where Hy, is a transitive triangle, then d*, = 1/2, as long
as P ?é gtourm

(d) If 7 = Forb(Hy;:) N Forb(Hy,) where Hg, is a directed triangle and Hy, is a
transitive triangle, then d%, = 1/2, as long as & # Pioum.

The case of tournaments turns out to be trivial. Theorem 47(b) is a simple
consequence of Ramsey theory, a hereditary property 5 = (\yc 7 () Forb(H)
is nontrivial if and only if no member of # () is transitive. In the case of
tournaments, the density vector must be p = (0, 1/2). The edit distance function
is, therefore, a constant.

Theorem 48 Let 77 be a nontrivial hereditary property of tournaments and
P = Poum. Then
1

d»(0,1/2) = . .
O 1/ =, ey - 1)



The edit distance in graphs 57

8 Future directions

8.1 Hypergraph edit distance

Berikkyzy and the author have been investigating the extension of the edit distance
problem to r-uniform hypergraphs (r-graphs). A colored regularity hypergraph of
order r (r-CRH) is a triple (V, E, ¢) in which V is a vertex set, E is the collection
of all r-multisets on V, and ¢ : E — {W, G, B} with the restrictions that, (a)
forany v € V, ¢({v,...,v}) € {W,B} and (b) for any permutation 0 € X,,
o({vi1,...,v}) = ¢({vsq), - - ., Vo) ). Therefore, a 2-CRH is just a CRG.

In parallel to the graph case, we can define colored homomorphisms from
r-uniform hypergraphs to -CRHs so that if r-graph H does not map to a -CRH
K, then an r-graph G which is edited according to the “recipe” defined by K will
have no induced copy of H.

We can then define, for each -CRH K, an r-linear form which we can also call
gk(p). It is easy to prove, for a hereditary property ¢ of r-graphs, that there is a
family .7 (4¢) of r-CRHs such that

edr(p) = ;lgl(f%) 8k (p). a7

The difficulty in extending the theory of the edit distance in graphs to hypergraphs
is in proving that (17) is, in fact, an equality.

The above definition of the »-CRH would not seem to be adequate to capture the
subtleties of hypergraphs. Consider the common example of a hypergraph whose
3-edges are cyclic triangles in an underlying random tournament. See, e.g., the
survey of hypergraph Turdn theory by Keevash [30]. This hypergraph has no copy of
the tetrahedron K ff but crossing triples would be gray in any 3-CRH that models it.

Strong hypergraph regularity was developed in the 3-uniform case by Frankl
and Rodl [26] and then for the general r-uniform case by Gowers [29], R6dl and
Skokan [44, 45], and Nagle, Rodl, and Schacht [36]. In these formulations, the
notion of how overlapping hyperedges interact is captured by structures known
as complexes. The structure of complexes inherent in strong hypergraph regularity
would seem to be necessary in order to define -CRHs and colored homomorphisms
in order for the existence of a particular induced hypergraph to be determined.

The edit distance problem is, asymptotically, a general case of the Turdn problem.
In the context of Turdn-type problems, a hypergraph property is monotone if it
is closed under the taking of (not necessarily induced) subgraphs. Therefore, a
monotone property is also hereditary. For a monotone property .#, the Turdn
density is w(.#) = limsup,_ max{lE(G)|/(;) V(G| = n, G e A} Ttis
easy to see that

() =1—edy4(1).
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The Turdn density for most monotone properties is not currently known, even
though a great deal of work has been done on the subject.

In the graph case, it is trivial to derive ed_4 (1) using symmetrization. In addition,
the classification of p-core CRGs established by Marchant and Thomason [32]
allows for a trivial proof of the asymptotic Erd6és-Stone-Simonovits result [24, 25].

In Question 4 from Section 8.2, we ask several questions that are related to a
general theory of edit distance in r-uniform hypergraphs.

8.2 Open Problems

We first ask about powers of cycles and the questions left open in Section 5.4.

Question 1 Ler 5 = Forb(C}). What is ed - (p) for small values of p, where t + 1
divides h? What is ed s (p) for small values of h? In particular:

e For 5 = Forb(Cy), what is ed s (p) for even values of h and all values of p?
* For ' = Forb(Cy,), what is d%, forallt > 2 and h > 2t 412

Next we consider complete bipartite graphs and some interesting questions from
Section 5.5

Question 2 What is ed s (p) for ¢ = Forb(K,)? In particular:

* For /' = Forb(Kyy), isd%, = 1/(2s—2)if s > 7?

* For ' = Forb(Kyy), is p%, is an interval of positive length if s > 77

* For A = Forb(Ky,), which values of s and t give that p%,, is an interval of
positive length?

Other metrics on the space of graphs are of interest, as we discussed in Section 6.
Question 3 Let 7 be a nontrivial hereditary property of graphs.

* For the cut metric dn, is it the case that the function ¢y, as defined in (13),
can be expressed only in terms of p and of ed s (+)?

» For any metric d that is continuous with respect to the edit metric, is it the case
that the function ¢y, as defined in (13), can be expressed only in terms of p
and of ed ¢ (+)?

The question of the edit distance in hypergraphs is wide open, as we discussed in
Section 8.1.

Question 4 Let 5 be a nontrivial hereditary property of r-uniform hypergraphs.

o Is it the case that ed y (p) = infxe v () gk (p) for all p € [0,1]?

o If J€ is monotone, is it the case that ed s (1) = infge v () gx(1)?

* Is there a useful form of generalizations properties do r-linear forms have?

* Can we provide a structural characterization for r-CRHs that are p-core, a la
Theorem 9?
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The cases of J# = Forb(K33) and .7 = Forb(K,) for t > 9 suggest an infinite
number of CRGs are necessary to define an edit distance function, but only if one
wants to compute it for p arbitrarily close to O (or by considering the property 77,
arbitrarily close to 1).

Conjecture 1 Let 57 be a nontrivial hereditary property. For every € > 0 there
exists a X' = A (e, H) such that

ed»(p) = min {gK(p) 1K e JL’/’} forallp € (e,1—¢).

We ask if the behavior we seem to observe for Forb(K3 3) and Forb(K> ;) fort > 9
— that is, that an infinite sequence of CRGs are required to compute the edit distance
function for all values of p — does, in fact, occur.

Question 5 Are there hereditary properties of graphs for which the edit distance
function cannot be determined from the G functions of a finite number of CRGs?

Finally, we conclude with an open problem for the random graph. Recall that
G(n, p) denotes the Erd3s-Rényi random graph on n vertices with probability p.

Conjecture 2 (Martin [33]) Fix py € (0, 1) and let 57 = Forb(G(no, py)). Then

2logyny . p 1—p
min

ede(p) = (1+o(1) - —log, (1 —po)” —log, po

with probability approaching 1 as ny — oo.

The functions that define this bound are of the form p/(y — 1) and (1 —p)/(x — 1).
The case of po = 1/2 was proved to be true by Alon and Stav [4].

If Conjecture 2 is true, then it implies that p%, = k}gf;f)l(l_f 21) ,
equal to py itself when py € {0, 1/2, 1}. Informally, this implies the counterintuitive
notion that it is harder to remove induced copies of G(n, po) from G(n, p%, ) than it
is to remove them from G(n, py).

If Conjecture 2 is false, then it implies that the structure of random graphs and
the behavior of editing induced graphs are quite complex and very unexpected.

which is only
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Repetitions in graphs and sequences

Maria Axenovich

Abstract The existence of unavoidable repeated substructures is a known
phenomenon implied by the pigeonhole principle and its generalizations.
A fundamental problem is to determine the largest size of a repeated substructure
in any combinatorial structure from a given class. The strongest notion of repetition
is a pair of isomorphic substructures, such as a pair of vertex-disjoint or edge-
disjoint isomorphic subgraphs or a pair of disjoint identical subsequences of a
sequence. A weaker notion of repetition is a pair of substructures that have the
same value on a certain set of parameters. This includes vertex-disjoint induced
subgraphs of the same order and size, disjoint vertex sets with the same multiset of
pairwise distances, subgraphs with the same maximum degree. This paper surveys
results on unavoidable repetitions, also referred to as twins, with a focus on three
asymptotically tight results obtained over the past 5 years.
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1 Introduction

There are many repetitions that one can observe in nature: identical twins, two leaves
on a tree that look alike, repetitive motifs in a bird’s song, segments of the DNA that
are identical, etc.

Discrete mathematical structures possess repetitions as well, as is implied by the
pigeonhole principle and its generalizations. A fundamental problem is to determine
the largest size of a repeated substructure in any combinatorial structure from a given
class. Here, we shall often refer to repeated structures as twins even if these twins
are not identical.
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The strongest notion of repetition deals with “identical” twins, i.e., with a pair
of isomorphic substructures. A weaker notion of repetition is a pair of substructures
with the same value on a certain set of parameters.

This survey focuses on three types of “identical” twins, which have correspond-
ing size functions f,, (n), f,(n), f(n) and a few types of weaker twins, which have size
functions such as #(n), h(n).

Let G, be the class of all n-vertex graphs, and G™ be the class of all graphs with
m edges, let k be an integer. For all standard graph theoretic notions we refer the
reader to the book of West [54]. All graphs here are simple graphs with no repeated
edges and no loops. We define the size functions:

fuv(n) = max{ k: any G € G, has two isomorphic vertex-disjoint induced

subgraphs on k vertices each},

f.(m) = max{ k : any G € G" has two isomorphic edge-disjoint subgraphs

on k edges each},
f(n) = max{ k : any binary sequence with n elements contains
two disjoint identical subsequences of k elements each},
t(n) = max{ k : any G € G, has two vertex-disjoint induced subgraphs
on k vertices and with the same number of edges},
h(n) = max{ k : any G € G, has two disjoint subsets of vertices
whose multisets of pairwise distances are identical}.
For all of these functions, except for the last one, we now know exact asymptotic

behavior. The following theorem is an easy consequence of Ramsey theorem [22,
49] and a property of random graphs, see Section 2.

Theorem 1.1.

fo(n) = ©(logn).

The next three theorems proved in 2012, 2014, and 2012, respectively, involve
more sophisticated proof techniques such as random methods on graphs, regular
partitions of sequences, and balanced partitions of integers.

Theorem 1.2. (Lee, Loh, and Sudakov [41]). There are absolute positive constants
c and C for which

c(mlogm)?®’® < f.(m) < C(mlogm)*3.

Theorem 1.3. (Axenovich, Person, and Puzynina [6]). There exists an absolute
constant C such that
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logn AW n 1
1-C <f(n) < _ — _logn.
loglogn 2 2 2

Theorem 1.4. (Bollobas, Kittipassorn, Narayanan, and Scott [14]). For every
€ > 0, there is a natural number N = N(¢€) such that for alln > N

Z —en <t(n) < ; — loglogn.

Compared to the above theorems giving tight bounds, it is still not known what
is the correct asymptotic behavior of the function i(n). The gap between the upper
and the lower bound is large. Here, the slight loglogn improvement of the upper
bound is due to a result from [5].

Theorem 1.5. (Albertson, Pach, Young [1, 5]). There are positive constants c,c/,
such that for any n > 3,

1
cloen h(n) < "y log log n.
loglogn 4

We address functions f, (n), f.(m), f(n), t(n), and h(n) in Sections 2, 3,4, 5, and 6,
respectively. We provide some insight into proof techniques, state generalizations
and open problems. At the end of the survey, we mention some other weak twin
problems.

2 Vertex-disjoint isomorphic subgraphs

Among all twin problems we consider here, the problem of finding the largest order
of two vertex-disjoint isomorphic subgraphs is relatively easy and Theorem 1.1
answers it asymptotically. We prove it here for completeness.

Proof of Theorem 1.1. For the lower bound, consider an n-vertex graph G. By
Ramsey theorem [22, 49] there is a complete subgraph or an independent set
on clogn vertices. Thus G has two vertex-disjoint induced subgraphs on  logn
vertices both isomorphic to either a complete graph or an empty graph.

For the upper bound, we shall consider Erd6s-Renyi random graph G=G(n, 1/2)
and follow the simple union bound approach of Lee, Loh, and Sudakov [41]. The
fact that G has two vertex-disjoint isomorphic twins on ¢ vertices each is equivalent
to the existence of a 27-vertex subgraph H’ that can be partitioned into a graph H
and a vertex-disjoint isomorphic copy of H. The expected number of such graphs
H’ is at most (5) (Zt’)t!2_(5), where the first binomial coefficient gives the number
of ways to choose 27 vertices in G, the second counts the number of ways to split
2t vertices in two equal parts, #! is the number of ways to permute the vertices



