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Preface

As part of the celebrations around the opening of the Simons Foundation offices
in New York, the editors were invited to organise a conference on a topic of
their choice. We chose birational geometry and foliation theory as there has been
considerable activity in both areas in the last decade and there has also been
increasing interaction between the two subjects. The conference “Foliation theory in
algebraic geometry” took place September 3–7, 2013, at the recently opened Simons
Foundation’s Gerald D. Fischbach Auditorium.

The conference attracted over seventy participants as well as locals from the New
York area and was a great success. These are the proceedings of the conference. The
talks included both survey talks on recent progress and original research and the
articles are a reflection of these topics.

The articles in this proceedings should be of interest to people working in
birational geometry and foliation theory and anyone wanting to learn about these
subjects.

The editors would like to thank David Eisenbud for the initial invitation to
organise a conference. They would also like to thank the Simons Foundation and
Yuri Tschinkel for hosting the conference and to acknowledge the generous support
of both the Simons Foundation and the NSF, under grant no. DMS 1339299. We
would like to thank the speakers and all of the participants for making the conference
a success. Finally they would like to recognise the invaluable support of Meghan
Fazzi in the organisation of the conference.

London, UK Paolo Cascini
La Jolla, CA, USA James McKernan
Rio de Janeiro, Brazil Jorge Vitório Pereira
27 July 2015
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On Fano Foliations 2

Carolina Araujo and Stéphane Druel

Abstract In this paper we pursue the study of mildly singular del Pezzo foliations
on complex projective manifolds started in [AD13].

Keywords Fano manifolds • Holomorphic foliations • Classification

Mathematical Subject Classification: 14M22, 37F75

1 Introduction

In recent years, techniques from higher dimensional algebraic geometry, specially
from the minimal model program, have been successfully applied to the study of
global properties of holomorphic foliations. This led, for instance, to the birational
classification of foliations by curves on surfaces in [Bru04]. Motivated by these
developments, we initiated in [AD13] a systematic study of Fano foliations. These
are holomorphic foliations F on complex projective manifolds with ample anti-
canonical class �KF . One special property of Fano foliations is that their leaves are
always covered by rational curves, even when these leaves are not algebraic (see,
for instance, [AD13, Proposition 7.5]).

The index �F of a Fano foliation F on a complex projective manifold X is
the largest integer dividing �KF in Pic.X/. In analogy with Kobayachi-Ochiai’s
theorem on the index of Fano manifolds (Theorem 2.2), we proved in [ADK08,
Theorem 1.1] that the index of a Fano foliation F on a complex projective manifold
is bounded above by its rank, �F 6 rF . Equality holds if and only if X Š P

n and
F is induced by a linear projection P

n Ü P
n�rF . Our expectation is that Fano
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2 C. Araujo and S. Druel

foliations with large index are the simplest ones. So we proceeded to investigate
the next case, namely Fano foliation F of rank r and index �F D r � 1. We call
such foliations del Pezzo foliations, in analogy with the case of Fano manifolds. In
contrast to the case when �F D rF , there are examples of del Pezzo foliations with
non-algebraic leaves. For instance, let C be a foliation by curves on P

k induced
by a global vector field. If we take this vector field to be general, then the leaves
of C are not algebraic. Now consider a linear projection  W Pn Ü P

k, with
n > k, and let F be the foliation on P

n obtained as pullback of C via  . It is a
del Pezzo foliation on P

n, and its leaves are not algebraic (see Theorem 3.16(2) for
the complete classification of del Pezzo foliations on P

n). The first main result of
[AD13] says that these are the only examples.

Theorem 1.1 ([AD13, Theorem 1.1]). Let F be a del Pezzo foliation on a complex
projective manifold X 6Š P

n. Then F is algebraically integrable, and its general
leaves are rationally connected.

One of the main ingredients in our study of Fano foliations is the notion of
log leaf for an algebraically integrable foliation. Given an algebraically integrable
foliation F on a complex projective manifold X, denote by Qe W QF ! X the
normalization of the closure of a general leaf of F . There is a naturally defined
effective Weil divisor Q� on QF such that KQF C Q� D Qe�KF (see Definition 3.6
for details). We call the pair . QF; Q�/ a general log leaf of F . In [AD13], we
used the log leaf to define new notions of singularities for algebraically integrable
foliations, following the theory of singularities of pairs from the minimal model
program. Namely, we say that F has log canonical singularities along a general
leaf if . QF; Q�/ is log canonical. By Theorem 1.1, these notions apply to del Pezzo
foliations on projective manifolds X 6Š P

n. In [AD13], we established the following
classification of del Pezzo foliations with mild singularities.

Theorem 1.2 ([AD13, 9.1 and Theorems 1.3, 9.2, 9.6]). Let F be a del Pezzo
foliation of rank r on a complex projective manifold X 6Š P

n, and suppose that F
has log canonical singularities and is locally free along a general leaf. Then

• either �.X/ D 1;
• or r 6 3 and X is a P

m-bundle over Pk.

In the latter case, one of the following holds.

(1) X Š P
1 � P

k, and F is the pullback via the second projection of a foliation
OPk.1/˚i � TPk for some i 2 f1; 2g .r 2 f2; 3g/.

(2) There exist

• an exact sequence of vector bundles 0!K ! E ! Q! 0 on P
k; and

• a foliation by curves C Š q� det.Q/ � TP
Pk .K /, where q W PPk.K /! P

k

denotes the natural projection;

such that X Š PPk.E /, and F is the pullback of C via the relative linear
projection PPk.E / Ü PPk.K /. Moreover, one of the following holds.

(a) k D 1, Q Š OP1 .1/, K is an ample vector bundle such that K 6Š
OP1 .a/

˚m for any integer a, and E Š Q˚K .r D 2/.
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(b) k D 1, Q Š OP1 .2/, K Š OP1 .a/
˚m for some integer a > 1, and E Š

Q˚K .r D 2/.
(c) k D 1, Q Š OP1 .1/˚ OP1 .1/, K Š OP1 .a/

˚.m�1/ for some integer a > 1,
and E Š Q˚K .r D 3/.

(d) k > 2, Q Š OPk.1/, and K is V-equivariant for some V 2 H0
�
P

k;TPk ˝
OPk.�1/� n f0g .r D 2/.

Conversely, given K , E , and Q satisfying any of the conditions above, there
exists a del Pezzo foliation of that type.

The goal of the present paper is to continue the classification of del Pezzo
foliations on Fano manifolds X 6Š P

n having log canonical singularities and being
locally free along a general leaf. In view of Theorem 1.2, we need to understand del
Pezzo foliations on Fano manifolds with Picard number 1. Our main result is the
following.

Theorem 1.3. Let F be a del Pezzo foliation of rank r > 3 on an n-dimensional
Fano manifold X 6Š P

n with �.X/ D 1, and suppose that F has log canonical
singularities and is locally free along a general leaf. Then X Š Qn andF is induced
by the restriction to Qn of a linear projection P

nC1 Ü P
n�r.

Remark 1.4. Codimension 1 del Pezzo foliations on Fano manifolds with Picard
number 1 were classified in [LPT13, Proposition 3.7]. We extended this classifica-
tion to mildly singular varieties, without restriction on the Picard number in [AD14,
Theorem 1.3].

We also obtain a partial classification when r D 2 (Proposition 4.1).

In order to prove Theorem 1.3, we consider a general log leaf . QF; Q�/ of F . Under
the assumptions of Theorem 1.3, . QF; Q�/ is a log del Pezzo pair: it is a log canonical
pair of dimension r satisfying KQF C Q� D .r � 1/L, where L is an ample divisor on
QF. The first step in the proof of Theorem 1.3 consists in classifying all log del Pezzo
pairs. This is done in Section 2.4, using Fujita’s theory of �-genus. Once we know
the general log leaf . QF; Q�/ of F , we consider families of rational curves on X that
restrict to special families of rational curves on QF. The necessary results from the
theory of rational curves are briefly reviewed in Section 2.1. The idea is to use these
families of rational curves to bound the index of X from below. In order to obtain
a good bound, we need to show that the dimension of these families of rational
curves is big enough. Here enters a very special property of algebraically integrable
Fano foliations having log canonical singularities along a general leaf: there is a
common point contained in the closure of a general leaf [AD13, Proposition 5.3].
For our current purpose, we need the following strengthening of this result (see
Definition 2.9 for the notion of log canonical center).

Proposition 1.5. Let F be an algebraically integrable Fano foliation on a complex
projective manifold X having log canonical singularities along a general leaf. Then
there is a closed irreducible subset T � X satisfying the following property. For a
general log leaf . QF; Q�/, there exists a log canonical center S of . QF; Q�/ whose image
in X is T.
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When r > 3, this allows us to show that �X > n, and then use Kobayashi-Ochiai’s
theorem (Theorem 2.2) to conclude that X Š Qn. The classification of del Pezzo
foliations on Qn is established in Proposition 3.18.

Proposition 1.5 still holds in the more general setting of Q-Fano foliations on
possibly singular projective varieties. Since this may be useful in other situations,
we present the theory of foliations on normal projective varieties in Section 3, and
prove a more general version of Proposition 1.5 (Proposition 3.14).

Notation and Conventions We always work over the field C of complex numbers.
Varieties are always assumed to be irreducible. We denote by Sing.X/ the singular
locus of a variety X.

Given a sheaf F of OX-modules on a variety X, we denote by F� the
sheaf HomOX .F ;OX/. If r is the generic rank of F , then we denote by det.F /

the sheaf .^rF /��. If G is another sheaf of OX-modules on X, then we denote by
F Œ˝�G the sheaf .F ˝ G /��. For m 2 N, we denote by F Œm� the sheaf .F˝m/��.

If E is a locally free sheaf of OX-modules on a variety X, we denote by PX.E /
the Grothendieck projectivization ProjX.Sym.E //, and byOP.1/ its tautological line
bundle.

If X is a normal variety, we denote by TX the sheaf .�1
X/

�.
We denote by Qn a (possibly singular) quadric hypersurface in P

nC1. Given an
integer d > 0, we denote by Fd the surface PP1 .OP1˚OP1 .�d//. If moreover d > 1,
we denote by P.1; 1; d/ the cone in P

dC1 over the rational normal curve of degree d.

2 Preliminaries

2.1 Fano Manifolds and Rational Curves

Definition 2.1. A Fano manifold X is a complex projective manifold whose anti-
canonical class �KX is ample. The index �X of X is the largest integer dividing �KX

in Pic.X/.

Theorem 2.2 ([KO73]). Let X be a Fano manifold of dimension n > 2 and index
�X. Then �X 6 nC 1, and equality holds if and only if X Š P

n. Moreover, �X D n if
and only if X Š Qn � P

nC1.

Families of rational curves provide a useful tool in the study of Fano manifolds.
Next we gather some results from the theory of rational curves. In what follows,
rational curves are always assumed to be proper. A family of rational curves on
a complex projective manifold X is a closed irreducible subset of RatCurvesn.X/.
We refer to [Kol96] for details.

Definition 2.3. Let ` � X be a rational curve on a complex projective manifold,
and consider its normalization f W P1 ! X. We say that ` is free if f �TX is globally
generated.
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2.4. Let X be a complex projective manifold, and ` � X a free rational curve. Let
x 2 ` be any point, and Hx an irreducible component of the scheme RatCurvesn.X; x/
containing a point corresponding to `. Then

dim.Hx/ D �KX � ` � 2:

Notation 2.5. Let X be a Fano manifold with �.X/ D 1, and A an ample line
bundle on X such that Pic.X/ D ZŒA �. For any proper curve C � X, we refer to
A � C as the degree of C. Rational curves of degree 1 are called lines. Note that if
C � X is a proper curve of degree d, then �X D �KX �C

d .

One can use free rational curves on Fano manifolds with Picard number 1 to
bound their index. The following is an immediate consequence of paragraph 2.4
above.

Lemma 2.6. Let X be a Fano manifold with �.X/ D 1. Suppose that there is an
m-dimensional family V of rational curves of degree d on X such that:

• all curves from V pass though some fixed point x 2 X; and
• some curve from V is free.

Then �X > mC2
d .

Remark 2.7. Let V be a family of rational curves on a complex projective mani-
fold X. To guarantee that some member of V is a free curve, it is enough to show
that some curve from V passes through a general point of X. More precisely, let H be
an irreducible component of RatCurvesn.X/ containing V . It comes with universal
family morphisms

where � W U ! H is a P
1-bundle. Suppose that e W U ! X is dominant. Then, by

generic smoothness, there is a dense open subset Xı � X over which e W U ! X
is smooth. On the other hand, by [Kol96, Proposition II.3.4], e is smooth at a point
u 2 ��1.t/ if and only if the rational curve `t D e

�
��1.t/

�
is free.

2.2 Singularities of Pairs

We refer to [KM98, section 2.3] and [Kol13, sections 2 and 4] for details.

Definition 2.8. Let X be a normal projective variety, and � DP
ai�i an effective

Q-divisor on X, i.e.,� is a nonnegativeQ-linear combination of distinct prime Weil
divisors �i’s on X. Suppose that KX C � is Q-Cartier, i.e., some nonzero multiple
of it is a Cartier divisor.
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Let f W QX ! X be a log resolution of the pair .X; �/. There are uniquely defined
rational numbers a.Ei;X; �/’s such that

KQX C f �1� � D f �.KX C�/ C
X

Ei

a.Ei;X; �/Ei:

The a.Ei;X; �/’s do not depend on the log resolution f , but only on the valuations
associated to the Ei’s. The closed subvariety f .Ei/ � X is called the center of Ei

in X. It also depends only on the valuation associated to Ei.
For a prime divisor D on X, we define a.D;X; �/ to be the coefficient of D in��.
We say that the pair .X; �/ is log canonical if, for some log resolution f W QX ! X

of .X; �/, a.Ei;X; �/ > �1 for every f -exceptional prime divisor Ei. If this
condition holds for some log resolution of .X; �/, then it holds for every log
resolution of .X; �/.

Definition 2.9. Let .X; �/ be a log canonical pair. We say that a closed irreducible
subvariety S � X is a log canonical center of .X; �/ if there is a divisor E over X
with a.E;X; �/ D �1 whose center in X is S.

2.3 Polarized Varieties and Fujita’s �-Genus

Definition 2.10. A polarized variety is a pair .X;L / consisting of a normal
projective variety X, and an ample line bundle L on X.

Definition 2.11 ([Fuj75]). The �-genus of an n-dimensional polarized variety
.X;L / is defined by the formula:

�.X;L / WD nC c1.L /n � h0.X;L / 2 Z:

By [Fuj82, Corollary 2.12],�.X;L / > 0 for any polarized variety .X;L /. Next
we recall the classification of polarized varieties with �-genus zero from [Fuj82].

Theorem 2.12 ([Fuj82]). Let X be a normal projective variety of dimension n > 1,
and L an ample line bundle on X. Suppose that �.X;L / D 0. Then one of the
following holds.

(1) .X;L / Š .Pn;OPn.1//.
(2) .X;L / Š .Qn;OQn.1//.
(3) .X;L / Š .P1;OP1 .d//, for some d > 3.
(4) .X;L / Š .P2;OP2 .2//.
(5) .X;L / Š .PP1.E /;OP

P1
.E /.1//, where E is an ample vector bundle on P

1.
(6) L is very ample, and embeds X as a cone over a projective polarized variety of

type (3–5) above.
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2.4 Classification of Log Del Pezzo Pairs

Definition 2.13. Let X be a normal projective variety of dimension n > 1, and �
an effective Q-divisor on X. We say that .X; �/ is a log del Pezzo pair if .X; �/ is
log canonical, and�.KXC�/ � .n�1/c1.L / for some ample line bundle L on X.

Using Fujita’s classification of polarized varieties with�-genus zero, we classify
log del Pezzo pairs in Theorem 2.15 below.

Lemma 2.14. Let .X;L / be an n-dimensional polarized variety, with n > 2. Let
.X; �/ be a log del Pezzo pair such that � ¤ 0 and �.KX C �/ � .n � 1/c1.L /.
Then �.X;L / D 0, and� � c1.L /n�1 D 2.

Proof. We follow the line of argumentation in the proof of [Fuj80, Lemma 1.10].
Since

c1.L
˝t/ � KX C�C c1.L

˝n�1Ct/;

we have that hi.X;L˝t/ D 0 for i > 1 and t > 1 � n by [Fuj11, Theorem 8.1].
Therefore �.X;OX/ D 1 and �.X;L ˝t/ D 0 for 2 � n 6 t 6 �1. Hence, there are
rational numbers a and b such that

�.X;L ˝t/ D �
at2 C btC n.n� 1/�

Qn�2
jD1 .tC j/

nŠ
:

On the other hand, since X is normal, by Hirzebruch-Riemann-Roch,

�.X;L ˝t/ D c1.L /n

nŠ
tn � 1

2.n� 1/ŠKX � c1.L /n�1tn�1 C o.tn�1/:

Thus we have a D c1.L /n and b D n
2
� � c1.L /n�1 C .n� 1/c1.L /n. In particular,

h0.X;L / D �.X;L / D n � 1C c1.L /n C 1

2
� � c1.L /n�1:

One then computes that

�.X;L / D 1 � 1
2
� � c1.L /n�1:

Since� ¤ 0 and�.X;L / > 0, we must have�.X;L / D 0 and� �c1.L /n�1 D 2.
ut

Theorem 2.15. Let .X;L / be an n-dimensional polarized variety, with n > 1. Let
.X; �/ be a log del Pezzo pair such that� is integral and nonzero, and�.KXC�/ �
.n � 1/c1.L /. Then one of the following holds.
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(1) .X;L ;OX.�// Š .Pn;OPn.1/;OPn.2//.
(2) .X;L ;OX.�// Š .Qn;OQn.1/;OQn.1//.
(3) .X;L ;OX.�// Š .P1;OP1.d/;OP1 .2//, for some integer d > 3.
(4) .X;L ;OX.�// Š .P2;OP2.2/;OP2 .1//.
(5) .X;L / Š .PP1 .E /;OP

P1
.E /.1// for an ample vector bundle E on P

1. Moreover,
one of the following holds.

(a) E D OP1 .1/ ˚ OP1 .a/ for some a > 2, and � �Z 	 C f where 	 is the
minimal section and f is a fiber of PP1.E /! P

1.
(b) E D OP1 .2/˚ OP1 .a/ for some a > 2, and� is a minimal section.
(c) E D OP1 .1/˚ OP1.1/˚ OP1 .a/ for some a > 1, and � D PP1.OP1 .1/˚

OP1 .1//.

(6) L is very ample, and embeds .X; �/ as a cone over
�
.Z;M /; .�Z;Mj�Z /

�
,

where Z is smooth and .Z;M ; �Z/ satisfies one of the conditions (3–5) above.

Proof. By [CKP12, Theorem 0.1], we must have �.KX C�/ �Q .n � 1/c1.L /.
If n D 1, then �KX �Q � is ample, and hence .X;L ;OX.�// satisfies one of

conditions (1–3) in the statement of Theorem 2.15.
Suppose from now on that n > 2. By Lemma 2.14, �.X;L / D 0, and so we

can apply Theorem 2.12. Notice that if .X;L / satisfies any of conditions (1–6) of
Theorem 2.12, then �.KX C �/ �Z .n � 1/c1.L / since X n Sing.X/ is simply
connected.

If .X;L / satisfies any of conditions (1–4) of Theorem 2.12, one checks easily
that .X;L ; �/ satisfies one of conditions (1–4) in the statement of Theorem 2.15.

Suppose that .X;L / Š .PP1.E /;OP
P1 .E /

.1// for an ample vector bundle E on
P
1, and write � W X ! P

1 for the natural projection. Then

� 2 ˇ
ˇOX.�KX/˝L ˝1�n

ˇ
ˇ D ˇ

ˇL ˝ ���
det.E �/˝ OP1 .2/

�ˇˇ:

Write E Š OP1 .a1/ ˚ � � � ˚ OP1 .an/, with 1 6 a1 6 � � � 6 an. By the projection
formula, h0

�
X;L ˝ ���

det.E �/ ˝ OP1 .2/
�� D h0.P1;E ˝ det.E �/ ˝ OP1.2//,

hence we must have a1 C � � � C an�1 6 2. This implies that .n; a1; : : : ; an�1/ 2
f.2; 1/; .2; 2/; .3; 1; 1/g. Thus either E satisfies condition (5a-c) in the statement of
Theorem 2.15, or E D OP1 .1/ ˚ OP1.1/, � 2 jOP

P1
.E /.1/j, and hence X satisfies

condition (2) with n D 2.
Finally, suppose that L is very ample, and embeds X as a cone with vertex V

over a smooth polarized variety .Z;M / satisfying one of conditions (3–5) in the
statement of Theorem 2.12. Set m WD dim.Z/ and s WD n � m D dim.V/ C 1.
Let e W Y ! X be the blow-up of X along V , with exceptional divisor E. We have
Y Š PZ.M ˚ O˚s

Z /, with natural projection � W Y ! Z, and tautological line
bundle OY.1/ Š e�L . The exceptional divisor E corresponds to the projection
M ˚ O˚s

Z � O˚s
Z .

Let �Y be the strict transform of � in Y. We are done if we prove that �Y D
���Z for some divisor�Z on Z.
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Write �Y �Z �
��Z C kE for some integral divisor �Z on Z, and some integer

k > 0. Let 	 W Z ! Y be the section of � corresponding to a general surjection
M ˚ O˚s

Z � M . Then 	.Z/ \ E D ;, and N	.Z/=Y Š M˚s. Moreover,
.	.Z/;�Y j	.Z// is log canonical (see, for instance, [Kol97, Proposition 7.3.2]), and,
by the adjunction formula, �.K	.Z/ C�Y j	.Z// �Z .m � 1/c1.OY.1//j	.Z/.

We have h0.Y;OY .kEC ���Z// D h0.Y;OY.�Y// > 1. On the other hand,

h0.Y;OY.kEC ���Z// D h0.Y;OY .k/˝ ��M˝�k ˝OY .�
��Z//

D h0.Z; Sk.M ˚ O˚s
Z /˝M˝�k ˝ OZ.�Z//

D h0.Z; Sk.OZ ˚M˝�1
Z

˚s
/˝ OZ.�Z//:

We claim that h0.Z;M˝�1
Z ˝ OZ.�Z// D 0. Indeed, suppose that h0.Z;M˝�1

Z ˝
OZ.�Z// ¤ 0. Then �KZ �Z �Z C .m � 1/c1.M / since �Y j	.Z/ �Z

�
�j	.Z/

��
�Z ,

and hence �KZ > mc1.M /. Under these conditions, [AD14, Theorem 2.5]
implies that .Z;M ;OZ.�Z// is isomorphic to either .Pm;OPm.1/;OPm.2// or
.Qm;OQm.1/;OQm.1//. This contradicts our current assumption that .Z;M / satisfies
one of conditions (3–5) in the statement of Theorem 2.12, and proves the claim.

Since h0.Z;M˝�1
Z ˝ OZ.�Z// D 0, we must have h0.Y;OY .kE C ���Z// D

h0.Z;OZ.�Z//. Thus, replacing �Z with a suitable member of its linear system if
necessary, we may assume that �Y D ���Z C kE, and hence k D 0. Therefore
.X;L ; �/ satisfies condition (6) in the statement of Theorem 2.15. ut

In dimension 2, we have the following classification, without the assumption that
.X; �/ is log canonical.

Theorem 2.16 ([Nak07, Theorem 4.8]). Let .X; �/ be a pair with dim.X/ D 2

and� ¤ 0. Suppose that�.KXC�/ is Cartier and ample. Then one of the following
holds.

(1) X Š P
2 and deg.�/ 2 f1; 2g.

(2) X Š Fd for some d > 0 and � is a minimal section.
(3) X Š Fd for some d > 0 and � �Z 	 C f , where 	 is a minimal section and f a

fiber of Fd ! P
1.

(4) X Š P.1; 1; d/ for some d > 2 and � �Z 2` where ` is a ruling of the cone
P.1; 1; d/.

3 Foliations

3.1 Foliations and Pfaff Fields

Definition 3.1. Let X be normal variety. A foliation on X is a nonzero coherent
subsheaf F ¨ TX such that
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• F is closed under the Lie bracket, and
• F is saturated in TX (i.e., TX=F is torsion free).

The rank r of F is the generic rank of F . The codimension of F is q D
dim.X/� r.

The canonical class KF of F is any Weil divisor on X such that OX.�KF / Š
det.F /.

Definition 3.2. A foliation F on a normal variety is said to be Q-Gorenstein if its
canonical class KF is Q-Cartier.

Definition 3.3. Let X be a variety, and r a positive integer. A Pfaff field of rank r on
X is a nonzero map 
 W �r

X ! L , where L is a reflexive sheaf of rank 1 on X such
that L Œm� is invertible for some integer m > 1.

The singular locus S of 
 is the closed subscheme of X whose ideal sheaf IS is
the image of the induced map �r

XŒ˝�L � ! OX .

Notice that a Q-Gorenstein foliation F of rank r on normal variety X naturaly
gives rise to a Pfaff field of rank r on X:


 W �r
X D ^r.�1

X/! ^r.T�
X /! ^r.F�/! det.F�/ Š det.F /� Š OX.KF /:

Definition 3.4. Let F be a Q-Gorenstein foliation on a normal variety X. The
singular locus of F is defined to be the singular locus S of the associated Pfaff
field. We say that F is regular at a point x 2 X if x 62 S. We say that F is regular
if S D ;.

Our definition of Pfaff field is more general than the one usually found in the
literature, where L is required to be invertibile. This generalization is needed in
order to treat Q-Gorenstein foliations whose canonical classes are not Cartier.

3.5 (Foliations Defined by q-Forms). Let F be a codimension q foliation on an
n-dimenional normal variety X. The normal sheaf of F is NF WD .TX=F /��. The
q-th wedge product of the inclusion N�

F ,! .�1
X/

�� gives rise to a nonzero global
section ! 2 H0

�
X; �q

XŒ˝� det.NF /
�

whose zero locus has codimension at least 2
in X. Moreover, ! is locally decomposable and integrable. To say that ! is locally
decomposable means that, in a neighborhood of a general point of X, ! decomposes
as the wedge product of q local 1-forms! D !1^� � �^!q. To say that it is integrable
means that for this local decomposition one has d!i^! D 0 for every i 2 f1; : : : ; qg.
The integrability condition for ! is equivalent to the condition that F is closed
under the Lie bracket.

Conversely, let L be a reflexive sheaf of rank 1 on X, and ! 2 H0.X; �q
XŒ˝�L /

a global section whose zero locus has codimension at least 2 in X. Suppose that
! is locally decomposable and integrable. Then the kernel of the morphism TX !
�

q�1
X Œ˝�L given by the contraction with ! defines a foliation of codimension q

on X. These constructions are inverse of each other.
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3.2 Algebraically Integrable Foliations

Let X be a normal projective variety, and F a foliation on X. In this subsection we
assume that F is algebraically integrable. This means that F is the relative tangent
sheaf to a dominant rational map ' W X Ü Y with connected fibers. In this case,
by a general leaf of F we mean the fiber of ' over a general point of Y. We start
by defining the notion of log leaf when F is moreoverQ-Gorenstein. It plays a key
role in our approach to Q-Fano foliations.

Definition 3.6 (See [AD14, Definition 3.10] for details). Let X be a normal
projective variety, F a Q-Gorenstein algebraically integrable foliation of rank r
on X, and 
 W �r

X ! OX.KF / its corresponding Pfaff field. Let F � X be the
closure of a general leaf of F , and Qe W QF ! X the normalization of F. Let m > 1

be the Cartier index of KF , i.e., the smallest positive integer m such that mKF

is Cartier. Then 
 induces a generically surjective map ˝m�r
QF ! Qe�OX.mKF /.

Hence there is a canonically defined effective Weil Q-divisor Q� on QF such that
mKQF C m Q� �Z Qe�mKF .

We call the pair . QF; Q�/ a general log leaf of F .

The next lemma gives sufficient conditions under which the support of Q� is
precisely the inverse image in QF of the singular locus of F . It is an immediate
consequence of [AD13, Lemma 5.6].

Lemma 3.7. Let F be an algebraically integrable foliation on a complex projec-
tive manifold X. Suppose that F is locally free along the closure of a general leaf F.
Let Qe W QF ! X be its normalization, and . QF; Q�/ the corresponding log leaf. Then
Supp. Q�/ D Qe�1.F \ Sing.F //.

Definition 3.8. Let X be normal projective variety, F a Q-Gorenstein algebraically
integrable foliation on X, and . QF; Q�/ its general log leaf. We say that F has log
canonical singularities along a general leaf if . QF; Q�/ is log canonical.

Remark 3.9. In [McQ08, Definition I.1.2], McQuillan introduced a notion of log
canonicity for foliations, without requiring algebraic integrability. If a Q-Gorenstein
algebraically integrable foliation F is log canonical in the sense of McQuillan, then
F has log canonical singularities along a general leaf (see [AD13, Proposition 3.11]
and its proof).

3.10 (The Family of Log Leaves). Let X be normal projective variety, and F
an algebraically integrable foliation on X. We describe the family of leaves of F
(see [AD13, Lemma 3.2 and Remark 3.8] for details). There is a unique irreducible
closed subvariety W of Chow.X/ whose general point parameterizes the closure of
a general leaf of F (viewed as a reduced and irreducible cycle in X). It comes with
a universal cycle U � W � X and morphisms:
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where e W U ! X is birational and, for a general point w 2 W, e
�
��1.w/

� � X is
the closure of a leaf of F .

The variety W is called the family of leaves of F .
Suppose moreover that F is Q-Gorenstein, denote by m > 1 the Cartier index of

KF , by r the rank of F , and by 
 W �r
X ! OX.KF / the corresponding Pfaff field.

Given a morphism V ! W from a normal variety, let UV be the normalization of
U �V W, with induced morphisms:

Then 
 induces a generically surjective map ˝m�r
UV=V ! eV

�OX.mKF /: Thus
there is a canonically defined effective Weil Q-divisor �V on UV such that
det.�1

UV=V/
˝mŒ˝�OUV .m�V/ Š eV

�OX.mKF /. Suppose that v 2 V is mapped to

a general point of W, set Uv WD .�V/
�1.v/, and �v WD .�V/jUv . Then .Uv;�v/

coincides with the general log leaf . QF; Q�/ defined above.

3.3 Q-Fano Foliations

Definition 3.11. Let X be a normal projective variety, and F a Q-Gorenstein
foliation on X. We say that F is a Q-Fano foliation if �KF is ample. In this case,
the index of F is the largest positive rational number �F such that �KF �Q �FH
for a Cartier divisor H on X.

If F is a Q-Fano foliation of rank r on a normal projective variety X, then,
by [Hör13, Corollary 1.2], �F 6 r. Moreover, equality holds if and only if X is a
generalized normal cone over a normal projective variety Z, and F is induced by
the natural rational map X Ü Z (see also [ADK08, Theorem 1.1], and [AD14,
Theorem 4.11]).

Definition 3.12. A Q-Fano foliation F of rank r > 2 is called a del Pezzo foliation
if �F D r � 1.

In [AD13, Proposition 5.3], we proved that algebraically integrable Fano foli-
ations having log canonical singularities along a general leaf have a very special
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property: there is a common point contained in the closure of a general leaf.
We strengthen this result in Proposition 3.14 below. It will be a consequence of
the following theorem.

Theorem 3.13 ([ADK08, Theorem 3.1]). Let X be a normal projective variety,
f W X ! C a surjective morphism onto a smooth curve, and � an effective Weil
Q-divisor on X such that .X; �/ is log canonical over the generic point of C. Then
�.KX=C C�/ is not ample.

Proposition 3.14. Let F be an algebraically integrable Q-Fano foliation on a
normal projective variety X, having log canonical singularities along a general leaf.
Then there is a closed irreducible subset T � X satisfying the following property.
For a general log leaf . QF; Q�/ of F , there exists a log canonical center S of . QF; Q�/
whose image in X is T.

Proof. Let W be the normalization of the family of leaves ofF , U the normalization
of the universal cycle over W, with universal family morphisms � W U ! W and
e W U ! X. As explained in 3.10, there is a canonically defined effective Q-Weil
divisor � on U such that det.�1

U=W/
˝mŒ˝�OU.m�/ Š e�OX.mKF /, where m > 1

denotes the Cartier index of KF . Moreover, there is a smooth dense open subset
W0 � W with the following properties. For any w 2 W0, denote by Uw the fiber of
� over w, and set �w WD �jUw . Then

• Uw is integral and normal, and
• .Uw; �w/ has log canonical singularities.

To prove the proposition, suppose to the contrary that, for any two general points
w;w0 2 W0, and any log canonical centers Sw and Sw0 of .Uw; �w/ and .Uw0 ; �w0/

respectively, we have e.Sw/ ¤ e.Sw0/.
Let C � W be a (smooth) general complete intersection curve, and UC the

normalization of ��1.C/, with induced morphisms�C W UC ! C and eC W UC ! X.
By [BLR95, Theorem 2.1’], after replacing C with a finite cover if necessary,
we may assume that �C has reduced fibers. As before, there is a canonically
defined Q-Weil divisor �C on UC such that KUC=C C �C �Q eC

�KF . Therefore
KUC C�C �Q �

�
C KC C e�

CKF is a Q-Cartier divisor. For a general point w 2 C, we

identify
�
��1

C .w/;�C j��1
C .w/

�
with .Uw; �w/, which is log canonical by assumption.

Thus, by inversion of adjunction (see [Kaw07, Theorem]), the pair .UC; �C/ has log
canonical singularities over the generic point of C. Let w 2 C be a general point, and
Sw any log canonical center of .Uw; �w/. Then there exists a reduced and irreducible
closed subset SC � UC such that:

• Sw D SC \ Uw, and
• SC is a log canonical center of .UC; �C/ over the generic point of C.

Moreover, our current assumption implies that

• dim.eC.SC// D dim.SC/.
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Thus, by [Dem97, Proposition 7.2(ii)], there exist an ample Q-divisor A and an
effective Q-Cartier Q-divisor E on UC such that:

• e�
C.�KF / �Q AC E, and

• for a general point w 2 C, Supp.E/ does not contain any log canonical center
of .Uw; �w/.

Therefore .UC; �CC�E/ is log canonical over the generic point of C for 0 < � � 1.
Notice that e�

C.�KF /� �E is ample since e�
C.�KF / is nef and big, and hence

�.KUC=C C�C C �E/ �Q e�
C.�KF /� �E

is ample as well. But this contradicts Theorem 3.13, completing the proof of the
proposition. ut
Corollary 3.15. Let F be an algebraically integrable Fano foliation on a complex
projective manifold, and . QF; Q�/ its general log leaf. Suppose that F is locally free
along the closure of a general leaf. Then Q� ¤ 0.

Proof. Denote by F the closure of a general leaf of F . If Q� D 0, then F is
regular along F by Lemma 3.7. Hence F is induced by an almost proper map
X Ü W, and F is smooth. In particular . QF; Q�/ is log canonical. But this contradicts
Proposition 3.14. This proves that Q� ¤ 0. ut

3.4 Foliations on P
n

The degree deg.F / of a foliation F of rank r on P
n is defined as the degree

of the locus of tangency of F with a general linear subspace P
n�r � P

n.
By 3.5, a foliation on P

n of rank r and degree d is given by a twisted q-form
! 2 H0

�
P

n; �
q
Pn.qC dC 1/�, where q D n � r. Thus

d D deg.KF / C r:

Jouanolou has classified codimension 1 foliations on P
n of degree 0 and 1. This

has been generalized to arbitrary rank as follows.

Theorem 3.16.

(1) [DC05, Théorème 3.8]. A codimension q foliation of degree 0 on P
n is induced

by a linear projection P
n Ü P

q.
(2) [LPT13, Theorem 6.2]. A codimension q foliation F of degree 1 on P

n satisfies
one of the following conditions.

• F is induced by a dominant rational map P
n Ü P.1q; 2/, defined by q

linear forms L1; : : : ;Lq and one quadratic form Q; or
• F is the linear pullback of a foliation on P

qC1 induced by a global
holomorphic vector field.
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3.17. Let F be a codimension q foliation of degree 1 on P
n.

In the first case described in Theorem 3.16(2), F is induced by the q-form
on C

nC1

� D
qX

iD1
.�1/iC1LidL1 ^ � � � ^ cdLi ^ � � � ^ dLq ^ dQC .�1/q2QdL1 ^ � � � ^ dLq

D .�1/q
� nC1X

iDqC1
Lj
@Q

@Li

�
dL1 ^ � � � ^ dLq

C
qX

iD1

nC1X

jDqC1
.�1/iC1Li

@Q

@Lj
dL1 ^ � � � ^ cdLi ^ � � � ^ dLq ^ dLj;

where LqC1; : : : ;LnC1 are linear forms such that L1; : : : ;LnC1 are linearly indepen-
dent. Thus, the singular locus of F is the union of the quadric fL1 D � � � D Lq D
Q D 0g Š Qn�q�1 and the linear subspace f @Q

@LqC1
D � � � D @Q

@LnC1
D 0g.

In the second case described in Theorem 3.16(2), the singular locus of F is the
union of linear subspaces of codimension at least 2 containing the center Pn�q�2 of
the projection.

3.5 Foliations on Qn

In this subsection we classify del Pezzo foliations on smooth quadric hypersurfaces.

Proposition 3.18. Let F be a codimension q del Pezzo foliation on a smooth
quadric hypersurface Qn � P

nC1. Then F is induced by the restriction of a linear
projection P

nC1 Ü P
q.

Proof. If q D 1, then the result follows from [AD14, Theorem 1.3]. So we assume
from now on that q > 2.

By [AD13, Proposition 7.7], F is algebraically integrable, and its singular locus
is nonempty by [AD14, Theorem 6.1].

Let x 2 Qn be a point in the singular locus of F , and consider the restriction
' W Qn Ü P

n to Qn of the linear projection W PnC1 Ü P
n from x. Let f W Y ! Qn

be the blow-up of Qn at x with exceptional divisor E Š P
n�1, and g W Y ! P

n the
induced morphism. Notice that g is the blow-up of Pn along the smooth codimension
2 quadric Z D '.Exc.'// Š Qn�2. Denote by H the hyperplane of Pn containing
Z, and by F the exceptional divisor of g. Note that g.E/ D H, and f .F/ is the
hyperplane section of Qn cut out by TxQn. The codimension q del Pezzo foliation
F is defined by a nonzero section ! 2 H0

�
Qn; �

q
Qn.q C 1/� vanishing at x. So it

induces a twisted q-form ˛ 2 H0
�
Y; �q

Y˝f �OQ.qC1/˝OY .�qE/
� Š H0

�
Y; �q

Y˝
g�OPn.q C 2/ ˝ OY.�F/

�
. The restriction of ˛ to Y n F induces a twisted q-form


