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Preface

Over the years, many successful attempts have been
made to describe the art and science of crystal growth,
and many review articles, monographs, symposium vol-
umes, and handbooks have been published to present
comprehensive reviews of the advances made in this
field. These publications are testament to the grow-
ing interest in both bulk and thin-film crystals because
of their electronic, optical, mechanical, microstructural,
and other properties, and their diverse scientific and
technological applications. Indeed, most modern ad-
vances in semiconductor and optical devices would
not have been possible without the development of
many elemental, binary, ternary, and other compound
crystals of varying properties and large sizes. The
literature devoted to basic understanding of growth
mechanisms, defect formation, and growth processes
as well as the design of growth systems is therefore
vast.

The objective of this Springer Handbook is to
present the state of the art of selected topical ar-
eas of both bulk and thin-film crystal growth. Our
goal is to make readers understand the basics of the
commonly employed growth processes, materials pro-
duced, and defects generated. To accomplish this, we
have selected more than 50 leading scientists, re-
searchers, and engineers, and their many collaborators
from 22 different countries, to write chapters on the
topics of their expertise. These authors have written
52 chapters on the fundamentals of crystal growth and
defect formation; bulk growth from the melt, solu-
tion, and vapor; epitaxial growth; modeling of growth
processes and defects; and techniques of defect char-
acterization, as well as some contemporary special
topics.

This Springer Handbook is divided into seven parts.
Part A presents the fundamentals: an overview of the
growth and characterization techniques, followed by
the state of the art of nucleation at surfaces, morphol-
ogy of crystals grown from solutions, nucleation of
dislocation during growth, and defect formation and
morphology.

Part B is devoted to bulk growth from the melt,
a method critical to producing large-size crystals. The

chapters in this part describe the well-known processes
such as Czochralski, Kyropoulos, Bridgman, and float-
ing zone, and focus specifically on recent advances in
improving these methodologies such as application of
magnetic fields, orientation of the growth axis, intro-
duction of a pedestal, and shaped growth. They also
cover a wide range of materials from silicon and III–V
compounds to oxides and fluorides.

The third part, Part C of the book, focuses on so-
lution growth. The various aspects of hydrothermal
growth are discussed in two chapters, while three other
chapters present an overview of the nonlinear and laser
crystals, KTP and KDP. The knowledge on the effect of
gravity on solution growth is presented through a com-
parison of growth on Earth versus in a microgravity
environment.

The topic of Part D is vapor growth. In addition
to presenting an overview of vapor growth, this part
also provides details on vapor growth of silicon carbide,
gallium nitride, aluminum nitride, and organic semi-
conductors. This is followed by chapters on epitaxial
growth and thin films in Part E. The topics range from
chemical vapor deposition to liquid-phase epitaxy to
pulsed laser and pulsed electron deposition.

Modeling of both growth processes and defect
formation is presented in Part F. These chapters
demonstrate the direct correlation between the process
parameters and quality of the crystal produced, includ-
ing the formation of defects. The subsequent Part G
presents the techniques that have been developed for
crystalline material characterization and analysis. The
chapters in Parts F and G demonstrate how well pre-
dictive tools and analytical techniques have helped
the design and control of growth processes for better-
quality crystals of large sizes.

The final Part H is devoted to some selected con-
temporary topics in this field, such as protein crystal
growth, crystallization from gels, in situ structural
studies, growth of single-crystal scintillation materials,
photovoltaic materials, and wire-saw slicing of large
crystals to produce wafers.

We hope this Springer Handbook will be useful to
graduate students studying crystal growth and to re-
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searchers, scientists, and engineers from academia and
industry who are conducting or intend to conduct re-
search in this field as well as those who grow crystals.

We would like to express our sincere thanks to
Dr. Claus Acheron and Dr. Werner Skolaut of Springer
and Ms Anne Strohbach of le-tex for their extraordinary
efforts without which this handbook would not have
taken its final shape.

We thank our authors for writing comprehensive
chapters and having patience with us during the publi-
cation of this Handbook. One of the editors (GD) would

like to thank his family members and Dr. Kedar Gupta
(CEO of ARC Energy) for their generous support and
encouragement during the entire course of editing this
handbook. Acknowledgements are also due to Peter
Rudolf, David Bliss, Ishwara Bhat, and Partha Dutta for
their help in editing Parts A, B, E, and H, respectively.

Nashua, New Hampshire, April 2010 G. Dhanaraj
Mysore, India K. Byrappa
Denton, Texas V. Prasad
Stony Brook, New York M. Dudley
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A brief overview of crystal growth techniques
and crystal analysis and characterization meth-
ods is presented here. This is a prelude to the
details in subsequent chapters on fundamentals
of growth phenomena, details of growth pro-
cesses, types of defects, mechanisms of defect
formation and distribution, and modeling and
characterization tools that are being employed to
study as-grown crystals and bring about process
improvements for better-quality and large-size
crystals.
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1.1 Historical Developments

Crystals are the unacknowledged pillars of the world
of modern technology. They have attracted human civ-
ilization from prehistoric times owing to their beauty
and rarity, but their large-scale applications for de-
vices have been realized only in the last six decades.
For a long time, crystal growth has been one of the
most fascinating areas of research. Although systematic
understanding of the subject of crystal growth began
during the last quarter of the 19th century with Gibbs’
phase equilibrium concept based on a thermodynamical
treatment, man practiced crystal growth and or crys-
tallization processes as early as 1500 BC in the form
of salt and sugar crystallization. Thus, crystal growth
can be treated as an ancient scientific activity. However,
the scientific approach to the field of crystal growth
started in 1611 when Kepler correlated crystal morphol-
ogy and structure, followed by Nicolous Steno, who
explained the origin of a variety of external forms.
Since then crystal growth has evolved steadily to at-
tain its present status. Several theories were proposed
from the 1920s onwards. The current impetus in crys-

tal growth started during World War II. Prior to that,
applications of crystals and crystal growth technology
did not catch the attention of technologists. The growth
of small or fine crystals in the early days, which in-
volved uncontrolled or poorly controlled crystal growth
parameters without much sophistication in instrumen-
tation or crystal growth equipment, slowly led to the
growth of large bulk crystals during World War II. With
advancement in instrumentation technology, the atten-
tion of crystal growers focused on the quality of the
grown crystals and understanding of their formation.
Also, tailoring of crystal shape or morphology, size, and
properties plays a key role in crystal growth science. In
this context it is appropriate to mention nanocrystals,
which exhibit desirable physicochemical characteris-
tics. Similarly, the growth of thin films has emerged as a
fascinating technology. Further crystal growth research
is being carried out in microgravity or space conditions.
There are various methods of evaluating the quality of
grown crystals. Thus the growth of crystals with tai-
lored physics and chemistry, characterization of crystals
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4 Part A Fundamentals of Crystal Growth and Defect Formation

with more advanced instrumentation, and their conver-
sion into useful devices play vital roles in science and
technology [1.1, 2].

Crystal growth is a highly interdisciplinary subject
that demands the collaboration of physicists, chemists,
biologists, engineers, crystallographers, process engi-
neers, materials scientists, and materials engineers. The
significance of the beauty and rarity of crystals is now
well knitted with their symmetry, molecular structure,
and purity, and the physicochemical environment of
their formation. These characteristics endow crystals
with unique physical and chemical properties, which
have transformed electronic industries for the benefit of
human society. Prior to commercial growth or produc-
tion of crystals, man depended only on the availability
of natural crystals for both jewelery and devices. Today
the list of uses of artificially grown crystals is grow-
ing exponentially for a variety of applications, such
as electronics, electrooptics, crystal bubble memories,
spintronics, magnetic devices, optics, nonlinear devices,
oscillators, polarizers, transducers, radiation detectors,
lasers, etc. Besides inorganic crystal growth, the world
of organic, semiorganic, biological crystal growth is ex-
panding greatly to make crystal growth activity more
cost-effective. Today, the quality, purity, and defect-free
nature of crystals is a prerequisite for their technolog-
ical application. A reader can get useful information

on the history of crystal growth from the works of
Scheel [1.3, 4].

Crystal growth is basically a process of arranging
atoms, ions, molecules or molecular assemblies into
regular three-dimensional periodic arrays. However,
real crystals are never perfect, mainly due to the pres-
ence of different kinds of local disorder and long-range
imperfections such as dislocations. Moreover, they are
often polycrystalline in nature. Hence, the ultimate aim
of a crystal grower is to produce perfect single crystals
of desired shape and size, and to characterize them in or-
der to understand their purity and quality and perfection
for end users. Accordingly, crystal growth techniques
and characterization tools have advanced greatly in
recent years. This has facilitated the growth and charac-
terization of a large variety of technologically important
single crystals. Crystal growth can be treated as an
important branch of materials science leading to the
formation of technologically important materials of dif-
ferent sizes. Hence, it covers crystals from bulk to small
and even to fine, ultrafine, and nanoscale sizes. In this
respect, crystal growth has a close relationship with
crystal engineering, and also polyscale crystal growth
is relevant. This concept becomes even more relevant
with progress achieved in nanotechnology, wherein the
size effect explains changes in the physical properties
of crystalline materials with size.

1.2 Theories of Crystal Growth

Growth of single crystals can be regarded as a phase
transformation into the solid state from the solid, li-
quid or vapor state. Solid–solid phase transformations
are rarely employed to grow single crystals, except for
certain metals and metal alloys, whereas liquid to solid
and vapor to solid transformations are most important
in crystal growth and have resulted in a great variety of
experimental techniques. When a crystal is in dynamic
equilibrium with its mother phase, the free energy is
at a minimum and no growth can occur. This equilib-
rium has to be disturbed suitably for growth to occur.
This may be done by an appropriate change in temper-
ature, pressure, pH, chemical potential, electrochemical
potential, strain, etc. The three basic steps involved in
the formation of a crystal from an initially disordered
phase are:

1. Achievement of supersaturation or supercooling
2. Nucleation

3. Growth of the nuclei into single crystals of distinct
phases

The driving force for crystallization actually de-
rives from supersaturation, supercooling of liquid or
gas phase with respect to the component whose
growth is required. Therefore steady-state supersatura-
tion/supercooling needs to be maintained during crystal
growth to obtain higher-quality results. Nucleation or
crystallization centers are an important feature of crys-
tal growth. Nucleation may occur either spontaneously
due to the conditions prevailing in the parent phase
or it may be induced artificially. Therefore, the study
of nucleation forms an integral part of crystal growth
process. Several theories to explain nucleation have
been proposed from time to time. Perhaps Gibbs was
the first to comprehend that the formation of small
embryonic clusters of some critical size is a prerequi-
site for the development of a macroscopic crystal. The
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Crystal Growth Techniques and Characterization: An Overview 1.2 Theories of Crystal Growth 5

Gibbs–Thomson equation is fundamental for nucleation
events [1.5], expressed for a cluster inside a supercooled
phase under equilibrium conditions inside a supersatu-
rated/supercooled phase as

kBT ln

(
p

p∗

)
= 2σV

r
, (1.1)

where r is the radius of the cluster formed inside a va-
por at temperature T , kB is the Boltzmann constant, p is
the vapor pressure outside the cluster, p∗ is the saturated
vapor pressure over a plane liquid surface, σ is the sur-
face energy per unit area, and V is the volume of the
growth units.

For nucleation from solution,

kBT ln
( c

c∗
)
= 2σV

r
. (1.2)

Here, c is the actual concentration and c∗ is the concen-
tration of the solution with a crystal of infinite radius.
The condition for nucleation from the melt is

ΔHm

(
Tm−Tr

Tm

)
= 2σV

r
. (1.3)

Here, Tr is the melting point of a crystal of radius r and
Tm is the melting point of a large crystal. ΔHm is the
latent heat of fusion per molecule.

The Gibbs–Thomson equation, which gives the free
energy change per unit volume for solution growth, is
given by

ΔGv = 2σ

r
=−kBT ln

( c

c∗
)
=−kB

V
ln S , (1.4)

where S is the degree of supersaturation and V is the
molecular volume.

There are several theories to explain crystal growth,
involving the mechanism and the rate of growth of
crystals. The important crystal growth theories are the
surface energy theory, diffusion theory, adsorption layer
theory, and screw dislocation theory. Gibbs proposed
the first theory of crystal growth, in which he assumed
growth of crystals to be analogous to the growth of a wa-
ter droplet from mist. Later Kossel and others explained
the role of step and kink sites on the growth surface in
promoting the growth process [1.6].

1.2.1 Surface Energy Theory

The surface energy theory is based on the thermody-
namic treatment of equilibrium states put forward by
Gibbs. He pointed out that the growing surface would
assume that shape for which the surface energy is low-
est. Many researchers later applied this idea. Curie [1.7]

worked out the shapes and morphologies of crystals in
equilibrium with solution or vapor. Later, Wulff [1.8]
deduced expressions for the growth rate at different
faces and the surface free energies. According to him,
the equilibrium is such that excess surface free energy
σhkldAhkl is minimum for crystal with its {hkl} faces
exposed. The value of σhkl determines the shape of
a small crystal; for example, if σ is isotropic, the form
of the crystal is spherical, provided the effect of grav-
ity is negligible. Marc and Ritzel [1.9] considered the
effect of surface tension and solution pressure (solubil-
ity) on the growth rate. In their opinion, different faces
have different values of solubility. When the difference
in solubility is small, growth is mainly under the influ-
ence of surface energy, and the change in the surface of
one form takes place at the expense of the other. Bra-
vais [1.10] proposed that the velocities of growth of
the different faces of a crystal depend on the reticular
density.

1.2.2 Diffusion Theory

The diffusion theory proposed by Nernst [1.11], Noyes,
and Whitney [1.12] is based on the following two basic
assumptions:

1. There is a concentration gradient in the neighbor-
hood of the growing surface;

2. Crystal growth is the reverse process of dissolution.

Consequently, the amount of solute that will get de-
posited on a crystal growing in a supersaturated solution
is given by

dm

dt
=
(

D

δ

)
A(c− c0) , (1.5)

where dm is the mass of solute deposited in a small
time interval dt over an area A of the crystal surface, D
is the diffusion coefficient of the solute, c and c0 are the
actual and equilibrium concentrations of the solute, and
δ is the thickness of the torpid layer adjacent to the solid
surface.

The importance of surface discontinuities in pro-
viding nucleation sites during crystal growth was the
main consideration of Kossel [1.6], Stranski [1.13], and
Volmer [1.14]. Volmer suggested a growth mechanism
by assuming the existence of an adsorbed layer of atoms
or molecules of the growth units on crystal faces. Later,
Brandes [1.15], Stranski, and Kossel modified this con-
cept. Volmer’s theory was based on thermodynamical
reasoning. The units reaching a crystal face are not im-
mediately attached to the lattice but migrate over the
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6 Part A Fundamentals of Crystal Growth and Defect Formation

a) b)

Fig. 1.1a,b Screw dislocation in a crystal (a); edge dislocation (b)

crystal face to find a suitable site for attachment. They
form a loosely adsorbed layer at the interface, and soon
a dynamic equilibrium is established between the layer
and the bulk solution.

1.2.3 Adsorption Layer Theory

Kossel viewed crystal growth based on atomistic con-
siderations. He assumed that crystal is in equilibrium
with its solution when it is just saturated. Also, the
attachment energy unit on growing surface is a sim-
ple function of distance only. The attachment energy
is due to van der Waals forces if the crystal is ho-
mopolar, while it is due to electrostatic forces if the
crystal is heteropolar (ionic). A growth unit arriving
at a crystal surface finds attachment sites such as ter-
races, ledges, and kinks. The attachment energy of
a growth unit can be considered to be the resultant of
three mutually perpendicular components. The binding
energy or attachment energy of an atom is maximum
when it is incorporated into a kink site in a surface
ledge, whilst at any point on the ledge it is greater
than that for an atom attached to the flat surface (ter-
race). Hence, a growth unit reaching a crystal surface
is not integrated into the lattice immediately. Instead

it migrates to a step and moves along it to a kink
site, where it is finally incorporated. Based on this
consideration of attachment, Kossel was able to deter-
mine the most favorable face for growth. According
to the Kossel model, growth of a crystal is a dis-
crete process and not continuous. Also, a new layer
on a preferably flat face of a homopolar crystal will
start growing from the interior of the face. For het-
eropolar crystals, the corners are the most favorable
for growth, while mid-face is least favored. Accord-
ing to Stranski, the critical quantity that determines
the growth process is the work necessary to detach
a growth unit from its position on the crystal surface.
Growth units with the greatest detachment energy are
most favored for growth, and vice versa. The greatest
attraction of atoms to the corners of ionic and metal-
lic crystals often leads to more rapid growth along these
directions, with the result that the crystal grows with
many branches called dendrites radiating from a com-
mon core.

1.2.4 Screw Dislocation Theory

However, the Kossel, Stranski, and Volmer theory
could not explain the moderately high growth rates ob-
served in many cases at relatively low supersaturation,
far below those needed to induce surface nucleation.
Frank [1.16] proposed that a screw dislocation emerg-
ing at a point on the crystal surface could act as
a continuous source of steps (surface ledges) which
can propagate across the surface of the crystal and
promote crystal growth. Growth takes place by rota-
tion of the steps around the dislocation point (Fig. 1.1).
Burton et al. [1.17] proposed the famous screw dis-
location theory based on the relative supersaturation
as the Burton–Cabrera–Frank (BCF) model determin-
ing the absolute value of growth rate depending upon
the concentration. Frank’s model could explain the ex-
perimental observations on the growth rate and spiral
pattern mechanism.

1.3 Crystal Growth Techniques

Crystal growth is a heterogeneous or homogeneous
chemical process involving solid or liquid or gas,
whether individually or together, to form a homoge-
neous solid substance having three-dimensional atomic
arrangement. Various techniques have been employed,
depending upon the chemical process involved. All

crystal growth processes can be broadly classified ac-
cording to the scheme presented in Table 1.1. The
subject of crystal growth has therefore developed as
an interdisciplinary subject covering various branches
of science, and it is extremely difficult to discuss the
entire subject in this overview chapter. However, the
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Crystal Growth Techniques and Characterization: An Overview 1.3 Crystal Growth Techniques 7

Table 1.1 Classification of crystal growth processes [1.18]

1. Solid–Solid Solid Solid 
 Devitrification
 Strain annealing
 Polymorphic phase change
 Precipitation from solid solution

T

2. Liquid–Solid

i) Melt growth Molten material Crystal
 Bridgman–Stockbarger
 Kyropoulos
 Czochralski
 Zoning
 Verneuil

Dec. T

ii) Flux growth Solid(s) + Flux agent(s) Crystal(s)
Dec. T

iv) Hydrothermal growth Solid(s) + Solvent Crystal(s)
 Hydrothermal sintering
 Hydrothermal reactions
 Normal temperature gradient
 Reversed temperature gradient

High T

High p

iii) Solution growth Solid(s) + Solvent Crystal(s)
 Evaporation
 Slow cooling
 Boiling solutions

Low T

v) Gel growth Solution + Gel medium Crystal
 Reaction
 Complex decomplex
 Chemical reduction
 Solubility reduction
 Counter-flow diffusion

Low T

Solution Crystal(s) + products

3. Gas–Solid
Solid
 Sublimation–condensation
 Sputtering
 Epitaxial processes
 Ion-implantation

Vapor(s)

present Handbook covers most important techniques
adopted in modern crystal growth through the chap-
ters authored by world authorities in their respective
fields.

1.3.1 Solid Growth

The solid-state growth technique is basically controlled
by atomic diffusion, which is usually very slow ex-

cept in the case of fast ionic conductors or superionic
conductors. The commonly used solid-state growth
techniques are annealing or sintering, strain anneal-
ing, heat treatment, deformation growth, polymorphic
phase transitions, quenching, etc., and most of these are
popularly used in metallurgical processes for tailoring
material properties. In fact, gel growth is also consid-
ered as solid growth by some researchers. Solid growth
is not covered in this Handbook.
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8 Part A Fundamentals of Crystal Growth and Defect Formation

1.3.2 Solution Growth

This is one of the oldest and most widely used crys-
tal growth techniques compared with vapor-phase melt
growth. Solution growth is used not only for growth
of technologically important crystals but also for a va-
riety of crystalline products for daily life such as the
growth of foods, medicines, fertilizers, pesticides, dye
stuffs, etc. Most crystallization processes of ionic salts
are conducted in aqueous solutions or in some cases in
solvents which are a mixture of miscible and organic
solvents. Solution growth is used for substances that
melt incongruently, decompose below the melting point,
or have several high-temperature polymorphic modifi-
cations, and is also often efficient in the absence of
such restrictions. The important advantage of solution
growth is the control that it provides over the growth
temperature, control of viscosity, simplicity of equip-
ment, and the high degree of crystal perfection since the
crystals grow at temperatures well below their melting
point. We can divide solution growth into three types
depending upon the temperature, the nature of the sol-
vent, solute, and the pressure: low-temperature aqueous
solution growth, superheated aqueous solution growth,
and high-temperature solution growth. Aqueous solu-
tion growth has produced the largest crystals known
to mankind, such as potassium dihydrogen phosphate
(KDP), deuterated potassium dihydrogen phosphate
(DKDP), etc. produced at the Lawrence Livermore Lab-
oratory, USA.

For successful growth of a crystal from solution, it is
essential to understand certain basic properties (physic-
ochemical features) of the solution. The behavior of
water with temperature and pressure; the critical, sub-
critical, and supercritical conditions; its structure, the
variation in pH; viscosity; density; conductivity; dielec-
tric constant; and coefficient of expansion are critical
for successful crystal growth. Recently, a rational ap-
proach to the growth of a given crystal was carried out
in order to: compute the thermodynamic equilibrium as
a function of the processing variables, generate equilib-
rium (yield) diagrams to map the processing variable
space for the phases of interest, design experiments to
test and validate the computed diagrams, and utilize the
results for mass production [1.19]. The change in ionic
strength of the solution during crystal growth results in
formation of defects, and variation in the crystal habit
and even the phases, and therefore has to be maintained
constant, often with the help of swamping-electrolyte
solutions. Similarly, chelating agents are frequently
used to sequester ions and form respective complexes,

which are later thermodynamically broken to release
their cations very slowly into the solution, which helps
in controlling the growth rate and crystal habit.

In the last decade crystal growth from solution under
microgravity conditions has been studied extensively
to grow a wide variety of crystals such as zeolites,
compound semiconductors (InP, GaAs, GaP, AlP, etc.),
triglycine sulfate, etc.

Crystal Growth
from Low-Temperature Aqueous Solutions

The greatest advantages of crystal growth from low-
temperature aqueous solutions are the proximity to
ambient temperature, which helps to retain a high de-
gree of control over the growth conditions, especially
with reference to thermal shocks, and reduction of both
equilibrium and nonequilibrium defects to a minimum
(even close to zero). Solution growth can be classified
into several groups according to the method by which
supersaturation is achieved:

1. Crystallization by changing the solution tempera-
ture

2. Crystallization by changing the composition of the
solution (solvent evaporation)

3. Crystallization by chemical reaction

Crystal Growth
from Superheated Aqueous Solutions

This method is commonly known as the hydrothermal
method and is highly suitable for crystal growth of com-
pounds with very low solubility and phase transitions.
When nonaqueous solvents are used in the system, it is
called the solvothermal method. The largest known sin-
gle crystal formed in nature (beryl crystal of > 1000 kg)
is of hydrothermal origin, and similarly some of the
largest quantities of single crystals produced in one ex-
perimental run (quartz single crystals of > 1000 kg) are
based on the hydrothermal technique. The term “hy-
drothermal” refers to any heterogenous (usually for bulk
crystal growth) or homogeneous (for fine to nanocrys-
tals) chemical reaction in the presence of aqueous
solvents or mineralizers under high-pressure and high-
temperature conditions to dissolve and recrystallize
(recover) materials that are relatively insoluble under
ordinary conditions [1.20]. The last decade has wit-
nessed growing popularity of this technique, and a large
variety of crystals and crystalline materials starting
from native elements to the most complex coordinated
compounds such as rare-earth silicates, germinates,
phosphates, tungstates, etc. have been obtained. Also,
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Crystal Growth Techniques and Characterization: An Overview 1.3 Crystal Growth Techniques 9

the method is becoming very popular among organic
chemists dealing with synthesis of life-forming com-
pounds and problems related to the origin of life. The
method is discussed in great detail in Chap. 18.

Crystal Growth
from High-Temperature Solutions

This is popularly known as flux growth and gained
its importance for growing single crystals of a wide
range of materials, especially complex multicomponent
systems. In fact, this was one of the earliest methods
employed for growing technologically important crys-
tals, for example, single crystals of corundum at the
end of the 19th century. The main advantage of this
method is that crystals are grown below their melting
temperature. If the material melts incongruently, i. e.,
decomposes before melting or exhibits a phase transi-
tion below the melting point or has very high vapor
pressure at the melting point, one has indeed to look
for growth temperatures lower than these phase tran-
sitions. The method is highly versatile for growth of
single crystals as well as layers on single-crystal sub-
strates (so-called liquid-phase epitaxy, LPE). The main
disadvantages are that the growth rates are smaller than
for melt growth or rapid aqueous solution growth, and
the unavoidable presence of flux ions as impurities in
the final crystals. Some of the important properties to
be considered for successful flux growth of crystals are
stability and solubility of the crystal to be grown, low
melting point and lower vapor pressure of the flux, the
lower viscosity of the melt (which should not attack the
crucible), and also ease of separation [1.4,21]. The most
commonly used fluxes are the basic oxides or fluorides:
PbO, PbF2, BaO, BaF, Bi2O3, Li2O, Na2O, K2O, KF,
B2O3, P2O5, V2O5, MoO3, and in most cases a mixture
consisting of two or three of them. The prime advan-
tage of this method is that growth can be carried out
either through spontaneous nucleation or crystalliza-
tion on a seed. Supersaturation can be achieved through
slow cooling, flux evaporation, and vertical temperature
gradient transport methods. Also, during the growth,
one can introduce rotation of the seed or crucible, or
pulling of the seed, and so on. Accordingly, several ver-
sions of flux growth have been developed: slow cooling
(SC), slow cooling bottom growth (SCBG), top-seeded
solution growth (TSSG), the top-seeded vertical temper-
ature gradient technique (VTGT), bottom growth with
a nutrient, growth by traveling solvent zone (TSZ), flux
evaporation, LPE, and so on.

The flux method has been popularly used especially
for the growth of a large variety of garnets, and recently

for a wide range of laser crystals such as rare-earth
borates, potassium titanyl phosphates, and so on. The
reader can get valuable information from several inter-
esting reviews on flux growth [1.22–24].

1.3.3 Crystal Growth from Melt

Melt growth of crystals is undoubtedly the most popu-
lar method of growing large single crystals at relatively
high growth rates. In fact, more than half of technolog-
ical crystals are currently obtained by this technique.
The method has been popularly used for growth of
elemental semiconductors and metals, oxides, halides,
chalcogenides, etc. Melt growth requires that the mater-
ial melts without decomposition, has no polymorphic
transitions, and exhibits low chemical activity (or man-
ageable vapor pressure at its melting point). The thermal
decomposition of a substance and also chemical reac-
tions in the melt can disturb the stoichiometry of the
crystal and promote formation of physical or chem-
ical defects. Similarly, the interaction between the melt
and crucible, or the presence of a third component de-
rived from the crystallization atmosphere, can affect
melt growth. Usually, an oxygen-containing atmosphere
is used for oxides, a fluorine-containing atmosphere for
fluorides, a sulfur-containing atmosphere for sulfides,
and so on. In melt growth, crystallization can be car-
ried out in a vacuum, in a neutral atmosphere (helium,
argon, nitrogen), or in a reducing atmosphere (air, oxy-
gen). In a large melt volume, convective flows caused by
the temperature gradient within the melt lead to several
physical and chemical defects. In a small melt volume,
transport is affected by diffusion.

Selection of a particular melt growth technique is
done on the basis of the physical and chemical charac-
teristics of the crystal to be grown. Metal single crystals
with melting point < 1800 ◦C are grown by Stock-
barger method, and those with melting point > 1800 ◦C
by zone melting. Semiconducting crystals are grown
chiefly by Czochralski method, and by zone melt-
ing. Single crystals of dielectrics with melting point
< 1800 ◦C are usually grown by the Stockbarger or
Czochralski methods, while higher-melting materials
are produced by flame fusion (Verneuil method). If the
physicochemical processes involved in crystallization
are taken into account, it is possible to establish opti-
mum growth conditions.

One of the earliest melt techniques used to grow
large quantity of high-melting materials was the
Verneuil method (flame fusion technique), first de-
scribed by Verneuil in 1902 [1.25]. This marks the
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10 Part A Fundamentals of Crystal Growth and Defect Formation

beginning of commercial production of large quantities
of high-melting crystals, which were essentially used
as gems or for various mechanical applications. To-
day, the technique is popular for growth of a variety of
high-quality crystals for laser devices and precision in-
struments, as well as substrates. The essential features
are a seed crystal, the top of which is molten and is
fed with molten drops of source material, usually as
a powder through a flame or plasma. Following this, the
Czochralski method, developed in 1917 and later mod-
ified by several researchers, became the most popular
technique to grow large-size single crystals which were
impossible to obtain by any other techniques in such
large quantity. This technique has several advantages
over the other related melt-growth technique, viz. the
Kyropoulos method, which involves a gradual reduction
in the melt temperature. In the Czochralski technique
the melt temperature is kept constant and the crystal
is slowly pulled out of the melt as it grows. This pro-
vides a virtually constant growth rate for the crystal.
Several versions of Czochralski crystal pullers are com-
mercially available. A large variety of semiconductor
crystals such as Si, Ge, and several III–V compounds
are being commercially produced using this technique.
Besides, several other crystals of oxides, spinel, gar-
nets, niobates, tantalates, and rare-earth gallates have
been obtained by this method. The reader can find more
valuable information on this method from the works of
Hurle and Cockyane [1.26].

There are several other popularly used melt growth
techniques that are feasible for commercial production
of various crystals. Amongst them, the Bridgman–
Stockbarger, zone melting, and floating zone methods
are the most popular. The Bridgman technique is char-
acterized by the relative translation of the crucible
containing the melt to the axial temperature gradient in
a vertical furnace. The Stockbarger method is a more
sophisticated modification of the Bridgman method.
There is a high-temperature zone, an adiabatic loss
zone, and a low-temperature zone. The upper and lower
temperature zones are generally independently con-
trolled, and the loss zone is either unheated or poorly
insulated.

1.3.4 Vapor-Phase Growth

Vapor-phase growth is particularly employed in mass
production of crystals for electronic devices because of
its proven low cost and high throughput, in addition
to its capability to produce advanced epitaxial struc-
tures. The technique is especially suitable for growth of

semiconductors, despite the rather complex chemistry
of the vapor-phase process. The fundamental reason
for their success is the ease of dealing with low- and
high-vapor-pressure elements. This is achieved by us-
ing specific chemical precursors in the form of vapor
containing the desired elements. These precursors are
introduced into the reactor by a suitable carrier gas
and normally mix shortly before reaching the sub-
strate, giving rise to the nutrient phase of the crystal
growth process. The release of the elements necessary
for construction of the crystalline layer may occur at the
solid–gas interface or directly in the gas phase, depend-
ing on the type of precursors and on the thermodynamic
conditions.

The advantage of vapor growth technique is that
crystals tend to have a low concentration of point
defects and low dislocation densities compared with
crystals grown from the melt, as the temperatures
employed are usually considerably lower than the melt-
ing temperature. Moreover, if the material undergoes
a phase transformation or melts incongruently, vapor
growth may be the only choice for the growth of sin-
gle crystals. Although the method was initially used to
grow bulk crystals, with the enormous importance of
thin films in electronic and metallurgical applications,
vapor growth is now widely used to grow thin films,
epitaxial layers, and substrates in the field of semicon-
ductor technology [1.27, 28].

Vapor-phase growth primarily involves three stages:
vaporization, transport, and deposition. The vapor is
formed by heating a solid or liquid to high temperatures.
Transportation of vapor may occur through vacuum,
driven by the kinetic energy of vaporization. Deposition
of the vapor may occur by condensation or chemical
reaction.

Various techniques exist in vapor-phase growth, dif-
ferentiated by the nature of the source material and the
means and mechanism by which it is transported to
the growing crystal surface. Conceptually, the simplest
technique is that of sublimation, where the source ma-
terial is placed at one end of a sealed tube and heated so
that it sublimates and is then transported to the cooler
region of the tube, where it crystallizes.

Among vapor-phase growth techniques, vapor-
phase epitaxy is the most popularly used, especially
for the growth of p- and n-type semiconductor whose
dimers and monomers are difficult to achieve by other
methods (e.g., physical evaporation) or too stable to
be reduced to the necessary atomic form. Further-
more, there are different variants such as metalorganic
vapor-phase epitaxy (MOVPE), plasma-assisted mo-
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Table 1.2 Main application fields of vapor-phase epitaxy techniques and the relevant classes of materials

Growth technique Devices and semiconductor family

Si, Ge II–VI III–V III–nitrides

Hydride VPE SiGe alloys LEDs and photodetectors
(GaP, InGaP, GaAsP)

GaN thick layers

Chloride VPE Bipolar transistors, MOS

MOVPE IR sensors (HgCdTe),
LEDs and lasers
(ZnCdSe, ZnSSe)

Solar cells
(GaAs, AlGaAs, InGaP),
transistors
(AlGaAs, InGaAs),
LEDs (AlGaAs),
TC and CD lasers
(InGaPAs, AlGaAs),
photodetectors,
LEDs and lasers (InGaPAs)

LEDs and lasers
(GaN, InGaN, GaAlN)

lecular beam epitaxy (MBE), etc. to suit the growth of
particular compounds. Table 1.2 summarizes the main

application fields of the VPE techniques and the rele-
vant classes of materials [1.29].

1.4 Crystal Defects and Characterization

Characterization of crystals has become an integral part
of crystal growth and process development. Crystal de-
fects and their distribution together with composition
and elemental purity determine most of their proper-
ties such as mechanical strength, electrical conductivity,
photoconductivity luminescence, and optical absorp-
tion, and these properties influence their performance
in applications. Therefore, investigating the origin, con-
centration, and distribution of imperfections in crystals
is critical to controlling them and thereby the crystal
properties influenced by these imperfections.

1.4.1 Defects in Crystals

Imperfections or defects can be broadly classified based
on their dimensionality.

Point Defects
These zero-dimensional defects are vacancies, intersti-
tials, and impurity atoms deliberately added to control
the conductivity of the semiconductor, and impurities
that are unintentionally incorporated as contaminants
during material growth and processing. Electronic de-
fects such as holes and electrons also constitute point
defects. In compounds, point defects form disorders
such as Frenkel, Schottky, and antistructure disorders.

Line Defects
Line defects consist of purely geometrical faults called
dislocations. The concept of dislocations arose from

the crystallographic nature of plastic flow in crystalline
materials. A dislocation is characterized by its line di-
rection and Burgers vector b, which is, as a rule, one of
the shortest lattice translations. Dislocation lines may
be straight or follow irregular curves or closed loops.
Dislocations whose line segments are parallel to b are
called screw dislocations. Edge dislocations have their
line segments perpendicular to the b direction. In mixed
dislocations, the line direction is inclined to b and hence
they have both screw and edge components.

Planar Defects
Planar defects include high- and low-angle bound-
aries, growth striations, growth-sector boundaries, twin
boundaries, stacking faults, and antiphase boundaries.
Growth striations are lattice perturbations that arise
from local variations of the dopant/impurity concentra-
tion created by fluctuations in the growth conditions.
Stacking faults are formed when there are errors in the
normal stacking arrangement of the lattice planes in the
crystal structure. These could be caused by plastic de-
formation or agglomeration of point defects. High- and
low-angle boundaries consist of arrays of dislocations,
and they separate regions of different orientations. In
crystal growth, high-angle boundaries separate grains
that have been nucleated independently, and hence
misorientations are generally large. Low-angle grain
boundaries are formed during cool down by stress-
induced glide and climb of dislocations, leading to these
energetically favorable configurations. Misorientations
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12 Part A Fundamentals of Crystal Growth and Defect Formation

in this case usually do not exceed more than 1◦. Twin
boundaries are planar defects that separate regions of
the crystal whose orientations are related to each other
in a definite, symmetrical way.

Volume Defects
Precipitates, inclusions, and voids or bubbles are vol-
ume defects, and these are formed when gases dissolved
in the melt precipitate out after solidification. For exam-
ple, in microgravity growth, the absence of buoyancy
precludes degassing of the melt, resulting in the for-
mation of voids. While undissolved foreign particles
are generally classified as inclusions, a second type
of inclusion is formed during growth from nonstoi-
chiometric melt. Compound semiconductors generally
sublime incongruently, thereby causing a slight excess
of one of the components in a stoichiometric melt. On
solidification, the excess component forms inclusions.

1.4.2 Observation of Crystal Defects

Techniques for observing dislocations and their com-
plex structures have been described in detail by
Verma [1.30] and Amelincks [1.31]. The commonly
used techniques come under the categories:

1. Optical methods
2. X-ray methods
3. Preferential etching
4. Microscopy techniques
5. Other techniques

All these methods provide almost direct observa-
tion of defects. Their merit is limited by the resolution
achievable and their versatility. Choice of a suitable
technique will depend on several factors, such as:

1. The shape and size of the crystal under investigation
2. Cleaving, cutting, and polishing possibilities
3. Ability to use destructive techniques, and above all
4. The extent of the details required

Optical Methods
A common inspection method for the as-grown opti-
cal crystal boule is detailed observation by illuminating
the boule using high-intensity white light or a laser
beam. Probably, this is the first technique to be applied
to assess the quality of as-grown crystal and can re-
veal bubbles, cavities, growth bands, and seed interfaces
which depend on the growth parameters.

The conoscope is a simple optical tool for investi-
gating optical inhomogeneity in very small crystals to

large-size boules. Conoscopic patterns are characteristic
for every main crystallographic orientation, and this fea-
ture is also frequently used for orienting crystals [1.32].
This method shows the overall quality of the crystal.
If the whole crystal has low dislocation density with-
out any grain boundaries and block structures, a nice
symmetrical circular pattern of dark and bright fringes
with four segments and a cross at the center is observed.
Figure 1.2a shows the conoscopic pattern of a sapphire
ingot with dislocation density 102 –103 /cm2 and with-
out any low-angle grain boundaries. Figure 1.2b shows
the pattern for a sapphire ingot of the same size but
with a dislocation density of the order of 103 –104 /cm2

and a few low-angle grain boundaries. The presence
of a few grain boundaries alters the birefringence and
distorts the fringes. The fringe thickness and spacing
depend on the length of the crystal along the direc-
tion of inspection. Even though this technique does not
reveal the dislocation density very precisely, it can re-
veal the presence of grain boundaries and higher-order,
complex defects. The crystals are normally sliced per-
pendicular to the c-axis, polished, and inspected under
a polarizer and analyzer. As-cut surfaces without polish-
ing can also be observed with the application of suitable
refractive-index-matched fluid. In general, this tech-
nique can reveal the misorientations, grain boundaries,
block structures, and also the stress levels. Conoscopy
can be used under a polarizing microscope to study
thinner samples. A custom-made polarizer and ana-
lyzer with rotation features for the analyzer and sample
support can be used to study large crystal boules. Al-
ternatively, conoscopic fringes can be projected onto
a screen using a laser beam, polarizer and analyzer, and
beam diffuser. These fringes are more influenced by the
birefringence inhomogeneity induced by defect struc-
tures than by variation in the thickness distribution of
the boule itself.

X-Ray Methods
X-ray methods can be classified into:

1. High-resolution x-ray diffraction
2. X-ray topography
3. Synchrotron x-ray topography

High-Resolution X-Ray Diffraction. Diffraction for
a given plane and wavelength takes place over a finite
angular range about the exact Bragg condition, known
as the rocking-curve width [1.33]. In x-ray diffractom-
etry, the intensity of the diffracted beam and the angle
in the vicinity of a Bragg peak are measured and repre-
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sented as a full-width at half-maxima (FWHM) rocking
curve. The double-axis rocking curve is obtained by
scanning the specimen in small steps through the exact
Bragg condition and recording the diffracted intensity.
The peak width of a rocking curve can be affected by
tilts and dilations in the sample, and by curvature. Tilts
are regions in the sample where grains or subgrains
are tilted with respect to each other, although the lat-
tice parameter is the same in each region. Dilations are
regions where the lattice planes are still parallel but
the spacing is slightly different due to strain. Changes
in lattice parameter also occur in alloyed crystals with
nonhomogeneous composition distribution. The experi-
mentally obtained rocking-curve width (FWHM) value
is a measure of the crystalline quality of the sample,
and it can be compared with a theoretically calculated
value. It is possible to obtain a rocking-curve width less
than 10 arcsec for a good crystalline sample. Additional
information that can be obtained from double-axis rock-
ing curves are substrate–epilayer mismatch, epilayer
composition, substrate offcut and/or layer tilt, and layer
thickness.

A limitation of double-axis diffraction is that it can-
not distinguish between tilts and dilations. In triple-axis
diffraction, a third axis is introduced in the form of an
analyzer crystal, and tilts and strain can be separated;
the rocking-curve width is still narrow. Double-axis
rocking curve analysis is sufficient for studying sub-
strates and epitaxial films. Triple-axis x-ray diffraction
is used for obtaining finer details of the defect structure
of the sample.

X-Ray Topography. Localized variations in intensity
within any individual diffracted spot arise from struc-
tural nonuniformity in the lattice planes causing the
spot, and this forms the basis for the x-ray topographic
technique. This topographic contrast arises from dif-
ferences in the intensity of the diffracted beam as
a function of position inside the crystal. The differ-
ence between the intensities diffracted from one region
of the crystal which diffracts kinematically to an-
other which diffracts dynamically is one of the ways
that dislocations can be rendered visible in topogra-
phy [1.34].

Even though the first topographic image of a sin-
gle crystal was recorded as early as 1931 [1.35], the
real potential of the technique was understood only in
1958 when Lang [1.36] demonstrated imaging of indi-
vidual dislocations in a silicon crystal. In general, there
are three main types of x-ray topographic geometries for
studying defects:

b)a)

Fig. 1.2 (a) Conoscopic pattern of high-quality sapphire ingot.
(b) Conoscopic pattern of sapphire ingot that has a few low-angle
boundaries

1. The Berg–Barrett reflection technique [1.37]
2. The double-crystal technique [1.38]
3. The Lang technique [1.36] and its variant – the scan-

ning oscillator technique [1.39]

Following Lang’s work [1.36, 40] in imaging of
individual dislocations, x-ray topography has become
an important quality-control tool for assessment of
semiconductor wafers both before and after device
fabrication. Using the scanning oscillator technique de-
veloped by Schwuttke [1.39], it is possible to record
transmission topographs of large-size wafers up to
150 mm in diameter, containing appreciable amounts of
elastic and/or frozen-in strain.

Synchrotron X-Ray Topography. The advent of dedi-
cated synchrotron radiation sources has enabled the de-
velopment of a new field of x-ray topography known as
synchrotron topography. Synchrotron radiation is espe-
cially suitable for x-ray topography because of the high
brightness and low divergence of the x-ray beam. Due to
the small source dimensions, low divergence angle, as
well as the long source–specimen distance, extremely
high resolution can be achieved using synchrotron ra-
diation compared with conventional x-ray topography.
For example, based on the geometrical factor, the the-
oretical resolution obtained can be as low as 0.06 μm.
Also, it has numerous advantages over laboratory x-
ray topography. One of the most important synchrotron
topographic techniques developed is white-radiation to-
pography [1.41]. In APS, the white beam is monochro-
matized by two cooled parallel Si(111) crystals, and the
x-ray energy is tunable in the range 2.4–40 keV.

Crystals as large as 150 mm or even 300 mm in
diameter can be imaged by using precision translation
stages similar to those used in the Lang technique, and
the exposure times are much shorter. If a single crystal
is oriented in the beam, and the diffracted beams are
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14 Part A Fundamentals of Crystal Growth and Defect Formation

recorded on a photographic detector, each diffraction
spot on the resultant Laue pattern will constitute a map
of the diffracting power from a particular set of planes
as a function of position in the crystal, with excellent
point-to-point resolution. There are three common ge-
ometries for synchrotron x-ray topography [1.42]:

1. Transmission geometry, also called Laue geome-
try: In this mode, the x-ray beam passes through
the sample and the topographs recorded reveal the
bulk defect information of the crystal. Figure 1.3a
shows typical transmission synchrotron topography
of a 2 inch LED-grade wafer with a very low dis-
location density of 102 –103 /cm2. The topograph
shows the dislocation structure in the entire wafer,
which shows the presence of basal dislocations.

2. Gazing-incidence reflection geometry: In this con-
figuration, very small incident angle is used [in the
case of SiC, typically 2◦ used and the (112̄8) or
(112̄.12) are recorded]. Grazing incidence is used
because of the low penetration depth of the x-ray
beam, which is more suitable for studying epilayers.

3. Back-reflection geometry: In this mode, a large
Bragg angle is used for basal plane reflection (000l)
(typically 80◦ for SiC). Screw dislocations along
the c-axis and basal plane dislocations within the
x-ray penetration depth can be clearly recorded.
The wavelength satisfying Bragg condition is auto-
matically selected in white-beam x-ray topography,
while in monochromatic synchrotron x-ray topog-
raphy (XRT), the energy of the x-ray beam has to
be preset to satisfy the diffraction condition. Fig-
ure 1.3b shows individual screw dislocations and
edge dislocation running almost perpendicular to
the wafer.

X-ray topographs are typically recorded on Agfa
Structurix D3-SC, Ilford L4 nuclear plate, or VRP-M
holographic films, depending on the resolution needed.

b)a)

1 cmg

Fig. 1.3 (a) Transmission topograph
of high-quality sapphire wafer. (b) Re-
flection topograph of SiC revealing
individual threading screw disloca-
tions running almost perpendicular to
the wafer

Exposure time depends on the actual geometry and
recording media and varies between a few seconds and
2 h.

Selective Etching
Selective etching is a simple and very sensitive tool for
the characterization of single crystals. The usefulness
of the etching technique lies in the formation of visi-
ble, sharp contrasting etch pits at dislocation sites. The
power of etching has been reviewed by several work-
ers [1.31, 43, 44]. The formation of etch pit can be
explained as follows. The lattice is distorted for a dis-
tance of a few atoms around dislocations. As a result
of the stress field generated by the deformation, the
lattice elements dissolve more easily at the dislocation
sites than in stress-free, undeformed areas. The etch pits
are usually straight pyramids with polygonal bases, but
other types of pyramids may also be found with vari-
ous bases and heights. Etch pits can be formed only if
certain conditions are satisfied, the most important of
these being that the dissolution rate along the surface
(Vt) must not greatly exceed the rate of dissolution per-
pendicular to the surfaces (Vn). The ratio (Vt/Vn) can be
increased:

1. By increasing Vn, as has been done in the etchants
of several metals

2. By decreasing Vt by adding an inhibitor such as in
LiF

3. By varying the temperature to alter the activation
energies of Vn and Vt

The etch pits are formed at the dislocation sites,
which essentially reveal the emergent point of the dis-
locations in the surface; they therefore give a direct
measure of dislocation density. Since they have certain
depths, they also give information on the kind [1.45],
configuration, and inclination of dislocations. Etching
has also been used to study the stress–velocity rela-
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tions for individual dislocations [1.46]. Movement of
dislocations, deformation patterns like pile-up, origin of
dislocations in as-grown crystals, polarity of the crys-
tals, grain boundaries, and distribution of dislocations
in crystals can be studied [1.44, 45] (Chap. 43). The
greatest advantage of this technique is its simplicity and
resolution (0–1012 /cm2). This technique shows the de-
fect density on small areas and hence requires averaging
of values taken at a large number of locations. Also,
this technique is not a nondestructive method and can-
not show the basal plane dislocation when the sample is
sliced exactly parallel to the c-axis. Figure 1.4 shows the
presence of various defects such as threading edge dis-
locations, threading screw dislocations, and basal plane
dislocations. During the development of SiC crystals,
this technique has seen tremendous development and
could reveal almost every type of dislocation [1.47].

Microscopy Techniques
Transmission electron microscopy (TEM) (Chap. 44) is
a powerful tool to study dislocations when the sample
has higher defect density. It is more commonly used
for epitaxial films, where large numbers of disloca-
tions originate due to the lattice misfit between the film
and the substrate. This method requires tedious sample
preparation and is not considered nondestructive.

Decoration is another important technique, where
impurity atoms segregate and settle down along disloca-
tion lines during annealing. The decorated dislocations
can be observed easily under an optical microscope in
transmission mode [1.31].

Growth spirals, which are true manifestations of
screw dislocations, can be observed under optical mi-
croscopy, scanning electron microscopy (SEM), and
atomic force microscopy (AFM). The presence of

200 µm

TSDs

TEDs

Off-cut [11
–
20]

Fig. 1.4 Etch pit pattern of SiC wafer revealing thread-
ing edge dislocations (TEDs), threading screw dislocations
(TSDs), and basal plane dislocations

growth spirals helps to understand the growth mecha-
nism [1.30].

Infrared (IR) microscopy is similar to optical mi-
croscopy except for the fact that IR light is used
for illumination, with a wavelength comparable to the
bandgap of semiconductor materials. This technique is
used to study inclusions, cavities, and even dislocations
present in the sample [1.48, 49].

Other Techniques
Photoluminescence (PL) [1.50], electron paramag-
netic resonance (EPR) (Chap. 45), positron annihilation
(Chap. 46), and micro Raman spectroscopy [1.50] are
also used to study semiconductor materials and show
electronic defect states and the presence of impurities
very successfully.
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Nucleation at2. Nucleation at Surfaces

Ivan V. Markov

This chapter deals with the thermodynamics and
kinetics of nucleation on surfaces, which is es-
sential to the growth of single crystals and thin
epitaxial films. The starting point is the equilib-
rium of an infinitely large crystal and a crystal
with a finite size with their ambient phase. When
the system deviates from equilibrium density fluc-
tuations or aggregates acquire the tendency to
unlimited growth beyond some critical size – the
nucleus of the new phase. The Gibbs free energy
change of formation of the nuclei is calculated
within the framework of the macroscopic ther-
modynamics and in terms of dangling bonds in
the case of small clusters. In the case of nucle-
ation from vapor the nuclei consist as a rule of
very small number of atoms. That is why the rate
of nucleation is also considered in the limit of
high supersaturations. The effect of defect sites
and overlapping of nucleation exclusion zones
with reduced supersaturation formed around the
growing nuclei is accounted for in determining
the saturation nucleus density. The latter scales
with the ratio of the surface diffusion coefficient
and the atom arrival rate. The scaling exponent
is a function of the critical nucleus size and de-
pends on the process which controls the frequency
of attachment of atoms to the critical nuclei to
produce stable clusters, either the surface diffu-
sion or the incorporation of atoms to the critical
nuclei. The nucleation on top of two-dimensional
(2-D) islands is considered as a reason for rough-
ening in homoepitaxial growth. The mechanism of
formation of three-dimensional (3-D) islands in
heteroepitaxial growth is also addressed. The
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effect of surface-active species on the rate of
nucleation is explored.

Nucleation at surfaces plays a crucial role in the growth
of crystals and epitaxial overlayers for the preparation
of advanced materials with potential for technological

applications. In homoepitaxy of metal or semicon-
ductor films the instability of planar growth against
roughening depends on the kinetics of two-dimensional

Part
A

2



18 Part A Fundamentals of Crystal Growth and Defect Formation

nucleation [2.1]. The interplay of wetting and strain
leads to clustering in overlayers growing under elastic
stress in heteroepitaxy and determines the mechanism
of growth and in turn the film morphology [2.2–4].
Smooth quantum wells or self-assembled quantum dots
can be grown by varying the conditions of growth (tem-
perature or growth rate) or by use of third species which
change both the thermodynamics and kinetics of the
processes involved [2.5]. The growth of thin epitaxial
films in particular by molecular-beam epitaxy (MBE)
usually occurs far from equilibrium. Thus, in addition
to thermodynamics, one has to account for the kinetic
processes taking place on the crystal surface [2.6]. The
latter are responsible for the remarkable richness of pat-
terns which are observed during growth [2.7].

This chapter gives the essential physics of the ther-
modynamics and kinetics of nucleation, both three-
and two-dimensional, on like and unlike substrates as
well as some later developments such as the Ehrlich–
Schwoebel effect on second-layer nucleation and the
effect of surface-active species on nucleation rate. The
presentation is oriented more to the needs of exper-
imentalists rather than going deeply into theoretical
problems. The chapter is organized as follows. We start
with problems of equilibrium of crystals and epitax-
ial overlayers with the parent phase (vapor, solution)
in Sect. 2.1 and consider the equilibrium vapor pres-
sure of infinitely large and finite-size crystals, the
thermodynamic driving force for nucleation to oc-
cur, and the equilibrium shape of three-dimensional

(3-D) crystals on unlike surfaces. In Sect. 2.2 we
define the work for nucleus formation in the most
general way and consider the limiting cases of the
classical (capillary) theory of nucleation at low or in-
termediate values of supersaturation and the atomistic
approach at high supersaturations. We derive expres-
sions for the work of formation of three-dimensional
nuclei on unlike substrates and two-dimensional nu-
clei on like and unlike substrates. In Sect. 2.3 we
give a general formulation of the nucleation rate and
again derive expressions valid for high and low su-
persaturations. We consider further in Sect. 2.4 the
saturation nucleus density accounting for the influ-
ence of defect (active) sites stimulating nucleation
events and the overlapping of undersaturated nucle-
ation exclusion zones around growing clusters. Making
use of the rate equation approach we derive ex-
pressions for the saturation nucleus density in thin
epitaxial films in diffusion and kinetic regimes of
growth. In Sect. 2.5 we consider the effect of the
step-edge Ehrlich–Schwoebel barrier on second-layer
nucleation as a reason for the formation of mounds
and thus roughening of surfaces in homoepitaxy.
The mechanism of transformation of monolayer-high
two-dimensional (2-D) islands into three-dimensional
crystallites in Volmer–Weber and Stranski–Krastanov
growth is addressed in Sect. 2.6. In Sect. 2.7 we ex-
plore the effect of surface-active species on the kinetics
of nucleation. Some conclusions and outlook are given
in Sect. 2.8.

2.1 Equilibrium Crystal–Ambient Phase

In treating the title problem we use the atomistic
approach developed by Kaischew and Stranski [2.8].
It is based on the assumption of additivity of bond
energies and accounts for the elementary proces-
ses taking place during growth and dissolution of
the particles of the new phase. Although apparently
old fashioned this approach is extremely instruc-
tive and informative for understanding the essential
physics of the equilibrium of infinitely large phases
and phases with finite size as well as of the devia-
tion from equilibrium leading to transitions from one
phase to another. Numerical studies of the stability
of small clusters performed by making use of mod-
ern quantum-mechanical methods lead to the same
conclusion that the closed atomic structures are most
stable [2.9].

2.1.1 Equilibrium of Infinitely Large Phases

We consider for simplicity one-component system. The
equilibrium between infinitely large phases (crystal, li-
quid or vapor) is determined by the equality of the
respective chemical potentials. In 1927 Kossel and
Stranski simultaneously developed an atomistic ap-
proach which is in fact identical to the definition of the
macroscopic thermodynamics [2.10–12]. They consid-
ered the different sites that atoms can occupy on the
crystal surface and found that there exists one partic-
ular site which plays a crucial role in crystal nucleation
and growth. They introduced the concept of the half-
crystal position, which turned out to be intimately
connected with the chemical potential of an infinitely
large crystal.
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Consider the cubic face of a crystal with a simple
cubic lattice (a Kossel crystal) containing a monatomic
step (Fig. 2.1). Atoms can be located at different sites on
the crystal surface. They can be built in the uppermost
lattice plane or into the step edge, be adsorbed at the
step edge or on the terrace, or can occupy the corner
site (3) which has very peculiar properties. An atom in
this position is connected with a half-atomic row, a half-
crystal plane, and a half-crystal block. This is the reason
the term half-crystal position (Halbkristalllage or kink
position) was coined for this particular site. Therefore,
the work of separation of an atom from this position
is exactly equal to the lattice energy of the crystal per
building particle. Hence, the work of detachment of an
atom from this position is given by

ϕ1/2 = 1
2 (Z1ψ1+ Z2ψ2+ Z3ψ3 . . .) ,

where Zi are the numbers of neighbors of the consecu-
tive coordination spheres and ψi are the respective bond
energies.

Whereas atoms in other positions have different
numbers of saturated and unsaturated (dangling) bonds,
the atom in the kink position (3) has an equal number of
saturated and dangling bonds. Therefore, the separation
work from a half-crystal position serves as a specific
reference with which the probabilities for elementary
processes at other sites to take place can be compared.
The detachment of an atom from the half-crystal posi-
tion gives rise to the same position. It follows that, when
an atom is detached from this position, the number of
dangling bonds remains unchanged and in turn the sur-
face energy does not change. Hence, the whole crystal
(if it is large enough to avoid finite-size effects) can
be built up or disintegrated into single atoms by repeti-
tive attachment or detachment of atoms to and from this
position.

In equilibrium with its vapor the probability of at-
tachment of atoms to this position must be equal to the
probability of their detachment. Hence the work of de-
tachment of atoms from this position will determine the
equilibrium vapor pressure and in turn its chemical po-
tential. For simple crystals with monatomic vapor the
latter will be given at zero temperature (the change of
entropy is equal to zero) by

μ∞c =−ϕ1/2 , (2.1)

where the superscript ∞ indicates an infinitely large
crystal.

As seen the chemical potential of an infinitely large
crystal is equal to the work of detachment of atoms from

1

2 3

45

Fig. 2.1 The most important sites an atom can occupy on a crystal
surface: 1 – atom embedded into the uppermost crystal plane, 2 –
atom embedded into the step edge, 3 – atom in a half-crystal (kink)
position, 4 – atom adsorbed at the step, 5 – atom adsorbed on the
terrace

the half-crystal position taken with a negative sign. It is
this property which makes this position unique in the
theory of crystal nucleation and growth [2.13].

There is one more very important property of the
half-crystal position. We can divide ϕ1/2 into two parts:
lateral interaction with the half-atomic row and the
half-crystal plane, and the normal interaction with the
half-crystal block underneath. If we replace the un-
derlying crystal block by another block of different
material and crystal lattice the lateral bonding will re-
main more or less unchanged if we assume additivity
of bond energies. However, the normal bonding will
change substantially owing to the difference in both
chemical bonding and lattice strain. It is easy to show
that the separation work from a kink position in this
particular case can be written as

ϕ′1/2 = ϕ1/2− (ψ−ψ′) , (2.2)

where ψ′ is the energy of a bond between unlike atoms.
Having in mind (2.1), (2.2) can be written as

μ′c = μ∞c + (ψ−ψ′) . (2.3)

We now define the surface energy of a crystal by the
following imaginary process. We cleave isothermally
and reversibly the crystal into two halves and produce
two surfaces with area S. We count the bonds we break
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20 Part A Fundamentals of Crystal Growth and Defect Formation

and divide the energy spent by 2S. If we confine our-
selves to nearest-neighbor bonds in the case of Kossel
crystal we break one bond per atom and obtain (S= a2)

σ = ψ

2a2
, (2.4)

where a is the atomic diameter.
Using the above definition and the relation of Dup-

ré [2.14]

σi = σA+σB−β , (2.5)

which connects the specific interfacial energy σi be-
tween the unlike crystals A and B with the specific
adhesion energy β = ψ′/a2, (2.3) can be written as

μ′c = μ∞c +a2(σ +σi−σs) . (2.6)

It is immediately seen that the term in the brack-
ets Δσ = σ +σi−σs is in fact the parameter that
accounts for the wetting of the substrate (the half-
crystal block underneath) by the overlayer in epitaxy
of one material on the surface of another [2.15]. Thus,
when Δσ < 0, or what is the same, ψ < ψ′ (com-
plete wetting), the equilibrium vapor pressure of the
first monolayer on the unlike substrate will be smaller
than the equilibrium vapor pressure of the bulk crys-
tal (μ= μ0+ kBT ln P), i. e., P′∞ < P∞. This means
that at least the first monolayer can be deposited at
a vapor pressure smaller than the equilibrium vapor
pressure of the bulk crystal, or in other words, at un-
dersaturation, P′∞ < P< P∞ [2.16]. If the two crystals
have different lattice parameters the growth should con-
tinue by formation of three-dimensional (3-D) islands.
This is the famous Stranski–Krastanov mechanism of
growth [2.17], in which the accumulation of strain
energy with film thickness makes the planar film un-
stable against clustering. Obviously, if the lattice misfit
is equal to zero the growth will continue layer by
layer in the so-called Frank–van der Merwe mechanism
of growth [2.18, 19]. In the opposite case of incom-
plete wetting (Δσ > 0), 3-D islanding will take place
from the very beginning of deposition or Volmer–Weber
growth, which requires supersaturation, P> P∞ [2.20].
We thus see that the separation work from a half-crystal
position plays a fundamental role in determining the
mechanism of epitaxial growth.

The lattice misfit increases the tendency for 3-D is-
landing by increasing the interfacial energy in (2.6) with
the energy per unit area of misfit dislocations or elas-
tic strain. Thus for heteroepitaxial growth the interfacial
energy reads [2.21]

σ∗i = σi+ εm ,

where εm is either the misfit dislocation energy or the
energy of the homogeneous strain.

Thus the interfacial energy between misfitting crys-
tals consists of two parts: a chemical part σi accounting
for the difference in chemistry and strength of bonding,
and a geometrical part εm accounting for the difference
of lattices and lattice parameters. If the misfit in het-
eroepitaxy is accidentally or intentionally tailored to be
equal to zero (particularly in binary or ternary alloys)
εm = 0, but the chemical part σi remains different from
zero and affects the mechanism of growth.

It should be noted that the misfit plays a decisive
role for clustering only in Stranski–Krastanov growth,
where it changes the sign of Δσ from negative to
positive beyond the so-called wetting layer. In Volmer–
Weber growth Δσ is positive and the strain energy
makes a minor contribution with the same sign to it.
Frank–van der Merwe growth takes place only in sys-
tems with zero misfit [2.22], which is why we will not
take into consideration the effect of lattice misfit in nu-
cleation.

2.1.2 Equilibrium of Small Crystal
with the Ambient Phase

The separation work from the half-crystal position can-
not determine the equilibrium of a crystal with finite
size with its surrounding because the role of the crystal
edges and corners cannot be ignored. The kink position
is no longer a repetitive step for dissolution of the crys-
tal. That is why Stranski and Kaischew suggested that
the condition for a small crystal to be in equilibrium
with the ambient phase is for the probability of building
up a whole crystal plane to be equal to the probabil-
ity of its dissolution. In this way the effect of the edge
and corner atoms are accounted for in addition to the
atoms in half-crystal positions. Obviously, the smaller
the crystal, the greater will be the role of the corner and
edge atoms, and vice versa. Thus they defined the mean
separation work as the work per atom to disintegrate
a whole crystal plane into single atoms. This quantity
must have one and the same value for all crystal faces
belonging to the equilibrium shape.

Consider for simplicity a small Kossel crystal with
a shape of a cube with edge length l3 = an3, where n3 is
the number of atoms in the edge of the cube. Confining
ourselves to nearest-neighbor bond energy ψ the en-
ergy for dissolution of a whole lattice plane into single
atoms (by counting the bonds we break in the process
of disintegration, Fig. 2.2) is 3n2

3ψ−2n3ψ. Dividing
by the number of atoms n2

3 the mean separation work
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reads [2.8]

ϕ̄3 = 3ψ− 2ψ

n3
, (2.7)

or, bearing in mind that for a simple cubic lattice 3ψ =
ϕ1/2,

ϕ̄3 = ϕ1/2− 2ψ

n3
.

It follows that the mean work of separation tends
asymptotically to the work of separation from a half-
crystal position as the crystal size is increased. We
conclude that a crystal can be considered as small if
n3 < 70, or l3 < 2 × 10−6 cm assuming a ≈ 3 Å.

As ϕ̄3 determines the equilibrium vapor pressure of
the small crystal and in turn its chemical potential we
can write in analogy with (2.1) for T = 0

μc = μv =−ϕ̄3 .

Then

Δμ= μv(P)−μ∞c (P)= ϕ1/2− ϕ̄3 = 2ψ

n3
(2.8)

is the difference of the chemical potentials of the in-
finitely large vapor and crystal phases which represents
the thermodynamic driving force for nucleation to oc-
cur, or the supersaturation.

The equilibrium of the vapor and the crystal takes
place at some vapor pressure P∞ (to stress the fact that
the crystal is infinitely large) so that μv(P∞)=μc(P∞).
Then we can write (2.8) as

Δμ= [μv(P)−μv(P∞)]− [μc(P)−μc(P∞)] .
For small deviations from equilibrium the dif-

ferences in the above equation can be replaced by
derivatives and

Δμ=
P∫

P∞

∂μv

∂P
dP−

P∫
P∞

∂μc

∂P
dP =

P∫
P∞

(vv−vc)dP ,

where vv and vc are the molecular volumes of the vapor
and the crystal. As vv� vc the above equation simpli-
fies to

Δμ=
P∫

P∞

vv dP .

Considering the vapor as an ideal gas (vv = kBT/P)
gives upon integration

Δμ= kBT ln

(
P

P∞

)
. (2.9)

a) c)b)

Fig. 2.2a–c Schematic for the evaluation of the mean separa-
tion work which determines the equilibrium of a small three-
dimensional crystal with the supersaturated vapor phase. In stage
(a) we detach (n−1)2 atoms, breaking three bonds per atom, in
stage (b) we detach 2(n−1) atoms, breaking two bonds per atom,
and finally in (c) we detach the last atom, breaking a single bond

The supersaturation Δμ is usually very large in the
case of nucleation from vapor, particularly in methods
such as MBE. Let us evaluate it for the case of nucle-
ation in MBE growth of Si(111). The supersaturation is
given in terms of the ratio of the fluxes R/R∞, where
R = P/

√
2πmkBT , rather than in vapor pressures as

in (2.9). Typical growth conditions are T = 600 K and
R = 1 × 1013 atom/cm2 s [2.23]. The equilibrium va-
por pressure of Si at 600 K is P∞ = 1.3 × 10−27 N/m2.
Then, R∞ ∼= 6.5 × 10−8 atom/cm2 s and Δμ∼= 2.5 eV.
This means that the supersaturation is of the order of the
enthalpy of evaporation of Si (≈ 4.5 eV). As we will see
below this is why nuclei consist of a number of atoms
of the order of unity.

Note that, with the approximation made, (2.9) is
valid for very small deviations from equilibrium. If we
repeat the above calculations at much higher tempera-
ture, say 1300 K, we find Δμ∼= 0.05 eV. We can believe
this value to be close to the real figure, but for low
temperatures we can be sure only of the sign of the
supersaturation (growth or evaporation) but not its nu-
merical value.

Equation (2.8) represents the famous Thomson–
Gibbs equation which gives the dependence of the
equilibrium vapor pressure of a small crystal on its lin-
ear size. Using the definition of the specific surface
energy (2.4) we obtain the Thomson–Gibbs equation in
its form which is well known in the literature

Δμ= 4σvc

l3
. (2.10)

We consider further the equilibrium with the vapor
phase (and in turn with the dilute adlayer) of a small
two-dimensional crystal with a monolayer height
formed on the surface of a large three-dimensional
crystal. Such an island grows or dissolves by attach-
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l3

l2

Fig. 2.3 Schematic for the evaluation of the mean separation work
which determines the equilibrium of a small two-dimensional
crystal with the supersaturated vapor phase. In equilibrium the prob-
abilities of evaporation and building of a whole row of atoms (black
spheres) are equal

ment or detachment of whole atomic rows. That is why
Kaischew and Stranski suggested that the probability of
building of a whole atomic row with length l2 = n2a is
equal to the probability of its disintegration into single
atoms [2.8]. The equilibrium 2-D island–vapor phase
is now determined by the mean separation work ϕ̄2,
which is equal to the energy per atom for evaporation
of a whole edge row of atoms (Fig. 2.3). Assuming
a square-shaped island with n2 atoms in the edge the
mean separation work reads

ϕ̄2 = 3ψ− ψ

n2
= ϕ1/2− ψ

n2
.

The supersaturation necessary for the formation of
a two-dimensional island with linear size l2 then reads

Δμ= ψ

n2
. (2.11)

Note that in nucleation on surfaces the supersatu-
ration can be expressed as a ratio of the real and the
equilibrium adatom concentrations (in equilibrium the
chemical potential of the vapor is equal to the chemical
potential of the adlayer, which in turn depends on the
adatom concentration)

Δμ= kBT ln

(
N1

N e
1

)
,

where [2.24]

N e
1 = N0 exp

(
−ΔW

kBT

)
, (2.12)

the difference ΔW = ϕ1/2− Edes being the work to
transfer an atom from a half-crystal position on the sur-
face of a terrace, and N0 is the atomic density of the
crystal surface.

This is particularly true when the adatom con-
centration is determined by a dynamic adsorption–
desorption equilibrium, i. e., when the atom arrival
rate R is equal to the re-evaporation rate N1/τs, where
τs = ν−1 exp(Edes/kBT ) is the mean residence time of
an atom on the surface before desorption.

We define now the specific edge energy in the same
way that we defined the specific surface energy (2.4).
We cleave an atomic plane into two halves and produce
two edges with length L . We break one bond per atom
and for the specific edge energy one obtains

� = ψ

2a
. (2.13)

Combining (2.11) and (2.13) gives the Thomson–
Gibbs equation for the two-dimensional case, or the
supersaturation required to form an island with edge
length l2, in its more familiar form [2.24]

Δμ= 2�a2

l2
. (2.14)

Equations (2.10) and (2.14) can be derived by using
the method of thermodynamic potentials introduced by
Gibbs (for a review see [2.21]). However, contrary to
the pure thermodynamics, the above molecular-kinetic
or atomistic approach accounts in addition for the ele-
mentary processes of growth and dissolution of crystals.
The growth of sufficiently large crystal takes place by
attachment of building units to the half-crystal position.
Once the atom is incorporated at this position we can
say that it has joined the crystal lattice. Small three- and
two-dimensional crystals grow and dissolve by building
and dissolution of whole crystal planes or atomic rows,
respectively.

2.1.3 Equilibrium Shape of Crystals

In 1878 Gibbs defined thermodynamically the prob-
lem of the equilibrium shape of crystals as the shape
at which the crystal has a minimum surface energy
at given constant volume [2.25]. This definition later
acquired a geometric interpretation in the well-known
Gibbs–Wulff theorem [2.26], according to which the
distances hn from an arbitrary (Wulff’s) point to the
different crystal faces are proportional to the corre-
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sponding specific surface energies σn of these faces

σn

hn
= const. (2.15)

As a result the equilibrium shape represents a closed
polyhedron consisting of the faces with the lowest spe-
cific surface energies. The areal extents of the crystal
faces belonging to the equilibrium shape have one and
the same value of chemical potential.

Half a century later Kaischew extended this ap-
proach to cover the case of a crystal on a foreign
substrate and derived a relation known in the literature
as the Wulff–Kaischew theorem [2.27]

σn

hn
= σi −β

hi
= const. , (2.16)

where σi is the specific surface energy of the crystal face
that is in contact with the substrate and hi is the dis-
tance from the Wulff point to the plane of the contact
(Fig. 2.4).

It is seen that the distance from the Wulff point to
the contact plane is proportional to the difference σi−β.
Therefore, when the catalytic potency of the substrate β

is equal to zero, the distance hi will have its value in the
absence of a substrate. In this case we have complete
nonwetting. At the other extreme β = σA+σB = 2σ
(σA = σB = σ ) we have complete wetting and the three-
dimensional crystal is reduced to a monolayer-high
island. In the intermediate case 0 < β < 2σ we have in-
complete wetting and the crystal height is smaller than
its lateral extent.

The introduction of the separation work from half-
crystal position and the mean separation works enabled
Stranski and Kaischew to provide a new atomistic ap-
proach for determination of the equilibrium shape of
crystals. The latter is necessary for calculation of the
work of nucleus formation as it is assumed that the nu-
clei preserve the equilibrium shape as the lowest-energy
shape. Thus the lowest-energy pathway of the crystal-
lization process is ensured.

The basic idea is that atoms bound more weakly
than an atom in the half-crystal position cannot belong
to the equilibrium shape. We start from a sufficiently
large crystal with a simple crystallographic form and
remove in succession from its surface all atoms bound
more weakly than in a half-crystal position. Precisely at
that process all the faces of the equilibrium shape ap-
pear. Then the areas of the faces are varied by removal
and addition of whole crystal planes up to the moment
when the mean separation works of all crystal faces be-
come equal. As the mean separation works are closely

h1

h1
h2 h1

h2
hi

h2

h1

hi

h2

h1 hi

h2

h1

a) e)d)c)b)

Fig. 2.4a–e Equilibrium shape of a crystal on an unlike substrate.
The distances h1 and h2 in the free polyhedron (a) are propor-
tional to the specific free energies σ1 and σ2 according to the
Gibbs–Wulff theorem (2.15). In the presence of unlike substrate the
distances to free surfaces remain the same as in the free polyhe-
dron. The distance hi to the plane of contact is determined by the
difference σi −β according to the Wulff–Kaischew theorem (2.16).
(b) Complete nonwetting (β = 0); (c,d) different degrees of incom-
plete wetting (note that in the latter case the vector hi is negative);
(e) complete wetting (β = 2σ )

related to the chemical potentials the latter condition is
equivalent to the definition of Gibbs. Thus, during the
last operation of equating the mean separation works
of all crystal faces, those which do not belong to the
equilibrium shape disappear [2.28].

Therefore, the necessary and sufficient condition for
the equilibrium shape of a crystal in the molecular-
kinetic approach is equality of the mean separation
works, or in other words, of the chemical potentials of
all crystal faces. We use this condition to derive the
equilibrium aspect ratio of a three-dimensional cubic
crystal on the surface of an unlike crystal assuming
incomplete wetting (Δσ > 0).

Consider a cubic crystal with a square base with
edge length l = na and height h = n′a, where n and n′
are the number of atoms in the horizontal and vertical
edges (Fig. 2.5). The mean separation work calculated

n

n'

Fig. 2.5 A cubic crystal with n and n′ atoms in the base and the
height on the surface of an unlike crystal at incomplete wetting
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24 Part A Fundamentals of Crystal Growth and Defect Formation

from the side crystal face is

ϕ̄′3 = 3ψ− ψ−ψ′

n′
− ψ

n
,

whereas the same quantity calculated for the upper base
is given by (2.7). The condition ϕ̄3 = ϕ̄′3 gives

h

l
= n′

n
= φ , (2.17)

where

φ = 1− ψ′

ψ
. (2.18)

Substituting ψ and ψ′ by the specific surface and
adhesion energies and making use of the relation of

Dupré (2.5) gives φ in terms of surface energies

φ = σ +σi−σs

2σ
. (2.19)

As seen, the equilibrium aspect ratio of the crystal
is precisely equal to the familiar wetting condition (2.6)
relative to 2σ . The parameter φ is known in the liter-
ature as the wetting function; it plays a crucial role in
nucleation at surfaces and determines the mechanism
of growth of thin epitaxial films [2.15, 29]. It can be
shown that (2.19) can be derived by the classical ther-
modynamic condition of the minimum of the surface
energy Φ = 4lhσ + l2(σ +σi−σs) at constant volume
V = l2h [2.15].

2.2 Work for Nucleus Formation

2.2.1 General Definition

The nuclei of the new phase represent local fluctua-
tions of the density which can be considered as small
molecular aggregates. If the phase is stable the den-
sity fluctuations increase the thermodynamic potential
of the system. In this sense they are thermodynami-
cally unfavorable. Their concentration is small and they
cannot reach considerable size as the probability of de-
cay is greater than the probability of growth. Thus they
have no tendency to unlimited growth and can be con-
sidered as lifeless. Frenkel coined for them the term
homophase fluctuations to emphasize the fact that they
are well compatible with the stable state of aggrega-
tion [2.30]. As one approaches the phase equilibrium
determined by the equality of the chemical potentials,
their concentration increases and the maximum of the
size distribution shifts to larger sizes. Once the chem-
ical potential of the initial bulk phase (vapor or solution)
becomes greater than that of the new, denser phase
(liquid or crystal) the probability of growth becomes
greater than the probability of decay and the tendency
for growth of the density fluctuations prevails after ex-
ceeding some critical size. Frenkel referred to these as
heterophase fluctuations to stress the fact that they are
no longer compatible with the old, less dense phase. It
is just these density fluctuations or clusters with a crit-
ical size which are called the nuclei of the new phase.
In order to form such nuclei a free energy should be
expended.

Consider a volume containing iv molecules of
a vapor with chemical potential μv at constant temper-
ature T and pressure P. The thermodynamic potential

of this initial state is given by G1 = ivμv. A small crys-
tal with bulk chemical potential μ∞c is formed from i
molecules of the vapor phase and the thermodynamic
potential of the final state reads G2 = (iv− i)μv+G(i),
where G(i) is the thermodynamic potential of a clus-
ter consisting of i molecules. The work of formation
of a cluster consisting of i molecules is given by the
difference ΔG(i)= G2−G1 and [2.31]

ΔG(i)= G(i)− iμv . (2.20)

As seen, the work of formation of the cluster
represents the difference between the thermodynamic
potential of the cluster and the thermodynamic poten-
tial of the same number of molecules but in the ambient
phase (vapor, solution or melt). This is the most general
definition of the work for nucleation. Taking different
expressions for G(i) we can approach different cases
of nucleation, such as liquid or crystal nuclei, large
or small clusters, clusters with or without equilibrium
shape, nuclei on like and unlike surfaces, nuclei formed
on small particles or ions, etc.

Equation (2.20) is usually illustrated with the sim-
plest case, when the nucleus is a liquid droplet with
the (equilibrium) shape of a sphere with radius r sur-
rounded by its own vapor. We assume that the nucleus
is sufficiently large that it can be described by macro-
scopic thermodynamic quantities. This is in fact the
classical or capillary approach introduced by Gibbs. He
considered nuclei as small liquid droplets, vapor bub-
bles or crystallites which, however, are sufficiently large
to be described by their bulk properties. Although over-
simplified, this approach was a significant step ahead
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because, when phases with small linear sizes are in-
volved, the surface-to-volume ratio is large.

The thermodynamic potential of the spherical
droplet reads

G(r)= 4πr3

3vl
μ∞l +4πr2σ ,

where i = 4πr3/3vl is the number of atoms in the
nucleus.

Writing the expression for G(r) in this way we
suppose that a cluster with radius r has the chemical
potential μ∞l of the infinitely large liquid phase. The
second term accounts for the excess energy owing to the
newly formed interface between the liquid droplet and
the ambient vapor phase, to which we ascribe a specific
energy σ that is characteristic of the bulk liquid phase.

The thermodynamic potential of a crystalline cluster
with a cubic shape and lateral extent l in the capillary
approximation is given by a similar expression

G(l)=− l3

vc
μ∞c +6l2σ . (2.21)

Then for the work of nucleus formation in terms of
the size l one obtains

ΔG(l)= l3

vc
Δμ+6l2σ , (2.22)

where i = l3/vc, and Δμ= μv−μ∞c is the supersatu-
ration.

The dependence of ΔG(l) on the size l is plotted
in Fig. 2.6. (Note that the growing cluster preserves its
equilibrium shape of a cube with increasing linear size
l.) As seen, ΔG(l) displays a maximum when the ambi-
ent phase is supersaturated (μ∞c < μv) at some critical
size

l∗ = 4σv

Δμ
. (2.23)

In the opposite case of undersaturated vapor
(μ∞c > μv) both terms in (2.22) are positive and the
Gibbs free energy change goes to infinity as the density
fluctuations are thermodynamically unfavorable.

Equation (2.23) is in fact the familiar equa-
tion (2.10) of Thomson–Gibbs. As discussed above the
latter represents the condition of equilibrium of a small
particle with its ambient phase. It is important to note
that this equilibrium is unstable. When more atoms join
the nucleus, its size increases and its equilibrium va-
por pressure becomes smaller than that of the ambient
phase. As a result the probability of growth becomes
greater than the probability of decay and the nucleus

ΔG

ΔG*

l* l

–l3Δµ/ν

6l2σ

Fig. 2.6 Dependence on the crystal size l (or radius r) of
the Gibbs free energy change connected with the formation
of a crystalline (liquid) nucleus with a cubic (spherical)
shape

will continue to grow. If several atoms detach from the
nucleus, its equilibrium vapor pressure will increase and
become higher than that of the ambient phase. The prob-
ability of decay will become dominant and the nucleus
will decay further. In other words, any infinitesimal de-
viation of the size of the nucleus from the critical one
leads to a decrease of the thermodynamical potential of
the system.

Substituting l∗ into (2.22) gives the value of the
maximum, or in other words, the change of the Gibbs
free energy to form the nucleus

ΔG∗ = 32σ3v2

Δμ2
. (2.24)

It is inversely proportional to the square of the supersa-
turation (a result which was obtained for the first time
by Gibbs in 1878 [2.25]) and increases steeply when
approaching the phase equilibrium, thus imposing great
difficulties for crystallization to take place.

2.2.2 Formation of 3-D Nuclei
on Unlike Substrates

Equation (2.21) gives the thermodynamic potential of
a small crystallite with a cubic equilibrium shape whose
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26 Part A Fundamentals of Crystal Growth and Defect Formation

properties are described in terms of classical macro-
scopic thermodynamics. In order to relax this restriction
Stranski suggested a new approach which can be used
for both large crystals and arbitrarily small clusters with
arbitrary shape. The thermodynamic potential is given
in the more general form

G(i)= iμ∞c +Φ , (2.25)

where Φ plays the role of a surface energy.
The work for nucleus formation then reads

ΔG(i)=−iΔμ+Φ . (2.26)

According to the definition of Stranski the surface
term is given by [2.32]

Φ = iϕ1/2−Ui , (2.27)

where Ui > 0 is the energy of disintegration of the
whole crystal (or small cluster) into single atoms. In fact
−Ui is the potential (binding) energy of the cluster. In
the approximation of additivity of bonds energies, Ui is
equal to the number of bonds between the atoms of the
cluster multiplied by the work ψ to break a single bond.

Equation (2.27) can be easily understood. The first
term on the right-hand side gives the energy of the
bonds as if all atoms are in the bulk of the crystal (recall
that the separation work from the half-crystal position is
equal to the lattice energy per atom). The second term
gives the energy of the bonds between the atoms of the
cluster. Therefore, the difference represents the number
of unsaturated (dangling) bonds multiplied by the en-
ergy ψ/2 of a dangling bond. Obviously, if the cluster
is sufficiently large, Φ can be expressed in terms of sur-
face, edge, and apex energies, but as written above it
is applicable to arbitrarily small clusters with arbitrary
shape.

Combining (2.26) and (2.27) and substituting for
Δμ from the Thomson–Gibbs equation (2.8) in atomis-
tic terms in the resulting equation for the Gibbs free
energy change for nucleus formation one obtains

ΔG∗ = i∗ϕ̄3−Ui∗ . (2.28)

We can now calculate the work of formation of a nu-
cleus with equilibrium shape shown in Fig. 2.5. In this
case i = n2n′ and

Ui = 3n2n′ψ−2nn′ψ−n2ψφ , (2.29)

where φ is the familiar wetting function (2.17) which
determines also the equilibrium shape of a crystal on an
unlike substrate.

Combining (2.7), (2.28), and (2.29) gives

ΔG∗ = n∗2ψφ , (2.30)

where n∗ is the number of atoms in the lateral edge of
the critical nucleus. Note that l∗ = an∗ is the length of
the edge of the homogeneously formed nucleus in the
absence of a substrate or under the condition of com-
plete nonwetting.

We show that (2.30) gives the work of formation
of a complete cubic crystallite (2.24) multiplied by the
wetting function (2.17), which is positive and smaller
than unity in the case of incomplete wetting under study.
For this purpose we substitute for n∗ and ψ from (2.8)
and (2.4), respectively, in (2.30) and obtain (a3 = v)

ΔG∗ = 32σ3v2

Δμ2

σ +σi−σs

2σ
, (2.31)

where the wetting function φ is given in terms of surface
energies.

It follows that the work for nucleus formation at sur-
faces (heterogeneous nucleation) is equal to that of the
homogeneously formed nuclei in the absence of a sur-
face multiplied by the wetting function. Bearing in mind
that

φ = h

l
= l2h

l3
= V

V0
,

we conclude that the ratio of the works for heteroge-
neous and homogeneous nucleation is equal to the ratio
of the respective volumes in the presence and absence
of a substrate

ΔG∗het =ΔG∗hom
V

V0
.

It is interesting to consider the case when a three-
dimensional nucleus is formed in the concave edge of
a hill-and-valley vicinal surface consisting of alternat-
ing low-index facets and which is often formed under
the effect of adsorbed impurity atoms [2.33,34]. Assum-
ing for simplicity a right angle of the concave edge we
find that the nucleus has a prismatic equilibrium shape,
having two edges with length l′ = n′a and one edge with
a length l = na. Using the same procedure as before for
ΔG∗ one obtains

ΔG∗ = n∗2ψφ2

or

ΔG∗ = 32σ3v2

Δμ2

(
σ +σi−σs

2σ

)2

.
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In the same way we find that the work of formation
of a nucleus in a right-angle corner is proportional to
the third degree of the wetting function φ, etc. As φ < 1
we conclude that a rough surface containing concave
edges and corners stimulates nucleation by decreasing
the nucleus volume.

2.2.3 Work of Formation
of 2-D Crystalline Nuclei
on Unlike and Like Substrates

To solve this problem we apply the same procedure,
bearing in mind that we have to account for the mean
separation work for a two-dimensional square cluster.
We consider first the more general case in which the
2-D nucleus is formed on an unlike substrate. Obvi-
ously, in order for the 2-D nucleus to be stable the
wetting should be complete, although 2-D nuclei can be
stable in incomplete wetting but only up to some criti-
cal size [2.35]. Beyond this size the monolayer islands
become unstable against bilayer islands and should be
rearranged into three-dimensional islands as required by
the thermodynamics (Sect. 2.6).

The mean separation work calculated for a 2-D
square nucleus consisting of i = n2 atoms on unlike
substrates reads

ϕ̄′2 = 3ψ− ψ

n
−ψφ

and

Δμ= ψ

n
+ψφ . (2.32)

The binding energy is Ui = 3n2ψ−2nψ−n2ψφ

and the Gibbs free energy change reads

ΔG∗ = n∗ψ . (2.33)

Substituting for n∗ from (2.32) and ψ from (2.13)
in (2.33) gives

ΔG∗ = ψ2

Δμ−ψφ
= 4�2a2

Δμ−a2(σ +σi−σs)
. (2.34)

In the limiting case of a like substrate (nucleation on
the surface of the same crystal) Δσ = σ +σi−σs = 0
and the Gibbs free energy change reads

ΔG∗ = ψ2

Δμ
= 4�2a2

Δμ
. (2.35)

Substituting for ψ from the Thomson–Gibbs equa-
tion (2.32) in the case of complete wetting, φ = 0,
in (2.35) one obtains the very useful result that the work

for nucleus formation is precisely equal to the volume
part of it

ΔG∗ = n∗2Δμ= i∗Δμ . (2.36)

Equations (2.34) and (2.35) lead to some interesting
conclusions. In the case of incomplete wetting (Δσ > 0)
2-D nucleation can take place only at supersaturation
higher than Δμ0 = a2Δσ , because when approaching
the latter the work for nucleus formation goes to in-
finity. In the case of complete wetting (Δσ < 0) both
terms in the denominator of (2.34) are positive and 2-D
nucleation can take place even at undersaturation. As
follows from (2.35) a 2-D nucleation event on the sur-
face of the same crystal (Δσ = 0) can occur only at
supersaturations higher than zero.

Equations (2.31) and (2.34) give another critical su-
persaturation Δμcr = 2Δμ0 at which the 3-D nucleus
is reduced to a 2-D nucleus with monolayer height.
The reason is that, assuming a constant equilibrium
aspect ratio h/l < 1, on decreasing the nucleus size
with increasing supersaturation a moment comes when
the thickness of the 3-D island becomes equal to one
monolayer [2.36–38]. As a result three-dimensional nu-
cleation should not take place at supersaturations larger
than Δμcr. The latter does not contradict the observed
layer-by-layer growth of Pb on Ge(001) at 130 K [2.39].

In the end of this subsection we will briefly discuss
the very interesting and important question of the ex-
istence and formation of one-dimensional nuclei. The
latter can be considered as rows of atoms at the edge
of a single height step. Using the approach of the mean
separation works the equilibrium of a such row of atoms
with the ambient phase will be given by the equal-
ity of the probabilities of attachment and detachment
of atoms to the row’s ends. However, the row’s ends
represent half-crystal positions, so the mean separa-
tion work reads ϕ̄1 = 3ψ = ϕ1/2 and the supersaturation
is Δμ = ϕ1/2− ϕ̄1 = 0. The latter means that a row
of atoms has the same chemical potential as the bulk
crystal, irrespective of its length. The potential energy
of a row consisting of i atoms is Ui = 3iψ−ψ, and
the work of formation of a one-dimensional nucleus
is ΔG∗1 = iϕ̄1−Ui = ψ. As seen ΔG∗1 does not de-
pend on the row’s length, which means that a critical
size as in 3-D and 2-D nucleation does not exist. All
the above means that one cannot define thermodynam-
ically one-dimensional nuclei. However, as pointed out
by several authors, one-dimensional nuclei can be well
defined kinetically [2.40–42]. It is in fact the formation
of one-dimensional nuclei which allows the propaga-
tion of smooth steps, particularly at low temperatures.
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28 Part A Fundamentals of Crystal Growth and Defect Formation

We mention here only two cases of great practical im-
portance: the advancement of SA steps on the surface of
Si(001) 2 × 1 [2.43, 44] and the growth of protein crys-

tals [2.45]. We would like to stress once more that the
one-dimensional nucleation is a purely kinetic process
and a critical size cannot be defined thermodynamically.

2.3 Rate of Nucleation

As discussed above the equilibrium of a small par-
ticle of the new phase with the supersaturated ambient
phase is unstable. Accidental detachment of atoms from
the critical nucleus can result in a decay of the clus-
ter even to single atoms. Attachment of several atoms
could lead to unlimited growth. It is not accidental that
the exact solution of the time-dependent problem leads
to a diffusion-type equation which reflects the random
character of the processes of growth and decay around
the critical size [2.30]. We can thus interpret the growth
of the clusters as a diffusion in the space of the size.
We conclude that nucleation is a random process. The
steady-state rate of nucleation is a constant quantity
which represents an average in time of randomly dis-
tributed events.

2.3.1 General Formulation

Becker and Döring advanced a purely kinetic approach
which allowed them to derive a general expression for
the steady-state nucleation rate making the assump-
tions of: (1) steady-state distribution of the heterophase
fluctuations, (2) constant geometrical shape of the grow-
ing clusters which coincides with the equilibrium shape,
and (3) constant supersaturation which is achieved by
removal of clusters which are sufficiently large (much
larger than the critical nucleus, I � i∗) from the sys-
tem and then are returned back as single atoms [2.46].
The interested reader is referred to the excellent anal-
ysis of Christian [2.47]. Relaxing assumption 2 did
not affect significantly the final result, whereas allow-
ing variable supersaturation changed only the transient
character of nucleation but not the steady-state nuclea-
tion rate [2.48]. It was in fact the first assumption which
played the essential role in solving the problem.

Becker and Döring considered the nucleation pro-
cess as a series of consecutive bimolecular reactions
(a scheme proposed by Leo Szilard)

A1+A1

ω+1
�
ω−2

A2

A2+A1

ω+2
�
ω−3

A3

. . .

Ai +A1

ω+i
�
ω−i+1

Ai+1

. . .

in which the growth and decay of the clusters take place
by attachment and detachment of single atoms. Triple
and multiple collisions are excluded as less probable.
ω+i and ω−i denote the rate constants of the direct and
reverse reactions. Here A is used as a chemical symbol.

Clusters consisting of i atoms are formed by the
growth of clusters consisting of i−1 atoms and the
decay of clusters of i+1 atoms (birth processes) and
disappear by the growth and decay into clusters of i+1
and i−1 atoms (death processes), respectively. Then
the change with time of the concentration Zi (t) of clus-
ters consisting of i atoms is given by

dZi (t)

dt
= Ji (t)− Ji+1(t) ,

where

Ji (t)= ω+i−1 Zi−1(t)−ω−i Zi (t) (2.37)

is the net flux of clusters through the size i.
Assuming a steady-state concentration of the clus-

ters in the system, dZi (t)/dt = 0, leads to

Ji (t)= Ji+1(t)= J0 ,

where we denote by J0 the time-averaged frequency of
formation of clusters of any size. Therefore, J0 is also
equal to the frequency of formation of the clusters with
the critical size i∗ and thus is equal to the steady-state
nucleation rate.

Applying a simple mathematical procedure to the
system of rate equations which describe the scheme of
Szilard for J0 one obtains [2.49]

J0 = Z1

I−1∑
i=1

(
1

ω+i

ω−2 ω−3 . . . ω−i
ω+1 ω+2 . . . ω+i−1

)−1

. (2.38)

This is the most general expression for the steady-
state rate of nucleation. It is applicable to any case
of nucleation (homogeneous or heterogeneous, from
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Nucleation at Surfaces 2.3 Rate of Nucleation 29

any ambient phase – vapor, solution or melt, three- or
two-dimensional, etc.). It also allows the derivation of
equations for the classical as well as the atomistic nucle-
ation rate at small and high supersaturations as limiting
cases. The only thing we should know in any particular
case are the rate constants ω+i and ω−i .

The analysis of (2.38) shows that every term in the
sum is equal to exp(ΔG(i)/kBT ), where ΔG(i) is the
work to form a cluster consisting of i atoms [2.50]

ω−2 ω−3 . . . ω−i
ω+1 ω+2 . . . ω+i−1

= exp

(
ΔG(i)

kBT

)
. (2.39)

The condition of an imaginary equilibrium J0 = 0
applied to (2.37) leads to an equation known in the
literature as the equation of detailed balance

Ni

Ni−1
= ω+i−1

ω−i
,

where Ni denotes the equilibrium concentration of
clusters consisting of i atoms. Multiplying the ratios
Ni/Ni−1 from i = 2 to i gives an expression for the
equilibrium concentration of clusters of size i

Ni

N1
=

i∏
n=2

(
ω+n−1

ω−n

)
=
(

ω−2 ω−3 . . . ω−i
ω+1 ω+2 . . . ω+i−1

)−1

.

(2.40)

Substituting (2.39) into (2.40) gives for the equilib-
rium concentration of clusters of size i

Ni = N1 exp

(
−ΔG(i)

kBT

)
. (2.41)

We recall that ΔG(i) displays a maximum at i = i∗.
It follows that Ni should display a minimum at the crit-
ical size.

Substituting (2.39) into (2.38) and replacing the
summation by integration valid for large critical nuclei
one obtains

J0 = ω∗Γ Ni∗ ,

where ω∗ ≡ωi∗ is the frequency of attachment of atoms
to the critical nucleus, Γ = (ΔG∗/3πkBTi∗2)1/2 is the
so-called nonequilibrium Zeldovich factor which ac-
counts for neglecting processes taking place far from
the critical size, and Ni∗ is given by (2.41) for the criti-
cal nucleus. It is assumed that the equilibrium monomer
concentration N1 is equal to the steady-state concentra-
tion Z1.

In the particular case of nucleation on surfaces
we have to account for the configurational entropy of

distribution of clusters and single atoms among the ad-
sorption sites of density N0 (≈ 1 × 1015 cm−2) which
should be added to the Gibbs free energy changes
(2.31), (2.34) or (2.35) [2.51]. Assuming that the den-
sity of clusters is negligible compared with that of single
atoms the entropy correction reads

ΔGconf ≈−kBT ln

(
N0

N1

)
.

Then for the steady-state nucleation rate on surfaces
one obtains

J0 = ω∗Γ N0 exp

(
−ΔG∗

kBT

)
, (2.42)

where the frequency of attachment of atoms to the criti-
cal nucleus ω∗ accounts only for the surface diffusion of
atoms to the nucleus, the direct impingement from the
vapor being neglected [2.52].

As discussed above the capillary nucleation theory
is valid at supersaturations which are sufficiently low
that the nuclei are large and can be described in terms
of the classical thermodynamics. In order to find the
limits of validity of (2.42), or in other words, the max-
imum value of the supersaturation at which the above
equation is still valid, we have to find the values of the
pre-exponential K = ω∗Γ N0 and ΔG∗ and calculate
the time τ elapsed from switching on the supersatura-
tion to the appearance of the first nucleus. The latter is
given by τ = 1/J0S, where S is the area available for
nucleation.

Consider for simplicity 2-D nucleation on the sur-
face of the same crystal. The frequency of attachment
of atoms to the critical nucleus ω∗ is given by the prod-
uct of the periphery of the nucleus and the flux of
adatoms joining the nucleus. We assume that the nu-
cleus consists of at least 49 atoms (a square of 7 × 7
atoms) in order for the classical theory to be valid. The
flux of adatoms to the periphery is js ≈ Ds N1/a, where
Ds = a2ν exp(−Esd/kBT ) is the surface diffusion co-
efficient, and the adatom concentration is determined
by a dynamic adsorption–desorption equilibrium and is
given by N1 = Rτs. The reason for using this definition
is that it is supposed that the temperature is sufficiently
high to ensure low supersaturation and the desorption
flux N1/τs is significant. Here ν is the attempt fre-
quency and Esd and Edes are the activation barriers
for surface diffusion and desorption, respectively. Tak-
ing appropriate values for the parameters involved we
find a value for the pre-exponential of the order of
1020 –1025 cm−2 s−1 for nucleation from vapor. We can
further evaluate the supersaturation by using (2.11).
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30 Part A Fundamentals of Crystal Growth and Defect Formation

Once we know the supersaturation we can easily evalu-
ate ΔG∗ by making use of (2.36).

We consider as an example nucleation on Si(001)
at T = 1500 K and assume that S = 1 cm2, although
a more realistic value could be determined from the
width of the terraces on the crystal surface. From the
enthalpy of evaporation we deduce the bond strength
to be of the order of 2–2.2 eV. Then Δμ ≈ 0.3 eV,
ΔG∗ = 15 eV, and τ ≈ 1 × 1015 millennia. This behav-
ior of the classical nucleation rate was noticed by
Dash, who noted that nucleation on defectless crys-
tal surfaces according to the classical theory requires
astronomically long times [2.53]. The reason for this
behavior is that the pre-exponential in J0 is a very
weak function of the supersaturation compared with
the exponential exp(−ΔG∗/kBT ), which varies very

Nucleation rate

Supersaturation  Δµc

Fig. 2.7 Plot of the nucleation rate versus the supersatura-
tion. The nucleation rate is practically equal to zero up to
a critical supersaturation Δμc. Beyond this value the rate
of nucleation increases sharply by many orders of magni-
tude

steeply with the latter. As a result there is a critical
supersaturation below which the rate of nucleation is
practically equal to zero and beyond which it takes
values of many orders of magnitude (Fig. 2.7). We con-
clude that, in order for a nucleation event to take place
on a laboratory scale of time, ΔG∗/kBT should be
smaller than ≈ 30 (in the case under consideration it
is 4 times larger). This means that, for most mater-
ials at working temperatures between 600 and 1000 K,
the number of atoms in the critical nucleus should be
of the order of unity. This is why we will develop
in more detail the atomistic theory of nucleation valid
for nuclei consisting of very small number of atoms.
It is important to note that a small value (usually not
larger than ten) of the number of atoms in the critical
nucleus should be expected also in the case of three-
dimensional nucleation. A value of i∗ = 9 was obtained
in the case of nucleation of CoSi2 from amorphous
Co-Si alloy [2.54]. The reason for the comparatively
larger size is due to the much greater value of the pre-
exponential, which in this particular case is on the order
of 1035 –1040 cm−3 s−1 [2.21].

2.3.2 Rate of Nucleation
on Single-Crystal Surfaces

Single-crystal surfaces always represent vicinal sur-
faces consisting of terraces divided by steps due to
the tilt of the surface by some small angle with
respect to the low-index (singular) crystal face. Nu-
merous processes can take place during deposition on
the terraces (Fig. 2.8). We consider first the case of
complete wetting. Atoms arrive from the vapor and
accommodate thermally with the substrate [2.55], dif-
fuse on the crystal surface, and re-evaporate if the
temperature is sufficiently high. The atoms can also
join pre-existing steps and diffuse along these steps
to incorporate into kink sites. The reverse process of
detachment of atoms from kink sites directly to the
terrace or through the intermediate state of adsorp-
tion at the step edge can also take place. Thus when
the temperature is sufficiently high the crystal grows
by propagation of the pre-existing steps. If the tem-
perature is low and the atom diffusivity is small the
atoms cannot reach the steps and collide with other
atoms to produce dimers. The dimers can grow fur-
ther to produce trimers, tetramers, and finally large
islands by attachment of new adatoms, or can decay into
single atoms. Arriving atoms will preferably join the is-
lands in a later stage of growth, the formation of new
dimers being inhibited. Thus we can distinguish two
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Fig. 2.8 Schematic representation of the different processes which can take place on surfaces during deposition on like
and unlike substrates: 1 – adsorption, 2 – surface diffusion, 3 – desorption, 4 – edge diffusion, 5 – transformation of
monolayer to bilayer island in heteroepitaxy, 6 – dimer formation, 7 – dimer decay, 8 – step-down hopping, 9 – step-up
jump

regimes of growth: step flow growth at high tempera-
tures and growth by two-dimensional nucleation at low
temperatures.

In the case of incomplete wetting which favors
three-dimensional clustering all the processes listed
above remain the same with the exception that step
flow growth does not take place (we consider the
case of heteroepitaxy with ψ > ψ′); nucleation oc-
curs at all temperatures. The mechanism of formation
of 3-D clusters depends strongly on the wetting.
In the extreme of very weak wetting (metals on
alkali halides) visible clustering is observed from
the very beginning of deposition. When the wet-
ting is stronger as in the technologically important
cases of metals on metals or semiconductors on
semiconductors, two-dimensional islands are initially
energetically favored but become unstable and trans-
form beyond some critical size into 3-D clusters
(Fig. 2.8) [2.35]. The same is observed in Stranski–
Krastanov growth beyond the wetting layer [2.56,
57]. Thus in the beginning of deposition the overlay-
er can be considered as a population of molecules
of different size, most of which are one atom
high [2.58].

2.3.3 Equilibrium Size Distribution
of Clusters

We calculate first the equilibrium concentration of the
clusters of size i. The thermodynamic potential of the
cluster of size i is given by (2.25), where i is an integer
which can be arbitrarily small. Bearing in mind (2.26)

and (2.27) the work for nucleus formation reads

ΔG(i)= G(i)− iμv = i(ϕ1/2−Δμ)−Ui . (2.43)

Assuming the adlayer consisting of clusters of dif-
ferent size behaves as a two-dimensional ideal gas
(
∑

i Ni � N0) the thermodynamic potential of the pop-
ulation of clusters of size i will be [2.59]

G(Ni )= Ni G(i)− kBT ln
N0!

(N0− Ni )!Ni ! .
Then for the chemical potential of the two-

dimensional ideal gas of clusters of size i one obtains

μi = dG(Ni )

dNi
= G(i)− kBT ln

(
N0

Ni

)
. (2.44)

Suppose now that the pressure of the vapor is pre-
cisely equal to the equilibrium vapor pressure of the
infinitely large crystal at the given temperature so that
μi = iμ∞c . The system is in a true equilibrium and the
nucleation rate is precisely equal to zero. Rearrang-
ing (2.44) and inserting the above equality gives for the
equilibrium concentration of i-atomic clusters

N e
i

N0
= exp

(
−G(i)− iμ∞c

kBT

)
.

Assume now that the vapor pressure is higher than
the equilibrium vapor pressure so that μi = iμv > iμ∞c .
The system will be supersaturated and the nucleation
rate will differ from zero. We apply as before the artifi-
cial condition J0 = 0, which determines a hypothetical
equilibrium concentration of clusters of size i

Ni

N0
= exp

(
−G(i)− iμv

kBT

)
.
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Substituting for G(i) from (2.43) in the above equa-
tion gives

Ni

N0
= exp

(
− iϕ1/2− iΔμ−Ui

kBT

)
. (2.45)

The condition i = 1 yields the density of monomers

N1

N0
= exp

(
−ϕ1/2−Δμ−U1

kBT

)
,

the i-th power of which reads

(
N1

N0

)i

= exp

(
− iϕ1/2− iΔμ− iU1

kBT

)
. (2.46)

Dividing (2.45) and (2.46) gives for this hypotheti-
cal equilibrium concentration of clusters of size i [2.58]

Ni

N0
=
(

N1

N0

)i

exp

(
Ei

kBT

)
, (2.47)

where Ei =Ui − iU1 is the net energy gained to form
an i-atom cluster from i single atoms. Bearing in mind
that U1 is, in fact, the adhesion energy ψ′, Ei is the
potential (binding) energy of the lateral bonds in the
cluster. The latter means that the value of Ei does not
depend (within the framework of the approximation of
the additivity of the bond energies) on the material of
the substrate. It should be one and the same on like and
unlike substrate crystals. Recall that we defined Ui as
a positive quantity. This means that Ei is also positive.
As N1/N0� 1 the pre-exponential decreases whereas
the exponential increases with i. It follows that (2.47)
should display a minimum at some critical size or, in
other words, will have the same qualitative behavior as
the classical equilibrium size distribution (2.41).

2.3.4 Rate of Nucleation

An approximate expression for the nucleation rate can
be obtained by multiplying (2.47) by the flux of atoms
to the critical nucleus. Note, however, that in the case
of small clusters the classical definition of a nucleus as
a cluster with equal probabilities for growth and de-
cay, each one equal to 0.5, is not valid. The nucleus
should be defined as the cluster whose probability of
growth is smaller than or equal to 0.5, but which after
attachment of one more atom will have a probability of
growth greater than or equal to 0.5 [2.58]. The latter is
called the smallest stable cluster. Thus the nucleation
rate is the rate at which clusters of critical size become
supercritical or smallest stable clusters.

It is clear that for small clusters the requirement of
constant geometrical shape required by the classical the-
ory is violated. An analytical expression for i∗ cannot
be derived and the nucleus structure should be deter-
mined by a trial-and-error procedure by estimating the
binding energy of the different configurations including
the possibility of formation of three-dimensional struc-
tures. Let us consider as an example the formation of
nuclei on the (111) surface of a face-centered cubic (fcc)
metal (Fig. 2.9). At Δμ = 3.25ψ the critical nucleus
consists of two atoms and the smallest stable cluster
consists of three atoms (Fig. 2.10). The work required
to decay the nucleus is equal to the work to break a sin-
gle first-neighbor bond, whereas in order to detach an
atom from the smallest stable cluster we have to break
simultaneously two first-neighbor bonds. This means
that the latter will be much more stable than the nu-
cleus and a higher temperature is required to decay the
three-atom cluster. The attachment of additional atoms
up to i = 6 does not change the stability of the respec-
tive clusters. Then at Δμ= 2.75ψ the nucleus consists
of six atoms and the smallest stable cluster represents

a) b)

c) d)

Fig. 2.9a–d Two-dimensional clusters on (001) and (111)
surfaces of a crystal with a face-centered cubic lattice. The
structure of the nuclei is given by the gray circles. The
black circles denote the atoms that turn the critical nu-
clei into smallest stable clusters. (a) The nucleus consists
of a single atom; the stable supercritical cluster is a dimer,
which requires a single bond to be broken in order to de-
cay. In (b) the nucleus consists of three atoms situated on
the apexes of a rectangular triangle on (001) surface; the
smallest stable cluster has a square shape. The decay of
the latter requires the simultaneous breaking of two bonds.
On (111) surface the nuclei consist of (a) one, (c) two, and
(d) six atoms. The corresponding stable clusters consist of
two, three, and seven atoms, respectively, which require
breaking of one, two, and three bonds
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a closed structure consisting of a complete ring of six
atoms plus an atom in the middle. In order to detach an
atom from the smallest stable cluster we have to break
simultaneously three first-neighbor bonds. Obviously,
such a cluster will be stable at much higher temperatures
than a three-atom cluster.

Bearing in mind that every term in the sum of (2.38)
is equal to exp(ΔG(i)/kBT ) we study the behavior of
the latter for small values of i (Fig. 2.10). It is seen
that at extremely high supersaturations (low tempera-
tures) ΔG(i) and exp(ΔG(i)/kBT ) are represented by
broken curves whereas at low supersaturations (large
nuclei) the curve is smooth. Contrary to the classical
case where the clusters in the vicinity of the critical size
have values of exp(ΔG(i)/kBT ) close to that of the nu-
cleus, in the case of small clusters the contribution of
exp(ΔG(i∗)/kBT ) of the critical nucleus is the largest,
all other terms in the sum of the denominator being neg-
ligible. Thus, instead of summing all the terms as in the
classical theory, we can take the largest term and ne-
glect all the others. For this purpose we write (2.38) in
the form

J0 =ω+1 N1

(
1+ ω−2

ω+2
+ ω−2 ω−3

ω+2 ω+3
+ ω−2 ω−3 ω−4

ω+2 ω+3 ω+4
+ . . .

)−1

(2.48)

and calculate the rate constants for the birth and death
processes.

By analogy with the classical theory, where ω+i ≈
(Pi/a)Ds N1, Pi being the perimeter of the nucleus and
Pi/a the number of the dangling bonds, in the atomistic
approach [2.60]

ω+i = αi Ds N1 ,

where αi is the number of ways of attachment of an
atom to a cluster of size i to produce a cluster of size
i+1. Obviously, this parameter is proportional to the
number of dangling bonds.

The decay constant reads

ω−i = βiν exp

(
− Ei − Ei−1+ Esd

kBT

)
, (2.49)

where Ei is the work to disintegrate a cluster of size i
into single atoms, and Ei − Ei−1 is the work required
to detach an atom from the cluster of size i. βi is the
number of ways of detachment of an atom from a cluster
of size i. It is easy to show that there exists a one-to-
one correspondence between the growth (i→ i+1) and
decay (i+1→ i) processes so that

αi = βi+1 .

5

1.0
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1

Δµ
Ψ

= 3.25
Δµ
Ψ

= 2.75 Δµ
Ψ

= 0.02

Δµ
Ψ

= 0.02

Δµ
Ψ

= 3.25

Δµ
Ψ

= 2.75

Number of atoms

ΔG(n)

exp [ΔG(n)/kBT]

a)

b)

5 10 12080

5 10 12080

Fig. 2.10a,b Dependence of (a) the Gibbs free energy change
ΔG(i)/ψ in units of the work ψ required to break a first-neighbor
bond, and (b) exp(ΔG(i)/kBT ) on the number of atoms i in the
cluster at different values of the supersaturation. At small supersa-
turation (Δμ= 0.02ψ) the cluster is large, the respective curves are
smooth, and the summation can be replaced by integration. At very
large supersaturations the curves are broken and the contribution of
the critical nucleus is dominant

Recalling the expression for the diffusion coefficient
Ds = a2ν exp(−Esd/kBT ) we can write (2.49) in the
form

ω−i = βi Ds N0 exp

(
− Ei − Ei−1

kBT

)
,

where N0 ∼= a−2.
The assumption that all terms in the denomina-

tor in (2.48) are smaller than unity means that i∗ = 1
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Fig. 2.11 Experimental data for the nucleation rate as a function of
the overpotential η in the case of electrochemical nucleation of mer-
cury on platinum single-crystal spheres (after [2.61]), in atomistic
coordinates ln J0−η, according to [2.62]. The number of atoms in
the critical nucleus changes at about 0.096 V

(E1 = 0) and

J0 = ω+1 N1 = α1 Ds N2
1 .

Assuming that the adatom concentration is deter-
mined by a dynamic adsorption–desorption equilibrium
N1 = Rτs as before, for J0 one obtains

J0 = α1
R2

N0ν
exp

(
2Edes− Esd

kBT

)
.

When the ratio ω−2 /ω+2 is the largest term in the
denominator of (2.48), i∗ = 2 and

J0 = ω+1 N1
ω+2
ω−2
= α2 D2

s N3
1ν
−1 exp

(
E2+ Esd

kBT

)

or

J0 = α2
R3

N2
0ν

2
exp

(
E2+3Edes− Esd

kBT

)
.

In the general case

J0 = α∗R

(
R

N0ν

)i∗

× exp

(
Ei∗ + (i∗ +1)Edes− Esd

kBT

)
.

Very often the process of re-evaporation is negligi-
ble (complete condensation) and N1 �= Rτs. Then we
can write J0 in terms of the adatom concentration in
the form

J0 = α∗Ds
Ni∗+1

1

Ni∗−1
0

exp

(
Ei∗

kBT

)
, (2.50)

which is very useful for solving various nucleation
problems.

Whereas the attachment or detachment of atoms to
and from a comparatively large liquid droplet or crys-
tallite can be considered as a good approximation to
a continuous process, this is impossible when the clus-
ter consists of several atoms. In this case the general
principles of the thermodynamics are violated, the best
example of which is that the Thomson–Gibbs equation
is not valid in its familiar form (2.10). The reason be-
comes obvious if we write it in terms of the number of
atoms rather than the linear size of the crystallite

Pi

P∞
= exp

(
4σv2/3

kBTi1/3

)
.

It is immediately seen that the vapor pressure in the
left-hand side of the equation can be continuously var-
ied whereas the right-hand side is a discrete function of
the cluster size i. The latter means that to any particular
size of the cluster corresponds a fixed value of the vapor
pressure, but the opposite is not true; an integer number
of atoms does not correspond to any arbitrary value of
the vapor pressure. It follows that, contrary to the clas-
sical concept, a cluster with an integer number of atoms
is stable in an interval of supersaturation (or vapor pres-
sure) which becomes larger as the cluster size becomes
smaller [2.63]. This interval is equal to Pi− Pi+1, where
Pi is the fixed value of the vapor pressure corresponding
to a cluster consisting of i atoms.

Substituting for ΔG∗ from (2.26) with i = i∗
in (2.42) gives

J0 = ω∗Γ N0 exp

(
− Φ

kBT

)
exp

(
i∗ Δμ

kBT

)
.
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As the shape does not change at constant num-
ber of atoms the surface part Φ remains constant
in the interval of stability of a given cluster size.
Then the logarithm of the nucleation rate as a func-
tion of the supersaturation will represent a broken
line when the supersaturation interval is sufficiently
wide to cover the intervals of several cluster sizes.
The slopes of the consecutive straight line parts will
be equal to the respective number of atoms i∗ of the
critical nuclei. This is shown in Fig. 2.11, which rep-
resents experimental data for the nucleation rate in
electrodeposition of mercury on platinum single-crystal
spheres [2.61], interpreted in terms of the atomistic
theory in [2.62] (see also [2.64]). The values i∗ = 6
and 10 have been found from the slopes of the two
parts of the plot. A clear evidence for a transition from

i∗ = 1 to i∗ = 3 has been reported by Müller et al. in
the case of nucleation of Cu on Ni(001) [2.65]. Thus
a single nucleus size is operative over a temperature (su-
persaturation) interval. The slopes of the consecutive
intervals give a distinct series of consecutive num-
bers of atoms which depend on the crystallographic
orientation of the substrate. Thus in the case of nucle-
ation of (001) surface of fcc metals the numbers are
one and three, whereas on (111) surface the numbers
are one, two, and six. The corresponding smallest sta-
ble clusters (i∗ +1 = 2, 3, 7 on the fcc(111) surface)
are often referred to as magic in the literature. The
physics behind this magic is simple. In order to detach
an atom from the corresponding smallest stable clus-
ters we have to break simultaneously one, two or three
bonds.

2.4 Saturation Nucleus Density

Measurements of the nucleus density as a function of
time show that, after sufficiently long time, the nu-
cleus density saturates; this means that the nucleation
process ceases. Numerous factors can be responsible
for this phenomenon. Preferred nucleation on defect
sites, overlapping of zones with reduced supersaturation
around growing islands, coalescence of neighboring is-
lands, and growth of larger islands at the expense of
smaller ones owing to the Thomson–Gibbs effect (Ost-
wald ripening) take place most frequently and are most
studied [2.66].

Although the preparation of defectless single crys-
tals is already a routine procedure, the complete absence
of impurity particles, stacking faults, twin bound-
aries, emerging points of dislocations, etc. cannot be
achieved. It is this presence of defects on the crystal sur-
face which is one of the reasons for the observation of
saturation of the nucleus density with time and this was
the first to be studied. The defects represents sites on the
crystal surface which stimulate nucleation by stronger
wetting. Assume for simplicity that they have equal ac-
tivity (wetting function). Nuclei can form on free active
sites whose number is Nd− N with a frequency J ′0 per
site, Nd being the total number of active sites. Then the
change with time t of the nucleus density reads [2.67]

dN

dt
= J ′0(Nd− N) .

Integration subject to the initial condition N(0)= 0
results in a simple exponential function

N(t)= Nd
[
1− exp

(−J ′0t
)]

,

which tends with time to a saturation value equal to Nd.
In the more realistic case of a certain activity distribu-
tion of the sites, increasing supersaturation will lead to
inclusion of less-active sites in the process and increase
of the saturation nucleus density [2.68].

Another reason for saturation of the nucleus den-
sity is the appearance of locally undersaturated zones
around growing nuclei where the nucleation rate is re-
duced or even equal to zero owing to the consumption
of the diffusing adatoms [2.69–71]. Sigsbee coined for
these zones the term nucleation exclusion zones [2.72].
They are also known as denuded or depleted zones.
Nuclei and in turn denuded zones around them are
progressively formed and grow during film deposition.
When the zones overlap and cover the whole substrate
surface the process of nucleation is arrested and satura-
tion of the nucleus density is reached. The radii of the
nucleation exclusion zones are defined by the intersec-
tion of the gradient of the adatom concentration around
the growing island and the critical adatom concentration
(or supersaturation) for nucleation to occur (Fig. 2.12).
A typical nucleation exclusion zone around a mercury
droplet electrodeposited on a platinum single-crystal
sphere is shown in Fig. 2.13 [2.73].

The problem of finding the nucleus density when
the latter is limited by nucleation exclusion zones has
been treated by many authors, such as Kolmogorov,
Avrami, and Johnson and Mehl, and solutions for dif-
ferent cases have been found [2.74–78] (for a review
see [2.47]). The simultaneous influence of both nucle-
ation exclusion zones and active sites has also been
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Δµ
Δµc

0 rc r

Fig. 2.12 The definition of nucleation exclusion zones. The
radius of the latter is determined by the intersection of the
gradient of the supersaturation and the critical supersatu-
ration for noticeable nucleation to occur. Because of the
very steep dependence of the nucleation rate on the super-
saturation (Fig. 2.7) the nucleation rate inside the zone is
assumed equal to zero

addressed [2.79,80]. The problem consists of finding the
area Θ(t) uncovered by depleted zones and thus avail-
able for nucleation at a moment t. The number of nuclei
is then given by

N = J0

t∫
0

Θ(τ)dτ .

The area 1−Θ(t) represents the sum of all nucle-
ation exclusion zones accounting for the area where
neighboring zones have overlapped. The latter is equal
to the probability of finding an arbitrary point si-
multaneously in two or more nucleation exclusion
zones [2.74]. Assuming that nuclei are formed on ran-
domly distributed sites with a rate J0 and that the zones
grow with a velocity v(t)= ck(t) the area Θ(t) is given
by [2.74]

Θ(t)= exp

⎛
⎝−J0

t∫
0

S′(t′)dt′
⎞
⎠ ,

where

S′(t′, t)= πc2

⎛
⎝

t∫
t′

k(τ− t′)dτ

⎞
⎠

2

is the area of a nucleation exclusion zone at a moment t
around a nucleus formed at a moment t′ < t.

Assuming linear growth of the zones (k(t) = 1)
gives for the nucleus density as a function of time

N(t)= J0

t∫
0

exp

(
−π

3
J0c2t3

)
dt . (2.51)

Fig. 2.13 Nucleation exclusion zone around a mercury
droplet electrodeposited on a platinum single-crystal
sphere. The droplet is practically invisible. Instead, three
light reflections from the illuminating lamp are visible. The
mercury droplet has been deposited by applying a short
electric pulse followed by a lower overpotential in order to
grow it to a predetermined size. Then a high electric pulse
is applied to cover the whole surface with mercury with the
exception of the area around the droplet (after [2.73])

The saturation nucleus density is obtained under the
condition t→∞. Integrating (2.51) from zero to infin-
ity gives

Nsat ∼= 0.9

(
J0

c

)2/3

.

Another approach was later developed, particularly
for nucleation at surfaces, by using a system of kinetic
rate equations. It was first introduced by Zinsmeister
as a system of equations for the change with time of
the concentrations of clusters dNi/dt (i = 1, 2, 3, . . .)
for each cluster size, beginning with that of single ad-
atoms [2.81–84]. All birth and death processes were
accounted for in dNi/dt. In addition, the atom arrival
rate and re-evaporation were taken into account in the
equation of change of the monomers dN1/dt. In order
to solve quantitatively the above system of equations
the attachment and detachment frequencies had to be
determined. As a result a large amount of papers have
been devoted to further elaborating the approach [2.85–
92]. In the limit i∗ = 1 (irreversible aggregation) the
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detachment frequencies are equal to zero. The attach-
ment frequencies (capture numbers) were considered
by using different approximations, beginning from the
mean-field approximation by assuming that the clusters
are immersed and grow in a dilute adlayer with an aver-
age concentration that does not depend on the location
of the clusters, to solutions of diffusion equation around
the growing islands in terms of Bessel functions. The
system was later greatly simplified by Venables et al.
to a system of two equations which were sufficient to
illustrate the essential physics [2.93].

We consider first the case of irreversible aggrega-
tion. The dimers are assumed to be stable (a third atom
joins the dimer before the latter to decay) and immo-
bile. The atoms arrive at the crystal surface, diffuse on
it, and collide with each other to produce dimers. Atoms
join the dimers and larger clusters upon striking with-
out any obstacle of kinetic origin. This means that the
growth of clusters is limited only by the surface dif-
fusion. Coalescence of immobile clusters is ruled out.
The detachment frequencies are equal to zero and the
capture numbers are omitted for simplicity as they rep-
resent figures of the order of unity [2.93]. The system of
equations is then reduced to

dN1

dt
= F−2DN2

1 −DN1 Ns , (2.52a)

dNs

dt
= DN2

1 , (2.52b)

where F = R/N0 is the atom arrival rate in units of
number of monolayers, D= Ds/a2 = ν exp(−Esd/kBT )
is the diffusion (hopping) frequency, and Ns is the sum
of all stable clusters

Ns =
∞∑

i=2

Ni .

Single atoms arrive on the surface with frequency F
and are consumed by the formation of dimers (the sec-
ond term on the right-hand side of (2.52a)) and by
incorporation into stable clusters (the third term on
the right-hand side of (2.52a)). At the very beginning
of deposition most of the adatoms are consumed by
the formation of dimers. In a later stage of deposition
the density of stable clusters increases and the arriv-
ing atoms preferentially join stable clusters rather than
colliding with each other to produce dimers. Satura-
tion (or very weak dependence on time) is reached
and the consumption of atoms by formation of dimers
2DN2

1 is practically arrested and becomes negligible
compared with the growth term DN1 Ns. A steady state
is reached at this stage (dN1/dt = 0) and N1 = F/DNs.

Substituting the latter into (2.52b) and carrying out the
integration gives

Ns ∝
(

D

F

)1/3

.

This result is easy to generalize for the case of
reversible aggregation, assuming the critical nucleus
consists of i∗ > 1 atoms. Then one can write a system
of two kinetic equations for the single adatoms and the
sum of all clusters larger than i∗ [2.93]

dN1

dt
= F− (i∗ +1)DNi∗+1

1 −DN1 Ns , (2.53a)

dNs

dt
= ω∗Dni∗+1

1 , (2.53b)

where ω∗ = α∗ exp(E∗/kBT ) (see (2.50)).
Following the same procedure as above results in

Ns ∝
(

D

F

)−χ
, (2.54)

where

χ = i∗

i∗ +2
(2.55)

is the scaling exponent valid for the case of diffusion-
limited nucleation and growth in the absence of any
kinetic barrier inhibiting the attachment of atoms to the
critical nucleus.

Later Kandel relaxed the condition for diffusion-li-
mited regime of growth, assuming that a barrier exists
which inhibits the attachment of atoms to any cluster in-
cluding the critical nucleus [2.94]. Then the frequency
ω∗ for collision of atoms with the critical nucleus should
contain the term exp(−Eb/kBT ), where Eb is the barrier
concerned. He integrated (2.53b) taking for N1 a value
calculated by the solution of a diffusion equation from
the radius R of the nucleus to half of the mean distance
L = 1/

√
πNs between the nuclei and then averaged

from R to L . As a result the average adatom concen-
tration included two terms

N1 = A
F

D

1

Ns
+ B

F

D

1− exp(−Eb/kBT )

exp(−Eb/kBT )

1√
Ns

,

where A and B are constants.
The first term is inversely proportional to Ns as be-

fore and does not include the cluster edge barrier Eb.
The second term is inversely proportional to the square
root of Ns and includes the barrier Eb. Obviously,
when Eb = 0 the second term is equal to zero and
the integration of (2.53b) naturally gives the scaling
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exponent (2.55). In the other extreme of significant clus-
ter edge barrier the second term dominates and the
integration of (2.53b) gives the same power-law depen-
dence (2.54) but with a scaling exponent

χ = 2i∗

i∗ +3
, (2.56)

which is valid for a kinetic regime of growth.
Equation (2.54) shows a simple power-law depen-

dence of Ns on the ratio D/F of the frequency of
surface diffusion to the frequency of atom arrival. While
F represents the increase of atoms with time, D intro-
duces the fluxes of disappearance of atoms due either
to formation of nuclei or to the further growth of these
nuclei. Physically this is the ratio of the flux of con-
sumption of atoms on the crystal surface to the flux of
their arrival. A constant ratio D/F means a constant
adatom concentration or a constant supersaturation. The
increase of D/F can be performed by either increas-
ing the temperature or decreasing the atom arrival rate.
The fact that the island density scales with D/F sim-
ply means that it depends on the supersaturation. The
island density should have one and the same value at
a given value of D/F, irrespective of whether it is
a result of increasing (decreasing) of temperature or de-
creasing (increasing) of the atom arrival rate. Increasing
D/F means decreasing the supersaturation, which in
turn leads to an increase of the nucleus size i∗. Thus, at
sufficiently low values of D/F of the order of 104 –105,
i∗ is expected to be equal to one, whereas at D/F of
the order of 107 –108, i∗ is expected to be equal to three
on a square lattice [2.95]. Assuming a constant atom ar-

rival rate of the order of 10−2 monolayers per second,
attempt frequency of the order of 1 × 1013 s−1, and a sur-
face diffusion barrier of 0.75 eV an increase of D/F by
four orders of magnitude is equivalent to a temperature
increase of 200 K.

It should be noted that considering the size of the
critical nucleus as an integer above which all clusters
are stable is an approximation which strongly simpli-
fies the mathematical treatment of the problem [2.95].
In fact there are never fully stable clusters. Atoms can
always detach from them, particularly at high values of
D/F or high temperatures. Things look better at low
temperatures when bond breaking is strongly inhibited.

The scaling exponent (2.55) varies with i∗ from
1/3 to 1, whereas (2.56) has values larger than unity
already at i∗ > 2. Thus, one can distinguish between
diffusion and kinetic regimes of growth if χ is smaller
or greater than unity. Examples of the scaling expo-
nent (2.56) have been reported in surfactant-mediated
epitaxial growth: homoepitaxy of Si on Sn-precovered
surface of Si(111) [2.96], and of Ge on Pb-precovered
surface of Si(111) [2.97]. In the former paper a value
of χ = 1.76 has been found from the plot of ln Ns ver-
sus ln F. In the case of homoepitaxial growth of Si(111)
under clean conditions a value of χ = 0.85 has been ob-
tained from the same plot of ln N versus ln F [2.98].
It could be concluded that the nucleation process takes
place either in a diffusion regime with i∗ = 6 or in
a kinetic regime with i∗ = 2. The latter seems more
reasonable, bearing in mind the comparatively low tem-
perature of growth (< 700 K) and that Si is a very
strongly bonded material.

2.5 Second-Layer Nucleation in Homoepitaxy

Growth of defectless low-index crystal surfaces takes
place by formation and growth of 2-D nuclei with mo-
nolayer height. When the linear size L of the crystal
face is small, in fact, smaller than Lc = (v/J0)1/3 [2.99],
where v is the rate of lateral growth and J0 is the nucle-
ation rate, the growth proceeds by a periodic process of
formation of a single nucleus followed by its growth to
cover completely the crystal face. Thus, perfect layer-
by-layer growth takes place.

When the surface area which is in contact with the
supersaturated vapor is large, a large amount of nuclei
are formed on the crystal surface on one and the same
level. During the growth of the first layer nuclei, a cer-
tain size Λ can be reached at which second-layer nuclei

can form on top. The average time elapsed from the nu-
cleation of the first-layer nucleus to the appearance of
the second-layer nucleus is τ =Λ/v. The latter should
be inversely proportional to the frequency of nucleation
on top of the first-layer nucleus J̄0 = J0l2, or in other
words, Λ/v ∼= 1/ J̄0. Thus we find that the critical size
for second-layer nucleation is Λc = (v/J0)1/3 [2.99].
Obviously, when the surface coverage by first-layer nu-
clei is Λ2

c Ns� 1, where Ns is the saturation nucleus
density, nuclei of the second, third, etc. layers can form
before significant coalescence of the first-layer nuclei
takes place. The crystal surface will be rough with many
layers growing simultaneously. Multilayer growth takes
place. The number N of simultaneously growing layers
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depends on v and J0. If v is large or J0 is small, Λc will
be large and the surface roughness will be small, and
vice versa.

In the above physical picture it is assumed that the
probabilities of attachment of atoms to a step from both
the upper and lower terrace are equal. In other words,
it is accepted that the barrier which inhibits the in-
corporation of the atoms to the step and in turn leads
to the kinetic regime discussed above is one and the
same from both sides of the step. It was at the begin-
ning of 1966 when Ehrlich and Hudda discovered that
the above is completely incorrect [2.100]. They found
with the help of field-ion microscopy (the first method
which allowed the visualization of single atoms, in-
vented by Erwin Müller in the early 1950s) [2.101],
that an atom approaching the step from the upper ter-
race is repulsed by the step. The additional barrier EES,
known now in the literature as the Ehrlich–Schwoebel
barrier, was measured later by Wang and Tsong, who
reported values of the order of 0.15–0.2 eV for Re,
Ir, and W [2.102]. Much later Wang and Ehrlich re-
ported that the steps attract the atoms approaching them
from the lower terrace [2.103]. The same authors ob-
served in the case of Ir(111) that the atoms, instead
of being repelled from the descending step, were in
fact attracted by it. Thus they found another, push-
out, mechanism of step-down diffusion in which the
second-level atom pushes out the edge atom and oc-
cupies the position of the latter rather than making
a jump [2.104]. The atoms thus sample the potential
profiles shown in Fig. 2.14a in the case of step-down
jumping and in Fig. 2.14b in the case of the push-out
mechanism.

The physics behind these effect are easy to under-
stand if we compare interlayer diffusion with the same
phenomenon on terraces. It is clear that an atom jump-
ing down the step from the upper terrace will be less
coordinated from the side of the lower terrace. On the
contrary, an atom approaching the step from the lower
terrace will be additionally attracted from the atoms
belonging to the upper atomic plane. In the case of
the push-out mechanism the atoms taking part in the
process respect a fundamental rule of chemistry – mini-
mizing the breaking of bonds [2.105].

Schwoebel immediately grasped the importance of
the discovery of Ehrlich and Hudda and published later
in the same year a paper dealing with the effect of the
step-down diffusion barrier on the bunching of steps
during evaporation [2.106, 107]. He went even further
to foresee the push-out mechanism long before Ehrlich
observed it experimentally [2.106].

Esd

ΔW

EES

EES

ΔW

b)

a)

Fig. 2.14a,b Schematic potential diagrams for atoms moving to-
ward ascending and descending steps. (a) Traditional view of the
Ehrlich–Schwoebel barrier for atoms joining a descending step by
a jump and short-range attractive behavior of the ascending step,
(b) view of the potential sampled by an atom joining a descending
step by a push-out mechanism
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We consider in this chapter only the traditional
Ehrlich–Schwoebel effect of repulsion of atoms from
descending steps. The push-out mechanism together
with an additional barrier from the lower terrace owing
to the presence of surfactant atoms which have deco-
rated the step (the reverse Ehrlich–Schwoebel effect) is
considered in [2.108]. The additional ES barrier inhibits
the flow of atoms from upper terraces downwards, thus
enhancing the nucleation rate on upper terraces. This
leads to formation of mounds consisting of concentric
two-dimensional islands, one on top of the other, and
thus to strong roughening of the surface, a phenomenon
which was first predicted by Villain [2.109]. We will
consider the same problem as above, defining the criti-
cal island size Λ for second-layer nucleation accounting
for the ES barrier.

We define Λ in the same way as above but writing it
in integral form

Λ∫
0

J̄0(ρ)

v(ρ)
dρ = 1 , (2.57)

where

v(ρ)= dρ

dt
= R

2πρNs N0
(2.58)

is the rate of growth of the first-layer islands in the case
of complete condensation before nuclei on their upper
surfaces are formed.

The nucleation frequency J̄0 is defined as before as

J̄0 = 2π

ρ∫
0

J0(r, ρ)r dr , (2.59)

where J0 is the nucleation rate as given by (2.50). It is
a function of the island’s radius ρ through the adatom
concentration on the upper surface of the island N1.
The latter can be determined by solving the diffusion
equation (in polar coordinates) in the absence of re-
evaporation

d2 N1

dr2
+ 1

r

dN1

dr
+ R

Ds
= 0 . (2.60)

The solution reads

N1 = A− R

4Ds
r2 , (2.61)

where the integration constant should be determined by
the boundary condition

j =−Ds

(
dN1(r)

dr

)
r=ρ

, (2.62)

where j = j+− j− is the net flux of atoms to the de-
scending step which encloses the island, j+ and j−
being the attachment and detachment fluxes.

Bearing in mind Fig. 2.14 j+ and j− read

j+ = aνNst exp

(
− Esd+ EES

kBT

)
,

j− = aνNk exp

(
−ΔW + Esd+ EES

kBT

)
,

where Nst is the adatom concentration in the vicinity of
the step, ν is the attempt frequency, Nk is the concentra-
tion of atoms in a position (presumably kink position)
for easy detachment from the step, and ΔW = ϕ1/2−
Edes is the energy to transfer an atom from a kink posi-
tion onto the terrace.

The total flux j then reads

j = aν
(
Nst− Ne

1

)
exp

(
− Esd

kBT

)
1

S
, (2.63)

where S=exp(EES/kBT ), and Ne
1=Nk exp(−ΔW/kBT )

is the equilibrium adatom concentration (see (2.12)).
Combining (2.62) and (2.63) and bearing in mind

that Nst = A− Rρ2/4Ds yields [2.110]

N1 = Ne
1+

R

4Ds

(
ρ2+2ρaS− r2) . (2.64)

As seen in the case of negligible ES barrier
(2aS/ρ� 1), (2.64) turns into

N1 = Ne
1+

R

4Ds

(
ρ2− r2) . (2.65)

The adatom concentration on top of the island sur-
face has a profile of a dome with a maximum above
the island’s center (r = 0) and reaches its equilibrium
value Ne

1 near the island’s edge (r = ρ). It follows that
second-layer nucleation is favored around the middle of
the island.

In the other extreme (2aS/ρ� 1) we neglect the
difference ρ2− r2 and obtain

N1 ≈ R

2Ds
ρaS .

This means that the adatom population on top
of an island with repelling boundaries is uniformly
distributed all over the surface of the island and a nu-
cleation event can occur with equal probability at any
point of it.

We substitute (2.64) into (2.50) and the latter into
(2.59) to obtain after integration [2.110]

J̄0 = A
[(
ρ2+2ρaS

)i∗+2− (2ρaS
)i∗+2]

, (2.66)
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where

A = πα∗

(i∗ +2)
Ds N2

0 exp

(
E∗

kBT

)(
R

4Ds N0

)i∗+1

.

As seen, a negligible ES barrier (2aS� ρ) turns
(2.66) into

J̄0 = Aρ
2(i∗+2)
1 . (2.67)

The condition for layer-by-layer growth (formation
of one nucleus for the time T = R/N0 of deposition of
a complete monolayer)

N =
T∫

0

J̄0(ρ1)dt = 1 (2.68)

gives for the number of the growth pyramids the expres-
sion [2.111] (for a review see [2.21])

Ns = 1

4π
C∗N0

(
D

F

)−χ
exp

(
Ei∗

(i∗ +2)kBT

)
,

(2.69)

where C∗ is a very weak function of i∗ of the order
of unity. The above equation is in fact (2.54) with the
familiar scaling exponent (2.55).

In the other extreme (2aS� ρ) we take the last two
terms of the expansion of the sum in (2.66) and the latter
turns into

J̄0 = Bρi∗+3 , (2.70)

where

B = πα∗Ds N2
0 exp

(
E∗

kBT

)(
RaS

2Ds N0

)i∗+1

.

Following the above procedure gives for this
case [2.112]

Ns = 1

π
C∗N0

(
D

F

)−χ
exp

(
2[Ei∗ + (i∗ +1)Eb]

(i∗ +3)kBT

)
,

(2.71)

where C∗ is another very weak function of i∗ of the or-
der of unity. We again obtained (2.54) but the scaling
exponent is given by (2.56).

We can now calculate the critical radii of the is-
lands for second-layer nucleation in both cases of low
(subscript “0”) and high (subscript “ES”) Ehrlich–
Schwoebel barrier. Substituting (2.67), (2.70) and (2.58)
into (2.57) gives after integration [2.110]

Λ0 = aC0

(
D

F

)i∗/2(i∗+3)

, (2.72)

with

C0 ∼=
(

N0e−E∗/kBT

α∗Ns

)1/2(i∗+3)

, (2.73)

for the case of negligible ES barrier, and

ΛES = aCES

(
D

F

)i∗/(i∗+5)

S−(i∗+1)/(i∗+5) , (2.74)

with

CES ∼=
(

N0 e−E∗/kBT

α∗Ns

)1/(i∗+5)

, (2.75)

for the other limiting case of a significant ES barrier.
Let us compare Ns and Λ in both cases. For

this purpose we take typical values for the quantities
involved: N0 = 1 × 1015 cm−2, R = 1 × 1013 cm−2 s−1,
F = R/N0 = 1 × 10−2 s−1, Esd = 0.4 eV, EES = 0.2 eV,
T = 400 K, i∗ = 1, and E∗ = 0. Then, in the case of
EES = 0, Ns ≈ 6 × 1010 cm−2 and Λ0 ≈ 180 Å. In the
other extreme, Ns ≈ 1 × 1012 cm−2 and ΛES ≈ 50 Å is
3 times smaller. We conclude that with a significant ES
barrier a larger density of islands is formed which have
much smaller critical size for second-layer nucleation.
Mounding rather than planar growth is expected.

It is of interest to check the above theory. For this
purpose we calculate the number n of atoms on the sur-
face of the base island when its radius has just reached
the critical value Λ. We integrate the adatom concentra-
tion (2.64) on the island’s surface

n = 2π

Λ∫
0

ns(r,Λ)r dr

and find

n = πF

8D
N2

0Λ
4
(

1+ 4aS

Λ

)
.

We will consider as examples two surfaces of fcc
crystals: (100) and (111). The reason is that the (100)
surfaces are characterized by a large terrace diffusion
barrier and a small step-edge barrier. This is the rea-
son why, during growth, (100) surfaces demonstrate as
a rule oscillations of the intensity of the specular beam,
which are an indication of layer-by-layer growth. On
the contrary, the smoother (111) surfaces are characte-
rized with small intralayer diffusion barriers and large
interlayer barriers. The result is a roughening of the
crystal surface from the very beginning of deposition
and a monotonous decrease of the intensity of the spec-
ular beam [2.112].
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42 Part A Fundamentals of Crystal Growth and Defect Formation

We consider first the case of Cu(001) [2.113]. The
authors have measured the step kinetics of a pyramid
consisting of 2-D islands, one on top of the other,
and determined the critical radius Λ≈ 3 × 10−5 cm of
the uppermost island at which the next layer nucleus
is formed (T = 400 K, F = 0.0075 s−1, Esd = 0.4 eV,
a = 2.55 × 10−8 cm, N0 = 1.53 × 1015 cm−2). Compari-
son with the theory produced the value EES = 0.125 eV.
Then, by using the above formula we find for the
number of atoms which gives rise to the new mono-
layer nucleus the value n = 70. Note that aS/Λ≈ 0.03,
which confirms the above statement that the kinetics at
fcc(001) surfaces is not dominated by the interlayer dif-
fusion and the profile of the adatom concentration looks
like a dome.

We consider next the case of Pt(111) [2.114].
Bott, Hohage, and Comsa observed by scanning
tunneling microscopy (STM) the appearance of
second-layer nuclei at surface coverages of 0.3
(425 K, Ns = 3.37 × 1010 cm−2) and 0.8 (628 K, Ns =
3.5 × 109 cm−2) (R = 5 × 1012 cm−2 s−1). The activa-
tion energy for terrace diffusion is well known to
be 0.25–0.26 eV [2.115, 116]. Values for EES varying
from 0.12 eV (see [2.117]) to 0.44 eV have been esti-
mated [2.118]. The average number of atoms on the
island’s surface as computed with the help of the above
equation for n turned out to be of the order of 1 × 10−2,
i. e., much less than unity, which is unphysical. In fact n
becomes greater than unity when EES > 0.5 eV, which
means that the atoms at the island’s periphery must
overcome a total barrier of about 0.75 eV, which is too
large to be believed. In contrast to the previous case,
however, aS/Λ� 1, which means that it is interlayer
diffusion that dominates the kinetics, and the adatom
population on top of the island is spatially uniform.

Whereas the Cu(001) case is physically reasonable,
the (111) case looks puzzling. In order to solve the
problem of the high ES barrier Krug et al. accounted
for the probabilistic nature of the main processes in-
volved [2.117]. The authors have taken into account
the fact that the atoms arrive randomly on the island’s
surface with an area πρ2 but not at equal intervals
Δt = 1/πρ2 R as is implicitly assumed in the model
described above. Second, the time τ that the atoms re-
side on the island before rolling over and joining the
descending edge is also a random quantity. The lat-
ter is directly proportional to the island’s periphery
2πρ and inversely proportional to the rate of step-
down diffusion ω = aν exp[−(Esd+ EES)/kBT ], i. e.,
τ ≈ 2πρ/ω= 2πρaS/Ds. We introduce further the time
τtr = πρ2/Ds required for an atom to visit all sites of

the island. The condition τ/τtr� 1 is equivalent to
2aS/ρ� 1, which is in fact the condition for nucleation
kinetics dominated by step-down diffusion (see (2.70)).
Assuming i∗ = 1 (the dimers are stable and immobile)
it is concluded that, as soon as two atoms are present si-
multaneously on the island’s surface, their encounter is
inevitable. Thus the necessary and sufficient condition
for the atoms to meet each other and give rise to a sta-
ble cluster is τtr� τ . Then the probability of nucleation
pnuc is equal to the probability p2 for two adatoms to be
present simultaneously on the island. p2 is determined
by the condition that the time of arrival t2 of the second
atom be shorter than the time t1 of departure of the first
atom. Assuming that t1 and t2 are randomly distributed
around the average values τ and Δt, respectively, one
obtains after integration

pnuc = 1

τΔt

∞∫
0

dt1 e−t1/τ

t1∫
0

dt2 e−t2/Δt = τ

τ+Δt
.

Two limiting cases are possible. The case τ �Δt
and pnuc ≈ 1 is trivial; it means that the ES barrier is in-
finitely high and there will always be at least one atom
on top of the island. The physically interesting case is
when Δt� τ and pnuc = τ/Δt. Then the nucleation
frequency J̄0 = πρ2 Rpnuc reads

J̄0 ∝ aR2ρ5S

Ds
. (2.76)

This equation should be compared with (2.70). With
i∗ = 1 the latter gives

J̄0 ∝ a2 R2ρ4S2

Ds
. (2.77)

Comparing both formulae shows that the mean-
field expression (2.77) is aS/ρ� 1 times larger than
the probabilistic one (2.76). The explanation is simple.
Equation (2.77) is based on the implicit assumption that
on top of the island there is a time-averaged number
(smaller than unity but constant) of atoms all the time.
As shown above this is indicative of a large ES bar-
rier whose mathematical expression is just aS/ρ� 1.
In fact the island’s surface is empty most of the time
and is sometimes populated by a single atom, and it
very rarely happens that during this time a second atom
arrives. Once two atoms are simultaneously present
on the island a nucleus is formed with a probability
close to unity. That is why the authors coined for this
model the term the lonely adatom model. The problem
of second-layer nucleation has been intensively stud-
ied [2.119, 120]. It has been found that the mean-field
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Nucleation at Surfaces 2.6 Mechanism of Clustering in Heteroepitaxy 43

approach is applicable for critical nuclei consisting of
more than three atoms. If this is not the case (i∗ = 1, 2),

the random character of the processes involved becomes
significant.

2.6 Mechanism of Clustering in Heteroepitaxy
Fig. 2.15 Plot of the binding energy per atom in units of
the energy of a single first-neighbor bond ψ of mono-
layer, bilayer, and trilayer islands with simple cubic lattice
as a function of the total number of atoms. The wetting
parameter φ = 0.1 (after [2.35]) �

We consider first the growth of a heteroepitaxial thin
film by the mechanism of Volmer–Weber. As the wet-
ting is incomplete the thermodynamics requires 3-D
islanding directly on top of the substrate. We study the
stability of islands with different thickness beginning
from one monolayer against their volume (or total num-
ber of atoms). In other words we study the behavior of
the binding energy −Ui in (2.27), which is equal to the
surface energy term Φ up to a constant iϕ1/2 [2.35].

We study for simplicity a Kossel crystal with (100)
substrate orientation. The same result is obtained by us-
ing any other lattice and substrate orientation [2.35].
As a first approximation we omit the effect of the lat-
tice misfit. As discussed above the strain energy makes
as a rule a minor contribution with the same sign to
the difference of the cohesive ψ and adhesive ψ′ ener-
gies. As another approximation we consider our crystal
in a continuous way, assuming that the shape remains
a complete square irrespective of the number of atoms
in it. We calculate first the binding energies of mono-
layer, bilayer, and trilayer islands with a square shape of
the base and consisting of a total of N atoms. Restricting
ourselves to nearest-neighbor bonds the energies read

U1

Nψ
=−3+φ+ 2√

N
,

U2

Nψ
=−3+ φ

2
+ 2
√

2√
N

,

U3

Nψ
=−3+ φ

3
+ 2
√

3√
N

,

where φ is the wetting function (2.18).

Fig. 2.16 Schematic process for the evaluation of the ac-
tivation energy of the mono–bilayer transformation. The
initial state is a square monolayer island with n0 atoms
in the edge. The intermediate state is a monolayer island
with n atoms in the edge plus a second level island with n′
atoms in the edge so that n2+n′2 = n2

0. The final state is
a complete bilayer island �

Number of atoms N
0 200 400300 500100
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We plot the above energies as a function of N
and find that monolayer-high islands are stable against

n0

n'

n
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n'
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Fig. 2.17 The energy change which accompanies the mono–bilayer
transformation in Volmer–Weber growth (after [2.35])
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Fig. 2.18 Mono–bilayer transformation curve in Stranski–Krastanov
growth representing the energy change in units of bond energy as
a function of the number of atoms in the upper level. The lattice
misfit is 2.5% (after [2.122])

bilayer islands up to a critical size denoted by N12
(Fig. 2.15). The bilayer islands are stable from this size
up to a second critical size N23, beyond which tri-

layer islands become stable, etc. These critical sizes are
inversely proportional to the square of the wetting func-
tion and go to infinity when φ→ 0. The latter means
that, at φ = 0, 3-D islands will not be able to form. In-
stead, layer-by-layer growth is expected according to
the thermodynamics at complete wetting. At finite val-
ues of φ a mono–bilayer transformation should take
place when N > N12. A bi–trilayer transformation is
expected to occur when N > N23, etc. It is very im-
portant to note that monolayer-high islands appear as
necessary precursors for 3-D islands [2.121].

We study further the mechanism of transformation
of monolayer to bilayer islands, assuming the following
imaginary process illustrated in Fig. 2.16 [2.35]. Atoms
detach from the edges of the monolayer islands, which
are larger than N12 and thus unstable against bilayer is-
lands, diffuse on top of them, aggregate, and give rise
to second-layer nuclei. The latter grow further at the ex-
pense of the atoms detached from the edges of the lower
islands. The process continues up to the moment when
the upper island completely covers the lower-level is-
land. The energy change associated with the process of
transformation at a particular stage is given by the dif-
ference between the energy of the incomplete bilayer
island and that of the initial monolayer island

ΔU12(n′)
ψ

=−n′2φ− n′2

n0
+2n′ , (2.78)

where the approximation n0+n = 2n0 is used in the be-
ginning of the transformation, n0, n, and n′ being the
numbers of atoms in the edge of the initial monolayer is-
land, in the lower edge of the incomplete bilayer island,
and in the edge of the second-layer island, respectively
(Fig. 2.16).

Equation (2.78) is plotted in Fig. 2.17. As seen, it
displays a maximum at some critical size

n′∗ = n0

1+n0φ
. (2.79)

The height of the maximum is given by

ΔU∗12 =
n0

1+n0φ
ψ = n′∗ψ , (2.80)

as should be expected by the classical consideration of
the nucleation process (2.36). It follows that the mono–
bilayer transformation is a nucleation process.

The same physics functions in the clustering during
the Stranski–Krastanov growth of thin films beyond the
wetting layer [2.122]. The Stranski–Krastanov growth
represents a growth of A on strained A. The strained
wetting layer of A is formed on the surface of another
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crystal B with different lattice parameter. The 3-D is-
lands which form on the wetting layer are fully strained
in the middle but relaxed at the side-walls and edges.
The atoms near the edges of the base are displaced
from the positions they should occupy if the islands
were completely strained to fit the wetting layer. As
a result the adhesion of the atoms near the edges of
the base to the substrate (the wetting layer) is weaker
compared with the atoms in the middle of the island’s
base. Therefore, the average wetting is incomplete,
0 < φ < 1, which is the thermodynamic condition for
clustering. The detachment of atoms from the edges
and the formation of a cluster in the second level be-
yond some critical size is energetically favorable. The
numerically calculated energy accompanying this pro-
cess is shown in Fig. 2.18 [2.122]. The atoms interact
through a pair potential of Morse type whose anhar-
monicity can be varied by adjusting two constants that
govern separately the repulsive and attractive branches,
respectively [2.123, 124]. The 3-D crystallites have fcc
lattice and (100) surface orientation, thus possessing the
shape of a truncated square pyramid. As seen, a criti-
cal nucleus consisting of three atoms is formed, beyond
which the energy goes down as in an ordinary nucle-
ation process. The misfit dependence of the critical size
N12, the nucleus size, and the work for nucleus for-
mation are shown in Fig. 2.19 [2.122]. The nucleation
character of the transformation is clearly observed. The
energy barrier and the number of atoms in the cluster
with highest energy increase steeply with decreasing
lattice misfit, which in this case plays the role of the
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Fig. 2.19 Misfit dependence of the critical size N12, the critical nu-
cleus size (both expressed in number of atoms), and the nucleation
barrier (in units of ψ) for compressed overlayers. The initial size of
the monolayer island is 20 × 20 atoms (after [2.122])

supersaturation. The number N12 also goes to infinity,
illustrating the critical behavior of the transition from
monolayer (2-D) to bilayer (3-D) islands.

It should be pointed out that the mono–bilayer
transformation of islands under tensile stress does not
display a nucleation behavior, particularly at lower ab-
solute values of the misfit. However, this problem is
outside the scope of the present review and will not be
discussed.

2.7 Effect of Surfactants on Nucleation

It was found long ago that very often epitaxial films
grow in a layer-by-layer mode and show better qual-
ity when the vacuum is poor [2.125, 126]. Much later
Steigerwald et al. found that intentionally adsorb-
ed oxygen on Cu(001) suppresses agglomeration and
interdiffusion upon deposition of Fe [2.127]. The signif-
icance of these observations was immediately grasped
and the very next year Copel et al. reported that pread-
sorption of As drastically alters the mode of growth of
Ge on Si(001) and of Si on Ge(001) by suppressing
the clustering in the Stranski–Krastanov and Volmer–
Weber modes of growth, respectively [2.128]. They
suggested an interpretation of their observations in
terms of the change of the wetting of the substrate by
the overlayer due to the effect of the third element and

used the term surfactant to stress the thermodynamic
nature of the phenomenon. Intensive studies and heated
debate concerning the effect of the third elements on the
thermodynamics and kinetics of the processes followed.
It was shown that the surfactants change not only the
thermodynamics but also the kinetics of the processes
involved [2.5, 129]. Nevertheless, the term surfactant
was widely accepted in the literature. We explore here
the effect of surfactants on nucleation in the simpler
case of homoepitaxy. Accounting for the unlike sub-
strate requires only the inclusion of a term containing
the wetting function (2.19) into the work of nucleus
formation.

We calculate first the work for nucleus for-
mation by using the following imaginary process
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a)

b)

c)

Fig. 2.20a–c Calculation of the Gibbs free energy change
for nucleus formation on a surfactant-precovered surface.
(a) The initial surface covered with a complete monolayer
of surfactant atoms denoted by filled circles; (b) the surfac-
tant layer is evaporated and a cluster consisting of i atoms
is created; (c) the surfactant layer is condensed back and
a cluster consisting of i surfactant atoms is formed on top
(after [2.130])

(Fig. 2.20) [2.130]. In order to illustrate the essential
physics for simplicity we first make use of the classi-
cal nucleation theory. The initial state is a surface of
the crystal (C) covered by a complete monolayer of
surfactant (S) atoms. We first evaporate reversibly and
isothermally all S atoms. Then on the clean surface we
produce a cluster consisting of i C atoms. Assuming
a square shape with edge length l the work for cluster
formation in absence of a surfactant reads

ΔG0 =−iΔμ+4l�c ,

where �c is the specific edge energy.
We condense back the S atoms. We gain energy

−4ls�c due to saturation of the dangling bonds at the
cluster periphery by the S atoms, and spend energy 4l�s
to create the new step which surrounds the cluster con-

sisting of S atoms. The work for nucleus formation then
reads [2.130]

ΔGs =ΔG0−4ls�c+4l�s , (2.81)

where �s is the specific edge energy of the S cluster and
the parameter

s = 1− ω

ω0

accounts for the saturation of the dangling bonds by
S atoms. It is a measure of the surfactant efficiency, as
the quantities

ω= 1
2 (ψcc+ψss)−ψsc (2.82)

and

ω0 = 1
2ψcc

are the energies of the S-saturated and unsaturated dan-
gling bonds, respectively. The subscripts “cc,” “ss,” and
“sc” denote the bond energies C–C, S–S, and S–C,
respectively.

Looking at (2.82) it becomes clear that it in fact
represents the energetic parameter that determines the
enthalpy of mixing of the two species C and S.
It must be positive in order to allow the segrega-
tion of the surfactant. In the absence of a surfactant
ψss = ψsc = 0, ω= ω0, and s = 0. In the other extreme,
ψss+ψcc = 2ψsc and s = 1. Thus the parameter s varies
from 0 at complete inefficiency to 1 at complete effi-
ciency. (In general the parameter s can be greater than
unity, which means ω < 0. However, this means an al-
loying of the surfactant with the growing crystal, which
will have deleterious consequences for the quality of the
overlayer and should be avoided.)

It follows from (2.81) that, in the case of surfactant-
mediated growth, the Gibbs free energy for nucleus
formation contains two more terms that have opposite
signs and thus compete with each other. The s-con-
taining term accounts for the decrease of the edge
energy of the cluster owing to the saturation of the dan-
gling bonds by the surfactant atoms. The energy 4l�s
of the dangling bonds of the periphery of the cluster,
consisting of S atoms, which is unavoidably formed on
top of the 2-D nucleus due to the segregation of the
surfactant, increases the work of cluster formation.

Finding a solution for a small number of atoms in
the critical nucleus in the atomistic extreme is straight-
forward. We make use of (2.27)

Φ = iϕ1/2−Ui
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Fig. 2.21 Change of the Gibbs free energy for cluster for-
mation relative to the work needed to disjoin two C atoms
versus the number of atoms on the (111) surface of a fcc
crystal. The value of the surfactant efficiency s is denoted
by figures on each curve. The structure of the nucleus
is given by the filled circles. The gray circles denote the
atoms that turn the critical nuclei into smallest stable clus-
ters (after [2.130])

for the edge energy of both clusters instead of using the
capillary term for the edge energy �.

The binding energy Ui can be divided into lateral
energy Ei and desorption energy Edes (assuming addi-
tivity of the bond energies)

Ui = Ei + iEdes ,

and for Φ one obtains

Φ = iΔW − Ei ,

where ΔW = ϕ1/2− Edes is the energy to transfer an
atom from a kink position onto the terrace.

We then substitute Φ for 4l�c in (2.81) to obtain

ΔGs(i)=−iΔμ+ i(1− s)ΔW − (1− s)Ei +Φs ,

(2.83)

where Φs has the meaning of the edge energy 4l�s of
the surfactant cluster.

Figure 2.21 shows the dependence of ΔGs(i) in
units of the crystal bond strength, ψcc, on the cluster
size i for the (111) surface of fcc metals (ϕ1/2 = 6ψcc,

Edes = 3ψcc, ΔW = 3ψcc), with ψss/ψcc = 0.2, con-
stant supersaturation Δμ= 1.1ψcc, and different values
of s denoted by figures on each curve. As seen, ΔGs(i)
represents a broken line (as should be expected for
a small number of atoms, cf. Fig. 2.10), displaying
a maximum at i = i∗. Under clean conditions (s= 0) the
critical nucleus consists of two atoms. When s is very
small (= 0.05, the surfactant is almost inefficient), the
number of atoms in the critical nucleus equals six due
to the contribution of the edge energy of the surfactant
cluster 4l�s. The work of formation of the critical nu-
cleus also increases. Increasing s to 0.3 due to decrease
of the edge energy of the cluster leads to a decrease
of the nucleation work and i∗ becomes again equal to
two. At some greater value of s (= 0.7), i∗ = 1 and the
aggregation becomes irreversible.

We see that the critical nucleus size differs under
one and the same conditions (temperature, rate of de-
position) in the absence and presence of a surfactant.
In general, we should expect a decrease of the nucleus
work and, in turn, a steep increase of the nucleation rate.
As a result a larger density of smaller 2-D islands will
form. The latter can coalesce and cover completely the
surface before formation of nuclei of the upper layer.
Thus surfactants can induce layer-by-layer growth by
enhancing the nucleation rate [2.131, 132].

The rate of nucleation reads (see (2.42))

Js = ω∗sΓ N0 exp

(
−ΔGs(i∗)

kBT

)
, (2.84)

where ω∗s is the flux of atoms to the critical nucleus in
the presence of a surfactant, and Γ ∼= 1 is the Zeldovich
factor. ΔGs(i∗) is given by (2.83) with i = i∗.

Bearing in mind that Δμ= kBT ln(N1/N e
1 ), where

N1 and N e
1 are the real and the equilibrium adatom

concentrations, we can write

Δμ= kBT ln

(
N1

N0

)
− kBT ln

(
N e

1

N0

)
, (2.85)

where N e
1 is given by (2.12).

Combining (2.83–2.85) and (2.12) gives

Js = ω∗sΓ N0

(
N1

N0

)i∗

× exp

(
i∗sΔW + (1− s)E∗ −Φs

kBT

)
. (2.86)

In the absence of a surfactant, s = 0, we obtain
the familiar expression (2.50) bearing in mind that
ω∗s = ω∗ = α∗Ds N1.
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Note that the presence of the surfactant is not
accounted for only by the s-containing terms in the ex-
ponential. It is the flux ω∗s that strongly depends on the
mechanism of transport of crystal atoms to the criti-
cal nucleus [2.133, 134]. In the case when the transport
of atoms to the critical nucleus takes place under the
condition of reversible exchange/deexchange of S and
C atoms (the time of de-exchange is much smaller
than the time of deposition of complete monolayer
and atoms have time to perform many exchange/de-
exchange events) the nucleus density is given by [2.134]
(see for more details [2.21])

NS = Ns,0 exp

(
−χ

i∗
ES

kBT

)
, (2.87)

where Ns,0 and χ are given by (2.71) and (2.56), and
ES combines all energy contributions that depend on
the presence of the surfactant. Within the framework of
the classical nucleation theory the latter is given by

ES =−4ls�c+4l�s+ E∗ex

− i∗
[
(Edex− Eex)− (E0

sd− Esd
)]

, (2.88)

where Eex and Edex are the barriers for exchange and
de-exchange far from growing nuclei, E∗ex is the barrier
for exchange at the edge of the critical nucleus, and E0

sd
and Esd are the barriers for diffusion on clean surface
and on top of the surface of the surfactant monolayer.
As seen, the first two terms in ES are of thermodynamic
origin whereas the last two terms are of purely kinetic
origin.

It follows that the exponential multiplying Ns,0 can
be smaller or larger than unity depending on the sign of
ES. The latter in turn depends on the interplay of the en-
ergies involved. We consider in more detail the case of

Sb-mediated growth of Si(111) [2.98,135]. For this case
Kandel and Kaxiras computed the values Edex = 1.6 eV,
Eex = 0.8 eV, and Esd = 0.5 eV [2.136]. The value of
E0

sd = 0.75 eV has been calculated from experimental
data by Voigtländer et al. [2.98]. Thus a value of 0.55 eV
was found for the difference (Edex− Eex)− (E0

sd− Esd).
We recall that−4ls�c = sE∗ − i∗sΔW , where ΔW is of
order of the half of the heat of evaporation, which for Si
is equal to 4.72 eV [2.137]. It can be shown by inspec-
tion that i∗ΔW is always larger than E∗. Thus, when
i∗ = 1, E∗ = 0 and ΔW ∼= 2.3 eV, and when i∗ = 2,
E∗ = 2.3 eV and i∗ΔW ∼= 4.6 eV, etc. The value of s is
close to unity as evaluated from the surface energies of
Sb and Si available in the literature. It is thus concluded
that it is the decrease of the edge energy of the nuclei
4ls�c due to the saturation of the dangling bonds with
S atoms which plays the major role and determines the
sign of ES [2.21]. The latter explains the larger density
of 2-D nuclei in surfactant-mediated growth of Si(111)
compared with growth in clean conditions [2.98].

Kandel and Kaxiras assumed that the exchange/de-
exchange processes influence the kinetics of nucleation
by affecting the diffusivity of the atoms and derived an
expression for an effective diffusion coefficient includ-
ing the respective barriers [2.5]

Deff ∼= D0
s exp

(
− (Edex− Eex)− (E0

sd− Esd
)

kBT

)
,

and concluded that the atom diffusivity is inhibited
due to (Edex− Eex) > (E0

sd− Esd), which leads to in-
crease of the nucleus density according to the scaling
relation (2.54). As discussed above the more rigor-
ous analysis shows that it is the thermodynamic term
in (2.88) that controls the effect of the surfactant rather
than the kinetic barriers.

2.8 Conclusions and Outlook

As shown above the nuclei of the new phase, par-
ticularly on surfaces, represent small clusters whose
structure, shape, energy, and even size are still un-
clear. A large amount of work remains to be done

in order to study the stability of small clusters of
materials with different chemical bonds and crystal
lattices as a function of their structure, shape, and
size.
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Morphology o3. Morphology of Crystals Grown from Solutions

Francesco Abbona, Dino Aquilano

Growth from solutions is widely used both in
research laboratories and in many industrial fields.
The control of crystal habit is a key point in solution
growth as crystals may exhibit very different shapes
according to the experimental conditions. In this
chapter a concise review is given on this topic. First,
the equilibrium shape is rather deeply developed
due to its primary importance to understand crystal
morphology, then the growth shape is treated and
the main factors affecting the crystal habit are
briefly illustrated and discussed. A rich literature
completes the chapter.
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Interest in the crystal habit of minerals dates back a long
time in the history of mankind. A detailed history on
this topics and crystallization in general is given by
Scheel [3.1]; here only a short account of crystal mor-
phology is presented. Crystal habit, which attracted the
interest of great scientists such as Kepler, Descartes,
Hooke, and Huygens, is relevant from the scientific
point of view, since it marks the beginning of crystal-
lography as a science. Its birth can be dated to 1669
when the Danish scientist Niels Steensen, studying in
Florence the quartz and hematite crystals from Elba
island, suggested the first law of crystallography (con-
stancy of the dihedral angle) and the mechanism of face
growth (layer by layer). A century later this law was
confirmed by Romé de l’Isle. At the end of the 18th
century the study of calcite crystals led the French abbé
René Just Haüy to enunciate the first theory on crys-
tal structure and to discover the second law (rational
indices). It is worth noticing that these early scholars
met with great difficulty in studying crystal habit since,
contrary to botany and zoology where each species has
its own definite morphology, the crystal habit of min-
erals is strongly variable within the same species. In
the first part of the 19th century the study of crystal
habit led to the development of the concept of symme-
try and the derivation of the 32 crystal classes. Bravais,
by introducing the idea of the crystal lattice, was the
first to try to relate crystal habit to internal structure
(the Bravais law, saying that the crystal faces are lat-
tice planes of high point density). At the end of the 19th
century research on internal symmetry ended with the
derivation of the 230 space groups. In this century re-
search on crystallization, mainly from solution but also
from melt, went on and interlaced with progress in other
disciplines (chemistry, physics, thermodynamics, etc.).
We should recall the important contributions by Gibbs
(1878), Curie (1885), and Wulff (1901) on the equilib-
rium form of crystals, which was tackled later from an
atomistic point of view by Stranski [3.2] and Stranski
and Kaischew [3.3, 4].

The relationship between morphology and internal
structure (the Bravais law) was treated by Niggli [3.5]
and developed by Donnay and Harker [3.6], who con-
sidered the space group instead of the Bravais lattice
type as a factor conditioning the crystal morphology.
From about 1950 onwards, interest in crystal growth in-

creased due to the role of crystals in all kinds of industry
and the discovery of relevant properties of new crys-
talline compounds. Besides the technological progress,
a milestone was the publication in 1951 of the first
theory on growth mechanisms of flat crystal faces by
Burton, Cabrera, and Frank (BCF) [3.7].

Also, the crystal habit was receiving growing at-
tention due to theoretical interest and industrial needs.
The Donnay–Harker principle is exclusively crystallo-
graphic. A chemical approach was adopted by Hartman
and Perdok; looking at crystal structure as a network
of periodic bond chains (PBC) they published in 1955
a method that is still fundamental to studies of the-
oretical crystal morphology [3.8–10]. The method, at
first qualitative, was made quantitative through the cal-
culation of the broken bond energy and, since about
1980, has been integrated with the statistical me-
chanical theory of Ising models which led to the
integrated Hartman–Perdok roughening transition the-
ory [3.11], later applied to modulated crystals [3.12].
These methods do not take into account the exter-
nal habit-controlling factors, namely the effects of
fluid composition and supersaturation, which are ex-
plicitly considered in the interfacial structure (IS)
analysis [3.13]. An improvement in predicting mor-
phology was represented by the application of ab initio
calculations to the intermolecular interactions between
tailor-made additives and crystal surface [3.14].

Computer facilities have promoted tremendous ad-
vances in all kinds of calculation necessary in the
different sectors of crystal growth, enabling progress
in theoretical approaches and sophisticated simulations
which are now routine practice. A relevant instrumental
advance was achieved when atomic force microscopy
(AFM) was applied to study the features of crystal faces,
giving new impulse to a topic that had always been the
center of thorough research [3.15–18].

This chapter is devoted to the morphology of
crystals grown from solution. In the first part, the the-
oretical equilibrium and growth shapes of crystals are
treated from the thermodynamic and atomistic points
of view. In the second part the factors affecting crystal
habit will be considered with some specific examples.
High-temperature solution growth, mass, and protein
crystallization are excluded to limit the scope of the
chapter.
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3.1 Equilibrium Shape

When equilibrium is reached between a crystalline
phase and its surroundings, the statistical amount of
growth units exchanged between the two phases is the
same and does not change with time. This implies that
the crystallized volume remains constant, but nothing is
specified about many important questions, such as:

1. The surface of the crystals, i. e., how large its exten-
sion is and which {hkl} forms enter the equilibrium
shape (ES).

2. The difference, if any, between the stable ES of
a crystal immersed in either a finite or infinite
mother phase and the unstable shape obtained when
the activation energy for nucleation is reached.

3. How does the ES change when some adhesion is set
up between the crystal and a solid substrate?

4. How can solvent and impurity concentrations affect
the ES?

To address these questions, a few elementary con-
cepts must be fixed to structure our language and
a simple but effective crystal model adopted in the fol-
lowing.

3.1.1 The Atomistic Approach:
The Kossel Crystal and the Kink Site

Let us consider a perfect monoatomic, isotropic, and
infinite crystal. The work needed to separate an atom
occupying a mean lattice site from all its n neigh-
bors is ϕsep =∑n

i ψi , where ψi is the energy binding
one atom to its ith neighbor. We will see later on that
this peculiar site really exists and is termed a kink.
The potential energy (per atom) of the crystal will be
εc∞

p = −(1/2)ϕsep. The simplest model, valid for ho-
mopolar crystals, is due to Kossel [3.19]. Atoms are
replaced by elementary cubes bounded by pair inter-
actions, ψ1, ψ2, . . ., ψn : the separation work between
the first, second, and nth neighbors, with the pair po-
tential decreasing with distance, ψ1 > ψ2 > . . . > ψn
(Fig. 3.1a). In the first-neighbors approximation, the
separation work for an atom lying in the crystal bulk
is ϕsep = 6ψ1. Thus, εc∞

p =−3ψ1. On the other hand,
εc∞

p represents the variation of the potential energy
that an atom undergoes when going from the vapor to
a mean lattice site, which coincides with a well-defined
surface site, as suggested by Kossel [3.19] and Stran-
ski [3.2]. Once an atom has entered this special site,
the potential energy variation of the considered sys-
tem is equal to −3ψ1 and so the separation work for
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Fig. 3.1 (a) Kossel crystal; separation work between first (ψ1), sec-
ond (ψ2), and third (ψ3) neighbors. (b) When an atom enters a kink,
there is a transition in the potential energy, the difference between
final and initial stage being −3ψ1 (first neighbors)

an atom occupying this site is ϕc∞ = 3ψ1 (Fig. 3.1b).
A kink is the name adopted worldwide for this site, for
practical reasons. Different historical names have been
given: repetitive step [3.2, Z. Phys. Chem.] and half-
crystal position [3.2, Annu. Univ. Sofia], both related
to the physics of the site. In fact, deposition or evap-
oration of a growth unit onto/from a kink reproduces
another kink, thus generating an equal probability for
the two processes [3.20]. Moreover, the chemical po-
tential (μ) of a unit in a kink is equal to that of the
vapor. Hence, kinks are crystal sites in a true (and not
averaged) thermodynamic equilibrium, as will be shown
below.

3.1.2 Surface Sites
and Character of the Faces

Flat (F) faces. A crystal surface, in equilibrium with
its own vapor and far from absolute zero temperature,
is populated by steps, adsorbed atoms, and holes. In
the Kossel model all sites concerning the adsorption
and the outermost lattice level are represented (Fig. 3.2).
The percentage of corner and edge sites is negligible
for an infinite crystal face, and hence we will confine
our attention to the adsorption and incorporation sites.
Crystal units can adsorb either on the surface terraces
(ads) or on the steps (adl), with the same situation oc-
curring for the incorporation sites (ins, inl).
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Κ
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Fig. 3.2 The different types of faces of a Kossel crystal: {100}-F,
{111}-K, and {110}-S faces. Adsorption (ads, adl) and incorporation
(ins, inl) sites are shown on surfaces and steps. The uniqueness of
the K (kink) site is also shown

The binding energies of ad-sites and in-sites are
complementary to one another

ϕads +ϕins = ϕadl +ϕinl

= 2ϕkink→ ϕad+ϕin = 2ϕkink , (3.1)

which is generally valid since it depends neither on the
type of face, nor on the crystal model, nor on the kind
of lattice forces [3.21, p. 56]. The interaction of the unit
in the kink with the crystal (ϕkink) consists of two parts.
The first represents its attachment energy (ϕatt) with all
the crystal substrate, and coincides with that of an ad-
unit, which implies

ϕatt = ϕad . (3.2a)

The second is its slice energy (ϕslice), i. e., the in-
teraction with the half of the outermost crystal slice,
ϕslice = (ω/2), where ω is the interaction of the unit with
all of its slice. Thus

ϕin = ϕatt+ω , (3.2b)

and, from relation (3.1)

ϕkink = ϕatt+ϕslice . (3.2c)

Relation (3.2c) states that ϕatt and ϕslice of a growth
unit are complementary to one another. In fact, since

ϕkink is constant for a given crystal, the higher the lat-
eral interaction of one unit, the lower its interaction with
the subjacent crystal. This criterion is of the utmost
importance for understanding the growth morphology
of crystals. Moreover, the binding of a growth unit
must fulfil the qualitative inequality: ϕad < ϕkink < ϕin.
The quantitative treatment was elegantly addressed by
Kaischew [3.3, 4], who calculated the coverage degree
(θi ) and other related quantities for every i-site of the
surface drawn in Fig. 3.2

θi = {1+ exp[(ϕkink−ϕi )/(kBT )]}−1 , (3.3)

where kB is the Boltzmann constant. For a (001) Kossel
surface and within the first-neighbors approximation,
having assumed for the binding energy the standard
value ψ1 = 4kBT (valid for Au crystals not far from the
melting point), the set of results shown in Table 3.1 was
obtained.

From Table 3.1 it follows that:

1. Kinks are the only sites in thermodynamic equilib-
rium, being half filled and half empty at the same
time.

2. Ad-units form a very dilute layer (row) which
moves randomly on the surface (step edge) and
hence cannot belong to the crystal.

3. In-units belong to the crystal, from which they may
escape, generating a temporary hole, with a very low
exchange frequency with respect to the other sites.

Looking at the face as a whole, the face profile can nei-
ther advance nor move backwards: hence, the face is in
macroscopic equilibrium. Fluctuations around the equi-
librium cannot change its flatness since the lifetime of
the growth units in the ad-sites is very short and the va-
cancies generated among the in-sites are filled again in

Table 3.1 Coverage degree (3.3) and exchange frequency
of growth units in the main surface sites of the (001) face of
a Kossel crystal, assuming ψ1 = 4kBT (after [3.21]). The
exchange frequency is the reciprocal of the mean time be-
tween two successive evaporation (or condensation) events
on the same i-site (i. e. s−1 indicates the number of ex-
changes per unit time in a given site)

Type of Separation Coverage Exchange

surface site work degree θi frequency (s−1)

adsurface ψ1 0.0003 3.06 × 107

adledge 2ψ1 0.0180 3.02 × 107

kink 3ψ1 1/2 1.54 × 107

inledge 4ψ1 0.9820 5.55 × 106

insurface 5ψ1 0.9997 1.03 × 104
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even shorter time. So, this kind of equilibrium face has
been named an F-type (flat) face.

Kinked (K) and Stepped (S) Faces. The uniqueness
of F-faces is even more evident when considering the
behavior of the {111} form of a Kossel crystal, near
the equilibrium. Only kinks can be found on this sur-
face and hence only one type of binding exists (3ψ1)
among growth units, within the first neighbors. Since in
this case no units exhibit bonds in their slice, ω= 0,
which implies: ϕad = ϕkink = ϕin. With every ad-unit
transforming into an in-unit, the surface profile is not
constrained and hence fluctuates, with the mother phase,
around the equilibrium. This interface is diffuse and the
corresponding faces are termed K (kinked) faces.

The behavior of the {110} form may be thought
of as midway between that of F- and K-faces, since
only ledge-type sites exist, apart from the kinks. Any
fluctuation near the equilibrium can lead either to the
evaporation of an entire [100] step or to the growth of
a new one. In the first case, it is sufficient that a unit
leaves an in-ledge site to promote step evaporation,
while in the second case the formation of an ad-ledge
site automatically generates two kinks, allowing the fill-
ing of a new step. Both processes are not correlated,
even for contiguous steps, since there are no lateral
bonds (ω= 0) in the outermost (110) slice; thus, steps
can form (or disappear) independently of each other and
may bunch, giving rise to an undulating profile around
the zone axis. Parallel steps being the feature of this
kind of surface, the corresponding faces are termed S-
type (stepped) faces.

3.1.3 The Equilibrium Crystal – Mother
Phase: The Atomistic Point of View

Here we will deal with the equilibrium between a crystal
and its vapor; however, our conclusions can be basically
applied to solutions and melts as well. Let us consider
a Kossel crystal built by n3 units (each having mass m
and vibration frequency ν). Since the work to separate
two first neighbors is ψ, the mean evaporation energy
of the n-sized crystal is easily calculated

〈ΔH〉cn = 3ψ[1− (1/n)] = ϕcn . (3.4a)

Then, for an infinite-sized crystal,

〈ΔH〉c∞ = 3ψ = ϕc∞ = const . (3.4b)

This means that the units belonging to the crystal sur-
face reduce the value of the mean evaporation energy

and so they cannot be neglected when dealing with finite
crystals.

An Infinite Crystal and Its Mother Phase
As shown in Appendix 3.A, the equilibrium pressure
(p∞eq ) between a monoatomic vapor and its infinite
crystalline phase decreases with its evaporation work
ϕc∞ = (εv− εc∞), according to

peq∞ = [(2πm)3/2(kBT )−1/2ν3] exp(−ϕc∞/(kBT )) ,

(3.5a)

εv and εc∞ being the potential energy of a unit in the
vapor and in the infinite crystal, respectively. The term
pdV can be neglected in 〈ΔH〉c∞ with respect to the
term (dU). Assuming, as a reference level, εv = 0, it is
easy to show that 〈ΔH〉c∞ = ϕc∞ =−εc∞.

The Finite Crystal – The Link to the
Thermodynamic Supersaturation

When dealing with finite crystals (3.5a) transforms sim-
ply by changing εc∞ with εcn , which is the potential
energy of a unit in the finite crystal. It ensues that
ϕcn = (εv− εcn). The frequency (ν) does not vary from
large to small crystal size, so

peq
n = (2πm)3/2(kBT )−1/2ν3 exp(−ϕcn/(kBT )) .

(3.5b)

From (3.5a) and (3.5b) the following fundamental rela-
tion is obtained:

peq
n = peq∞ exp[(ϕc∞−ϕcn)/(kBT )] . (3.5c)

Since ϕ∞ > ϕn , (3.5c) shows that the equilibrium pres-
sure for finite crystals is higher than that for infinite
ones. This can also be written

ϕc∞−ϕcn = kBT ln
(

peq
n
/

peq∞
)= kBT lnβ , (3.6)

where β = peq
n /peq∞ = (peq∞+Δp)/peq∞ = 1+σ is the

supersaturation ratio of the vapor with respect to the
finite crystal. The (percentage) distance from equilib-
rium is σ = (Δp/peq∞), the exceeding pressure being
Δp= peq

n − peq∞.
Equilibrium can also be viewed in terms of chem-

ical potentials. Using the Helmholtz free energy, the
chemical potentials, per unit, of the infinite and finite
crystal read: μc∞ =−ϕc∞−Tsc∞ and μcn =−ϕcn−
Tscn . The vibrational entropies per unit, sc∞ and scn ,
are very close. Thus ϕc∞−ϕcn = μcn −μc∞ = Δμ

(Fig. 3.3). Hence, the following master equation for the
equilibrium is obtained:

Δμ= kBT lnβ , (3.7)
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0=εv
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εc∞

Finite crystal

Infinite crystal
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Fig. 3.3 Potential energy ε, evaporation work ϕ, and chem-
ical potential μ of a growth unit in the vacuum, in a mean
site of both finite and infinite crystal. Δμ= μcn−μc∞ is
the thermodynamic supersaturation

where Δμ is the thermodynamic supersaturation. In
heterogeneous systems a unit spontaneously goes from
the higher chemical potential (μ′) to the lower one
(μ′′). During the transition a chemical work (μ′′ −
μ′)=−Δμ is gained, per growth unit.

The equilibrium between a finite crystal and its sur-
roundings is analogous to the equilibrium of a spherical
liquid drop of radius r (finite condensed phase 2) im-
mersed in its own vapor (infinite dispersed phase 1). The
phenomenological treatment is detailed in [3.21], where
the two different equilibria are compared in the same
way as we dealt with the atomistic treatment. Hence,
one obtains the Thomson–Gibbs formula for droplets

Δμ= kBT ln(p/peq)=Ω2 pγ = 2Ω2(γ/r) , (3.8)

where:

1. peq is the pressure of the vapor in equilibrium with
a flat liquid surface

2. γ and Ω2 are the surface tension at the drop–vapor
interface and the molecular volume of the drop,
respectively

3. The capillarity pressure pγ at the drop interface
defined by Laplace’s relation (pγ = 2γ/r) equili-
brates the difference between the internal pressure
of the drop (pr) and the actual vapor pressure (p):
pγ = (pr− p).

The ratio (p/peq) is nothing else than β. When work-
ing with ideal or nonideal solutions, β is expressed by
the concentrations (c/ceq) or by the activities (a/aeq),
respectively. When a crystal is considered instead of
a liquid drop, the system is no longer isotropic and then

the radius r represents only the size of the crystal, as
we will see later on. Nevertheless, the Thomson–Gibbs
formula continues to be valid and expresses the relation
among the deviation Δμ of the solution from saturation,
the tension γcs of the crystal–solution interface, and the
size of the crystals in equilibrium with the solution.

3.1.4 The Equilibrium Shape of a Crystal
on a Solid Substrate

This topics has been deeply treated by Kern [3.22],
who considered simultaneously both mechanical (cap-
illary) and chemical (thermodynamic) equilibrium to
obtain the ES of a crystal nucleating on a substrate from
a dispersed phase. In preceding treatments, the Curie–
Wulff condition and the Wulff theorem [3.23] only took
into account the minimum of the crystal surface en-
ergy, the crystal volume remaining constant. According
to [3.22], when nA units of a phase A (each having vol-
ume Ω) condense under a driving force Δμ on a solid
substrate B (heterogeneous nucleation) to form a three-
dimensional (3-D) crystal (Fig. 3.4), the corresponding
variation of the free Gibbs energy reads

ΔG3-D
hetero =−nA ×Δμ

+ (γA
i −βadh

)
SAB+

∑
j

γA
j SA

j , (3.9)

where the second and the third term represent the work
needed to generate the new crystal–substrate interface
of area SAB and the free crystal surfaces (of surface
tension γA

j and area SA
j ), respectively.

The term (γA
i −βadh)SAB comes from the bal-

ance between the surface work lost (−γB × SAB) and
gained (γAB × SAB) during nucleation. It is obtained
from Dupré’s formula: γAB = γB+γA

i −βadh, where
γAB is the crystal/substrate tension, γB is the surface
tension of the substrate, γA

i is the surface tension of

Substrate B

SAB, γAB 

Sj
A, γj

A

Fig. 3.4 Surface parameters involved in the balance of the
free Gibbs energy variation when nA units of a phase
A condense on a solid substrate B to form a 3-D crystal
(heterogeneous nucleation)
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Morphology of Crystals Grown from Solutions 3.1 Equilibrium Shape 59

the i-face of the A crystal (when considered not in
contact with the substrate), and βadh stands for the spe-
cific crystal/substrate adhesion energy. At the (unstable)
equilibrium of the nucleation any variation of ΔG3-D

hetero
must vanish. Then, under the reasonable assumption
that also the specific surface tensions do not vary for
infinitesimal changes of the crystal size,

d
(
ΔG3-D

hetero

)=−dnA ×Δμ+ (γA
i −βadh

)
dSAB

+
∑

j

γA
j dSA

j = 0 . (3.10)

The fluctuation dnA is related to those of the face areas
(dSA

j and dSAB) and to their distances (h j and hs) with
respect to the crystal center. Then, (3.10) may be written
in terms of dSA

j and dSAB. Its solution is a continuous
proportion between the energies of the faces and their
h j and hs values

γA
1

h1
= γA

2

h2
= · · · = γA

j

h j
= γA

i −βadh

hs

= const= Δμ

2Ω
. (3.11)

This is the unified Thomson–Gibbs–Wulff (TGW) equa-
tion, which provides the ES of a crystal nucleated on
a solid substrate:

1. The ES is a polyhedron limited by faces whose dis-
tances from the center are as shorter as lower their
γ values.

2. The distance of the face in contact with the substrate
will depend not only on the γ value of the lattice
plane parallel to it, but also on its adhesion energy.

3. The faces entering the ES will be only those limiting
the most inner polyhedron, its size being determined
once Δμ and one out of the γ values are known.

The analogy between the crystal ES and that of a liquid
drop on solid substrates is striking. It is useful to re-
call Young’s relation for the mechanical equilibrium of
a liquid drop on a substrate (Fig. 3.5)

γsl = γlv cosα+γsv , (3.12a)

where α is the contact angle and γsl, γlv, and γsv are the
surface energies of the substrate–liquid, liquid–vapor,
and substrate–vapor interfaces, respectively. Besides,
from Dupré’s relation one obtains

γsl = γsv+γlv−βadh . (3.12b)

Since −1≤ cosα ≤ 1, the range of the adhesion energy
(wetting) must fulfil the condition

2γlv ≥ βadh ≥ 0 . (3.12c)

Adhesion values affect the sign of the numerator in the
term

(
γA

i −βadh
)/

hs (3.11).
The ES of the crystal is a nontruncated polyhe-

dron when the crystal/substrate adhesion is null, as
occurs for homogeneous nucleation. However, as the
adhesion increases, the truncation increases as well,
reaching its maximum when βadh = γA

i . If the wetting

	adh = 0

γsv

γlv

γlv γi
A

	adh < 2γ

	adh = 2γ

αγsl Δ hi

Fig. 3.5 Analogy between the equilibrium shape of a liquid drop on
a solid substrate and that of a crystal, both heterogeneously nucle-
ated. The adhesion energy βadh rules both the contact angle of the
drop with the substrate and the crystal truncation
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60 Part A Fundamentals of Crystal Growth and Defect Formation

further increases the truncation decreases, along with
the thickness of the crystal cup. When βadh reaches its
extreme value, 2γA

i , the crystal thickness reduces to
a monomolecular layer.

The Equilibrium Shape of a Finite Crystal
in Its Finite Mother Phase

Microscopic crystals can form in fluid inclusions cap-
tured in a solid, as occurs in minerals [3.25], especially
from solution growth under not low supersaturation
and flow. If the system fluctuates around its equilib-
rium temperature, the crystal faces can exchange matter
among them and with their surroundings: then crystals
will reach their ES, after a given time. Bienfait and
Kern [3.24], starting from an inspired guess by Klija
and Lemmlein [3.26], first observed the ES of NH4Cl,
NaCl, and KI crystals grown in small spherical inclu-
sions (10–100 μm) filled by aqueous solution (Fig. 3.6).
The crystals contained in each inclusion (initially den-
drites) evolve towards a single convex polyhedron and
the time to attain the ES is reasonable only for mi-
croscopic crystals and for droplet diameter of a few
millimeters. The ES so obtained did not correspond to

Fig. 3.6 The evolution towards equilibrium of NH4Cl dendrites
formed in an aqueous solution droplet (closed system) (after [3.24]).
The total surface energy is minimized in passing from the den-
dritic mass to a single convex polyhedron at constant volume and
T (equilibrium shape). Droplet size: 100 μm

the maximum of the free energy (unstable equilibrium)
but to its minimum, and then to a stable equilibrium. Fi-
nally, it was shown that both unstable and stable ESs are
homothetic but with different sizes.

3.1.5 The Stranski–Kaischew Criterion
to Calculate the Equilibrium Shape

Without Foreign Adsorption
In the preceding sections, the surface tensions of the
{hkl} forms have been considered to be independent of
crystal size. This is true when the crystal exceeds micro-
scopic dimensions, but is no longer valid for those sizes
which are very interesting both in the early stages of nu-
cleation and in the wide field of nanosciences. In these
cases, it should be reasonable to drop the use of the sur-
face tension values, which are macroscopic quantities,
to predict the equilibrium shape of micro- and nano-
crystals. To face this problem, it is useful to recall the
brilliant path proposed by Stranski and Kaischew [3.21,
p. 170]. Their method, named the criterion of the mean
separation works, is based on the idea that the mean
chemical potential 〈μ〉c,m = (1/m)

∑m
j=1 μ j,c averaged

over all m units building the outermost layer of a fi-
nite facet, must be constant over all the facets, once the
phase equilibrium is achieved. The chemical potential
of a unit in a kink (Appendix 3.A) is

μc∞ =−ϕkink− kBT lnΩc+μ0 , (3.13a)

and, by analogy, in a j-site of the surface

μ j,c =−ϕ j,c− kBT lnΩ j +μ0 . (3.13b)

The mean vibrational volumes being the same for ev-
ery crystal sites, one can write for a generic site and
especially at low temperature

μ j,c ≈−ϕ j,c+ const . (3.14)

At equilibrium between a small crystal and its vapor:
μgas = 〈μ〉c,m . Subtracting the equality which repre-
sents the equilibrium between an infinite crystal and
its saturated vapor (μgas

saturated = μc∞) and applying re-
lation (3.14), one can finally obtain

Δμ= μgas−μ
gas
saturated = 〈μ〉c,m −μc∞

≈ ϕkink−〈ϕ〉c,m .

That represents the Thomson–Gibbs formula, valid for
every face of small-sized crystals

ϕkink−〈ϕ〉c,m ≈Δμ= kBT lnβ , (3.15)
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which allows one to determine the β value at which
a unit (lying on a given face) can belong to the ES. Us-
ing (3.15), the ES can be determined without using the
γ values of the different faces.

Let n01 and n11 be the number (not known a priori)
of units in the most external 〈01〉 and 〈11〉 rows of a 2-D
Kossel crystal (Fig. 3.7). Within the second neighbors,
the mean separation works for these rows are

〈ϕ〉01 = (1/n01)[2ψ1(n01−1)+ψ1+2ψ2n01]
= 2ψ1+2ψ2− (ψ1/n01) , (3.16a)

〈ϕ〉11 = (1/n11)[2ψ2(n11−1)+ψ2+2ψ1n11]
= 2ψ1+2ψ2− (ψ2/n11) . (3.16b)

The separation work from the kink is ϕkink = 2ψ1+2ψ2
and hence from (3.15) it ensues that

Δμ= ϕkink−〈ϕ〉01 = ϕkink−〈ϕ〉11

= (ψ1/n01)= (ψ2/n11) , (3.16c)

which represents both the phase equilibrium and the ES
of the 2-D crystal. In fact the ratio between the lengths
of the most external rows is obtained as

(n01/n11)= (ψ1/ψ2) . (3.17)

Equation (3.17) is nothing other than Wulff’s con-
dition (h01/h11) = (γ01/γ11) applied to this small
crystal (3.11) [3.21, p. 172].

The criterion of the mean separation work can also
answer a question fundamental to both equilibrium and
growth morphology: how can we predict whether a unit
is stable or not in a given lattice site? Let us consider,
as an example, the unit lying at corner X of the 2-D
Kossel crystal (Fig. 3.7). Its separation work, within the
second neighbors, reads ϕX = 2ψ1+ψ2. Stability will
occur only if the separation work of the unit X is higher
than the mean separation work of its own row, i. e.,
ϕX ≥ 〈ϕ〉01 and hence, from (3.16c), ϕX ≥ ϕkink−Δμ.
It ensues that 2ψ1+ψ2 ≥ 2ψ1+2ψ2−Δμ. Finally, one
obtains Δμ= kBT lnβ ≥ ψ2, which transforms to

β ≥ β∗ = exp(ψ2/kBT ) . (3.18)

This means that, when β is lower than the critical β∗
value, the unit must escape from the site X, thus gener-
ating an ES which is no longer a square, owing to the
beginning of the 〈11〉 row. In other words, the absolute
size (n01, n11) of the crystal homothetically decreases
with increasing β (ψ1 and ψ2 being constant), as en-
sues from (3.16c). Since ψ1 >ψ2, n01 > n11 and the ES
will assume an octagonal shape dominated by the four
equivalent 〈01〉 sides, the octagon reducing to the square

[11]

[01]

h01 h11

n01
n11

X site

a

b

c

�k= 2ψ1+2ψ2

�X= 2ψ1+ψ2

Δμa < Δμb < Δμc 

Fig. 3.7 To derive the equilibrium shape of a 2-D Kossel crystal
by the criterion of the mean separation work, only the 1st, 2nd,
. . ., n-th-neighbors interactions are needed. The figure illustrates
the scheme for the second-nearest neighbors approximation, the
kink energy (ϕkink), the stability criterion for a unit X occupying
a corner site and, finally, the 2-D equilibrium shape and size for
(ψ1/ψ2)= 1.5 and for increasing supersaturation (Δμ) values

when the number of units along the 〈11〉 sides is re-
duced to n11 = 1. As Δμ= (ψ2/n11), this occurs when
Δμ= ψ2, which exactly reproduces what we have just
found in (3.18).

With Foreign Adsorption
In growth from solution a second component (the sol-
vent) intervenes in the interfacial processes, since its
molecules interact strongly with the crystallizing solute.
Here we are interested in studying how the ES of a crys-
tal is affected by the presence of a foreign component.
Two approaches exist in order to give a full answer to
this problem:

1. The thermodynamic approach, which allows one to
forecast the variation dγ of the surface tension γ

of a face due to the variation dμi of the chemical
potential of component i of the system, when it is
adsorbed. To calculate dγ for a flat face one has to
apply Gibbs’ theorem [3.22, p. 171]

dγ =−s(s) dT −
∑

i

Γi dμi , (3.19)

where s(s) is the specific surface entropy and
Γi =−

(
∂γ/∂μi

)
T,s,μ�=μi

corresponds to the excess
of the surface concentration of component i. Solv-
ing (3.19) is not simple, even at constant T , since
one has to know the functional dependence of Γi on
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62 Part A Fundamentals of Crystal Growth and Defect Formation

μi and hence on the activity ai of component i. This
means that one has to know Γi , which ultimately
represents the adsorption isotherm of component i
on a given face.

2. The approach grounded on the atomistic view of
equilibrium proposed by Stranski [3.27, 28]. This
model is based on the simplifying assumptions that
foreign ad-units have the same size as those build-
ing the adsorbing surface (Kossel model) and that
only first-neighbor interactions are formed between
ad-units and the substrate. Three types of adsorp-
tion site are defined (Fig. 3.8), each of them having
its own binding energy.

From (3.19) it ensues that adsorption generally lowers
the surface tension of the substrate (Δγ < 0), so γ in-
creases when an adsorption layer is reversibly desorbed.
Let us denote the desorption work by w = −Δγ × a,
representing the increase per ad-site of the surface
tension of the substrate (where a is the mean area
occupied by an ad-unit) [3.29–31]. Thermodynamics al-
lows to evaluate w, according to the type of adsorption
isotherm [3.21, p. 175]

w=−kBT ln(1− θ)− (ω/2)θ2

(Frumkin–Fowler type) , (3.20a)

w=−kBT ln(1− θ) (Langmuir type) , (3.20b)

valid when ω, the lateral interaction of the ad-unit with
the surrounding, vanishes and

w=−kBT × θ (Henry type) , (3.20c)

when the coverage degree in ad-units is low (θ� 1). In
the last case one can compare the θ values of the differ-
ent sites remembering that, at given bulk concentration
of foreign units, the coverage degree for an isolated ad-
unit behaves as θ ∝ exp(ϕads/(kBT )). Here, ϕads is the

W1

W3

W2

W1

W3

W2

a) b)

Fig. 3.8 (a) The three types of adsorption sites on a Kossel
crystal (only 1st neighbors interaction). Each ad-site has its
binding energy: w1 < w2 < w3. (b) Energy balance repre-
senting the initial a) and the final b) stage of the desorption
of a foreign unit from a kink-site. The binding energy does
not vary on the adsorbance (after [3.21])

binding energy of the ad-unit with the substrate. From
(3.20c) one can write

wi

w j
= θi

θ j
= exp

(
ϕi

ads−ϕ
j
ads

)
kBT

, (3.21)

which shows that the difference in the desorption works
is very sensitive to the ϕads value. This can be verified by
applying (3.21) to the three sites in Fig. 3.8a of a cubic
Kossel crystal and remembering that, in this case, ϕads
is equal to ψads, 2ψads, and 3ψads, where ψads = kBT ,
2 × kBT , 3 × kBT, . . . is the energy of one adsorption
bond. An important consequence of this reasoning is
that the chemical potential of an infinite crystal (and
hence its solubility) is not changed by the adsorption
of impurities on its surfaces, as is proved by the balance
detailed in Fig. 3.8b, which represents the initial and fi-
nal stages of the desorption of a foreign unit from a kink
site.

Let us now evaluate how the ES of a finite crystal
changes, by applying the criterion of the mean sep-
aration works to the mentioned Stranski adsorption
model. The stability of a unit in the corner site X when
adsorption occurs (Fig. 3.9a) can be compared with
that obtained without adsorption (3.18). The separation
work of a unit in X is ϕads

X = 2ψ1+ψ2+2w1−w2,
where w1 and w2 are the desorption works for the two
ad-sites, respectively.

The stability criterion requires ϕads
X ≥ 〈ϕ〉01 and

hence, from (3.16c), ϕads
X ≥ ϕkink−Δμ.

Since ϕkink = 2ψ1+2ψ2, stability occurs only when
Δμ≥ ψ2− (2w1−w2). This implies

β∗ads ≥ exp{[ψ2− (2w1−w2)]/(kBT )} . (3.22)

Comparing (3.22) with (3.18) it turns out that the stabil-
ity of the corner unit occurs at lower β value (β∗ads < β∗)
if w2 < 2w1. This means that, if the impurity fulfils the
inequality w2 < 2w1, the ES is a pure square crystal
at a β value lower than that predicted in pure growth
medium. The 〈11〉 edges begin to appear when the cor-
ner units can escape from the crystal (instability of the
X-site), i. e., if β < β∗ads. On the contrary, if w2 > 2w1
the impurity adsorption does not favor the stability of
the corner unit and an octagonal ES forms at a β value
lower than that found in pure growth medium. Fig-
ure 3.9b illustrates how the smoothing of a 2-D K-face
can be obtained with foreign adsorption [3.21, pp. 178–
189]. The energy difference between the final and initial
stages is that which we obtained for the X-site, so the
conclusions are obviously those fulfilling (3.22). Fig-
ure 3.9c concerns the stability of an ad-unit (site A) on
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the 〈10〉 edges in the presence of foreign adsorption.
The separation work of a unit at A is ϕads

A =ψ1+2ψ2+
2(w2−w1). The stability criterion for this site requires

β∗ads ≥ exp{[ψ1−2(w2−w1)]/(kBT )} , (3.23)

while, in analogy with (3.18), the stability criterion
without impurities reads

β∗ ≥ exp

(
ψ1

kBT

)
. (3.24)

Thus, the foreign adsorption favors the stability of the
growth units at site A if β∗ads <β∗ and hence if w2 >w1.
If this occurs, 〈10〉 edges transform from flat to rough
owing to the random accumulation of ad-units.

Transferring these results from 2-D to 3-D crystals,
the conditions expressed by (3.22) and (3.23), respec-
tively, rule the transition of character K→F and F→K
due to foreign adsorption.

The changes in the ES when adsorption occurs can
now be calculated, according to the Stranski–Kaischew
principle of the mean separation work. This means
that, when an entire 〈10〉 or 〈11〉 row is removed from
a 2-D crystal in the presence of adsorbed impurities,
the mean separation works must fulfil the condition
〈ϕ〉ads

01 = 〈ϕ〉ads
11 , in analogy with (3.16a) and (3.16b).

From calculation it ensues that(
n01

n11

)
ads
= ψ1−2

(
w2−w1

)
ψ2−

(
2w1−w2

) , (3.25)

which can be compared with the analogous expres-
sion (3.17) obtained without foreign adsorption

(
n01

n11

)
ads
:
(

n01

n11

)
= ψ1−2

(
w2−w1

)
ψ2−

(
2w1−w2

) : ψ1

ψ2

= ψ1ψ2−ψ2 × 2
(
w2−w1

)
ψ1ψ2−ψ1 ×

(
2w1−w2

) .

(3.26)

Hence the importance of the 〈10〉 edges in the
ES increases to the detriment of the 〈11〉 edges,
if the condition 2

(
w2−w1

)
/(2w1−w2) < ψ1/ψ2 is

fulfilled. A simpler solution is obtained within the
first-neighbors approximation (ψ2 = 0, ψ1 = ψ). Re-
membering that, without foreign adsorption, the ES
is a pure square, in the presence of impurities some
changes should occur. In this case, expression (3.25) re-
duces to (n01/n11)1st

ads =
(
ψ−2(w2−w1)

)
/
(
w2−2w1

)
.

w1

w1

–w2

w1

w2

–w2

2ψ1+ ψ2

2ψ1+ ψ2

w1

w2
w2 –w1

–w1 –w1

ψ1+ ψ2

a)

b)

c)

Fig. 3.9a–c The criterion of the mean separation works applied
to the Stranski adsorption model in the second-neighbors approx-
imation. (a) The first balance corresponds to the stability of the X
site (corner) in the presence of foreign adsorption. (b) The second
balance shows that the 〈11〉 row becomes smooth with foreign ad-
sorption if w2 > 2w1. (c) The third balance describe the energies
involved in calculating the stability of an ad-unit (site A) on the
〈10〉 edges in the presence of foreign adsorption. The figure has
been inspired by [3.21]

The 〈11〉 row will exist if n11 > 0. Taking into account
that necessarily n10 > 0, one must have simultaneously
that ψ > 2ψ(w2−w1) and w2 > 2w1. The first inequal-
ity is verified by (3.23) since the ES of a finite crystal
needs a supersaturated mother phase (β∗ads > 1), so the
only way for the 〈11〉 row to exist is for the second in-
equality also to be true, as found above. Summing up,
the method of the mean separation work is a power-
ful tool to predict both qualitatively and quantitatively
the ES of crystals, with and without foreign adsorption,
without an a priori knowledge of the surface tension of
their faces.
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