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1. Preface

The aim of this text is to present and study the method of so-called “non-
commuting variations (shortly, NC-variations)” in Variational Calculus. To
present this method we recall one of the basic rules of Variational Calculus - the
rule defining the variations of derivatives ∂yμ

∂xi of dynamical variables yμ(x) (fields
in the Field Theory) corresponding to a variation ξ of dynamical variables (fields):
”variation of a derivative equals to the derivative of variation”. In Mechanics, this
rule takes the form δẏμ = d

dtδy
μ. In Classical Field theory this rule takes the form

δ
∂yμ

∂xi
=

∂

∂xi
δyμ.

This rule can be formulated as follows: ”taking of variations of dynamical variables
yi(x) commute with the taking of derivatives.”

This rule was universally adopted in the XVIII and XIX centuries but, as early
as in 1887, this rule was questioned by Vito Volterra, see [130, 131]. Studying non-
holonomic mechanical systems, V.Volterra noticed that the use of the conventional
rule of defining variations of derivatives does not allows us to obtain equations of
motion for non-holonomic systems by variational methods. Further developments
including works of L.Boltzman,[8] G.Hamel,[57], T.Levi Civita and U.Amaldi,[83]
led to the conflicting points of view at the range of applicability of the conventional
rule of defining variations (see a Historical Review between Chapters 1 and 2 below).
Finally, the status of this, conventional, rule and its relation to the alternative rules
- the use of ”non-commuting variations” in Non-Holonomic Mechanics were clarified
in works of J.Neimark and his coauthors in the 1950s of XX century ([104, 105])
and by A.Lurie in 1961, [88].

Later on, the non-commuting variations were used in the works of B.Vujanovich
and T.Atanackovic on dynamical systems with non-conservative forces ([133, 134,
4, 5]), in Elasticity Theory, and in works of H.Kleinert, P.Fiziev and A.Pelster on
the dynamics in Cartan-Riemann spaces ([35, 65]).

While studying the application of non-commuting variations in classical field
theory we noticed that the usage of non-commuting rules to define variations of
derivatives is equivalent to the use of a non-trivial vertical connections to
modify the procedure of flow prolongation of variational vector fields in the space
Y of the configurational bundle π : Y → X of a physical system to the 1-jet bundle
J1(π) → Y over π, [112]. This led us to the study of the geometrical structures
underlying the method of non-commuting variations of derivatives in Lagrangian
formalism. In particular,a natural variety of questions that arises here is: which
of the basic methods of Variational Calculus - Theory of second variations, Hamil-
tonian systems and Legendre transformation, conservation laws (including Noether
theorems), Hamilton-Jacoby Equations, etc. - are preserved in this modified scheme
and which parts require modifications to stay true. These and some other related
questions are studied in the present work.

We will also show that any system of PDE of the form: “Euler- Lagrange equa-
tions with sources”

Ej(L) = fj (1.1)

can be realized by the Lagrangian formalism with a conventional action functional
A(L) and the non-commuting variations defined by an appropriately chosen (defined
by the sources fj) tensor K of NC-variations. We show that the basic methods of
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conventional Lagrangian formalism - Noether Theorem, second variation technique,
Hamiltonian equations, Weyl fields preserve their form in Lagrangian formalism
with NC-variations. We study the relations between the properties of sources fj

and the curvature R̃ of the vertical connection tensor K.
We demonstrate that a variety of geometrical structures that appeared in the

study of dynamics in some physical systems - dissipative potentials, non-holonomic
transformations, torsion of zero curvature connections (absolute parallelism), ma-
terial time and thermasy (= heat displacement), introduced by H.Helmholtz and
studied by D.van Dantzig ([135, 136, 110]) are special cases or are closely related
to the use of non-commutative variations defined by a vertical connection in the
conventional Lagrangian formalism.

Our perspective in this work, supported by the results of the geometrical (bun-
dle) form of Variational Calculus, is that the conventional rules of taking variations
of the derivatives of dynamical variables (fields) (underlying the flow prolongation
method) have important mathematical advantages (preservation of Cartan distri-
bution, preservation of Lie bracket, etc.) making them more fundamental. Yet, a
more general approach allows inclusion into the framework of Variational Calculus,
the physical systems that can not be described by the conventional Lagrangian
formalism.

In that we adopt the point of view of B. Vujanovich and that of A.Lurie’s that in
difference to the variations of fields yi, variations of their derivatives yi

,μ are not only
kinematical, but dynamical notions and should be dealt with as such. In particular,
this allows us to introduce geometrical factors that have dynamical meaning into
the definition of variations of derivatives that have dynamical meaning. This allows
us to describe dissipative processes in the system.

These notes are based on the Lectures delivered by author at the 15th Summer
School in Global Analysis at Masaruk University,Brno, CZ on August 8-12, 2011. I
am using this case to thank participants of this school and, especially, its organizer
Professor Demeter Krupka and Dr.Marcella Palese for useful discussions during the
school.

In particular, during this school Marcella Palese informed me about a non-
conventional procedures of the non-commuting variations introduced by C.Murial
and J.Romero in Spain and used by the group of specialists in Spain and Italy with
the goal to extend the range of symmetry groups of Lagrangian systems. Their
goals were different from ours but their constructions (of λ and μ-prolongations)
are similar, but not identical, to our approach of using vertical connections. We
have included a condensed exposition of their work and the relations with our
scheme in the present text (see Chapter 4).

Preliminary results on the NC-variations Lagrangian formalism where published
in the Proceedings of the GCM2008, [112].

2. Introduction.

In Chapter I we give a short sketch of classical Lagrangian formalism. Here we
tried to make a presentation as simple as possible. Yet, we introduce in the begin-
ning of Chapter 1, some basic invariant notions, whose more detailed description
reader can find in the Appendix ( and, in more details, in the literature refered
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there to. We define the configuration bundle, π : Y → X, one-jet bundle J1(π) as
the domain of Lagrangian functions and the total derivatives dμ on the space J1(π)
used to write down the Euler-Lagrange equations in an invariant way.

In Chapter 2 we define the non-commutative variations for an action functional
of a Lagrangian L(xμ, yi, yi

,xμ) of the first order. Non-commutative variations are
defined using tensors Kμ

iν in the configurational space Y . Variations of derivatives
defined with the help of tensor K will be called K-twisted variations and the
Euler-Lagrange equations obtained using variations defined this way will be called
K-twisted EL-equations.

We get the Euler-Lagrange equations

EL(L)μ = fμ, μ = 1, . . . , m

with the sources fj defined by a “tensor K”, formulate corresponding Noether The-
orem (proved in Appendix III), present the canonical Energy-Momentum balance
law.

A variety of examples of EL + NV systems and classes of such systems are
presented here.

Using Legendre transformation we construct corresponding Hamilton equations
with sources and compare them with the “metriplectic or ”double bracket” systems.

Then we show the form taken by the second variation formalism (sufficient con-
ditions, Jacoby equation, etc.) in the case of NC-variations. At the end of this
Chapter we show that this approach to the Lagrangian formalism can be readily
extended to the higher order Lagrangian problems and to the case of “degenerate
Lagrangians” where the source terms are of higher order then the Lagrangian itself.

In Chapter 3, we show that the procedure of K-twisted prolongation of a vari-
ation ξ = ξi∂yμ of dynamical fields yμ to the 1-jet bundle J1(π) is lacking two
basic properties of the conventional flow prolongations of variational vector fields:
conservation of Lie vector fields brackets and preservation of Cartan distribution
in the 1-jet space. While the second property is valid only if tensor K vanishes,
obstruction to the preservation of the Lie brackets is determined. It consists in two
parts - curvature form tensor R̃ and the “skew-symmetric bracket” presenting the
deformation of the Lie bracket of the vector fields.

Next, we show that the tensor K defining the Non-Commuting Lagrangian for-
malism has the form of the vertical component of an (Ehresmann) connection ω on
the affine bundle π10 : J1(π) → Y - the component responsible for the term of the
form ai

μ∂yi
μ

of the K-vertical lift of a vector field ξ = ξμ∂xμ + ξi∂yi .
More then this, vertical/vertical component of the curvature R(ω) coincide with

the tensor R̃ mentioned above. It is shown that one can define the covariant flow
prolongation of vector fields from Y to J1(Y ) so that the K-twisted prolongation
of a vector field coincide with the modified by K flow prolongation.

In Sec.20, we consider the case where tensor K does not depend on the derivatives
of dynamical fields Ki

μj ∈ C∞(Y ). We calculate different quantities characterizing
K-twisted prolongations for this case and study the relation between the form of
source terms, fj , and the properties of the “curvature” R̃.

In Chapter 4 we present a short description of works of the group os spanish
and italian mathematicians developed the Theory of twisted prolongations of vec-
tor fields to the jet bundles in many respects similar to our scheme. Their works
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had different goal - to construct, using the twisted prolongations of vector fields,
alternative classes of symmetry groups of differential equations and systems of dif-
ferential equations. their ”theory of λ and μ -prolongations and symmetries has an
important property - vector fields obtained by the prolongations to the jet bundles
preserves, in some modified sense, the Cartan distributions and contact formes.
This property has an elegant form and probably can be useful in further develop-
ment of Geometrical Theory of Differential Equations.

In Chapter 5, we discuss several situations when the non-commuting variations
were used explicitly or implicitly in the variational description of some physical
systems. For some time a “geometrization” of a mechanical system, i.e., presen-
tation equations of motion of such a system as the geodesic motion with respect
to some linear connection in the configurational space Q of this system was a
very popular problem in Mechanics. In Sec.40, it is shown, following the work of
B.Vujanovich,[134, 133] that the same result can be achieved without changing the
geometry of the space Q but, instead, by using conventional Lagrangian of this
system and redefining the variations of velocities in the tangent space T (Q). In
Sec.41, the short review of variational approach to the non-holonomic mechanical
systems is presented. Using the approach of L.Boltzman we construct the equations
of motion in non-holonomic systems with line non-holonomic relations. We notice
that the Bolzmann tensor defining the non-commutativity tensor K of the varia-
tions is defined here by the torsion of the zero curvature connection corresponding
to the non-holonomic frame (see Appendix I, Sec.66).

In Sections 42,43 we present the use of non-holonomic (gauge) transformations
for constructing Variational principle with non-commuting variations defined by
the torsion of the (absolute parallelism) connection given by this transformation.
First example of such scheme (see Section 42) is the one that was developed by
H.Kleinert and his collaborators P.Fiziev and A.Pelster [35, 65] to describe Me-
chanics in spaces with metrics and connections (Cartan spaces). In Section 43 we
present a short review of properties of Uniform Materials. Uniform materials
were defined by K.Kondo (1955) and developed by a variety of specialists including
E.Kroner, B.Bilby, C.C.Wang, C.Truesdell in 60th of XX century and by many spe-
cialists later on. We refer to the monographs [22, 137] for the detailed description
of “Uniform materials”” theory.

In Sec.44, we discuss the relation between the method of non-commuting vari-
ations and the use of dissipative potentials (special case of which are Rayleigh
dissipative function) in Lagrangian formalism.

In Chapter 6, we present an application of Lagrangian formalism with the NC-
variations to the description of irreversible evolution of a continuous media with
heating and structural changes.

In Sec. (46) we introduce thermasy, a scalar variable introduced by H. Helmholtz
and later on, used by D.van Dantzig in his study of thermodynamics of moving mat-
ter, see [135], A.Green and P.Nahdi in thermoelasticity, see [53, 54] and G.Maugin
and V.Kalpakides in Continuum Thermodynamics, [92]. Using thermasy, whose
time derivative is absolute temperature one can formulate entropy balance of
a thermodynamical system as the Euler-Lagrange Equation. We present
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modified and simplified version of this variational system and write down corre-
sponding energy balance and the heat propagation equation that has the form of
Cattaneo heat propagation law, see [100].

Then we introduce the model of material metric space-time (P,G) that was in-
troduced by A.Chudnovsky and the author in order to model the aging processes
in the materials, [15, 16]. In this model, evolution of the material is presented by
smooth embedding of the material space-time into the Galilean space-time and the
material metric G describes the structural properties of material. In particular, the
rate S of the proper (=material) time τ relative to the physical type: dτ = Sdt is
the characteristic of the entropy production in the material (if entropy production
is zero, S = 1). We show that the entropy balance in a thermodynamical system
obtained as the Euler-Lagrange for thermasy using the NC-variations defined by
the rate of material time S coincide with the Euler-Lagrange Equation for ther-
masy obtained using the material time τ instead of physical time t and
conventional variations instead of NC-variations.

This duality shows that the usage of NC-variations allows us to model com-
plex irreversible phenomena that is impossible to do using conventional Lagrangian
approach.

Appendix:
In the Appendix I we present a short review of geometrical notions used in the

text: manifolds, fiber bundles, connections and their curvature, linear connection
and its rorsion, prolongation of vector fields from Y to the jet bundles, absolute
parallelism. In appendix II we define jet bundles, their mappings, total deriva-
tives, contact structure of jet bundles, connections in jet bundles, Lie vector fields,
properties of vertical connections. In Appendix III we define the symmetries and
infinitesimal symmetries of the differential systems and the Lagrangian action, de-
fine the Noether formal;ism and probe the the First Noether Theorem. In the case
od Euler-lagrange equation with sources, Noether equations corresponding to the
symmetry Lie groups are balance equations rather then the conservation laws.
This referees, in particular, to the energy-momentum balance laws.
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Part I. Non-commuting variations - elementary topics.



Chapter 1. Basics of the Lagrangian Field Theory.
In this Chapter, we introduce the basic notions of Classical Lagrangian Field

Theory of the first order - configurational bundle, action functional, Euler-Lagrange
equations in the volume necessary in the main text. We will keep this presentation
as short as possible for two reasons: the first reason is that this, classical material
is well presented in a variety of well known sources - see [44, 118] for a classical
introduction to the Variational Calculus. The second reason is that we prefer to
introduce some notions (second variation, Hamilton-Jacobi equation) in the sections
where we can compare them with the form they take in a case of non-commuting
variations. For more advanced exposition of geometrical structure of classical field
theory, including Lagrangian Field Theory we refer to the sources [33, 45, 46, 47,
106].

3. Configurational bundle , 1-jet bundle and the Lagrangian action.

3.1. Configurational bundle (Y, π,X). Dynamical variables of Classical Field
Theory typically appear to be tensor or tensor density fields defined in the domain
of a physical, material or mezoscopic space-time (for the last one, see [96] and other
works of W. Muschik).

To organize these fields and their derivatives into a natural geometrical picture
it is convenient to introduce the configurational fiber bundle - a triple (Y, π, X)
with the base space X, dimX = n and the total space Y,dimY = n + m, where
the smooth mapping π : Y n+m → Xn is onto and of constant rank (see Appendix
I for a short introduction of geometrical and topological notions used here). For
most situations studied in this book, it is sufficient to assume that the space Y
is the product of the base X and the typical fiber F and that both X and F are
either Euclidian vector spaces of dimension n and m respectively, or open domains
in Euclidian spaces of corresponding dimension. In the general case, spaces X, Y, F
are differentiable manifolds, sometimes, with the boundary. See Appendix I where
these notions are defined and examples of manifolds are presented.

For a point x ∈ X, the sub-manifold Yx = π−1(x) is called the fiber over x. Fibers
Yx of the bundle π are assumed to be connected m-dim manifolds diffeomorphic to
the fixed manifold Fm (see Appendix I).

We will be using local coordinates in the bundle Y , adjusted to the bundle
structure - “fibred charts” (V, xi, i = 1, . . . , n; yα, α = 1, . . . , m) in Y defined in a
domain V ⊂ Y . Here xi are coordinates in the domain π(V ) ⊂ X and yα are fiber
coordinates in the fibers Yx.

Below we will be using shortened notations for partial derivatives in the fiber
charts: ∂i for ∂

∂xi , and ∂μ for ∂
∂yμ .

A smooth mapping s : U → Y where U is an open subset of X is called the
section of the bundle π if the composition of projector π and mapping s is the
identity mapping of the domain U : π ◦ s = idU . In applications (in Physics and in
Continuum Mechanics), functions yα(x) represent the components of tensor fields
which are the dynamical variables of the considered theory.

If the configurational bundle, π, is a vector bundle (see Appendix I), the fibers Fx

are real vector spaces (isomorphic to the fixed vector space Fm) and the transition
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Quite often the configuration bundle is trivial so that the space Y is the product
Y = X × Fm of the base X, and the standard fiber Fm and the bundle projection
π : Y = X × F → X is the projection onto the first factor.

(1) An open subset X ⊂ Rn or an open subset with the boundary ∂X,

(2) A k-dimensional submanifold Xk ⊂ Rn with the boundary ∂X. A 2-dim
surface with the boundary in the Euclidian space E3 is an example.

(3) Compact manifolds - spheres, torus, etc.

Most base manifolds used in classical physics are of the first and second type.
Manifolds of the third type usually appear in the problems of Geometry and of Gauge
Field Theory, see [111]. Quite often X is the physical or material space-time and
n = 4.

It is assumed that the base manifold X is endowed with the Riemannian
or pseudo-Riemannian metric G. We denote by dv the volume n-form corre-
sponding to the metric G. In local coordinates (U, xi), metric G is presented by the
non-degenerate symmetrical (0,2)-tensor field G = Gij(x)dxidxj and the volume
form dv has the form

dv =
√
|det(Gij(x))|dx1 ∧ . . . ∧ dxn.

3.2. First orders Lagrangians and the Action functional. A Lagrangian
Field Theory of order 1 with the configurational bundle π : Y n+m → Xn

is defined by a Lagrangian - a function L on the first jet bundle J1π of the
configurational bundle : L ∈ C∞(J1(π)). The 1-jet bundle space J1π is fibred
over Y and X (J1π → Y → X). Jet bundle J1π carries, in its fibers over Y ,
the information about the first derivatives yα

i = ∂yα

∂xi of the components yα of the
sections s = {yi(x)} of configurational bundle π : Y → X (see Appendix II).

We refer to Appendix II for the definition and basic properties of the 1-jet bundle
of a fiber bundle. We remark that a fibred chart (V, xi, yα) in the configurational
bundle π : Y → X defines the ”lifted fibred chart” (V 1, xi, yα, yα

i ) in the domain
V 1 = π−1

10 (V ) of the 1-jet bundle J1(π)

Remark 2. Mathematically, it is more natural to define Lagrangian as an n-form
λ = L(xi, yα, yα

i )dv. Here we mostly use the simple definition that is closer to the
applications in physics.

Let L ∈ C∞(J1(π)) be a Lagrangian of the first order and let D ⊂ X be a
domain in the base space X.

The action functional AD(s) on the sections s : D → Y (D ⊂ X being a
domain in X) is defined by the integral

AD(s) =
∫

D

L(j1s(x))dv =
∫

D

L(xi, yα(x), yα
,xi(x))dv. (3.1)

The main postulate of Lagrangian Field Theory is that the configurations
of dynamical fields s(x) = {yα(x)}, realized in real situations, are the critical

transformations (see Appendix I) are the linear mappings between the fibers at
each point of the intersection of the domains of coordinate charts.
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points of the action functional. In many cases, real solution s(x) delivers
an extremum to the action functional between all configurations (geometrically
- sections s of the bundle π that satisfy some additional conditions (boundary
conditions, initial conditions, Lagrange conditions, etc).

In the next section we sketch the basic components of the formalism of Calculus
of Variations - we introduce first variations and Euler-Lagrange Equations for the
first order theory.

4. First Variation and the Euler-Lagrange system.

Consider a Lagrangian Field Theory of the first order with a LagrangianL(xi, yα, yα
i ),

where L ∈ C∞(J1(π)) is an infinitely differentiable function on the 1-jet space. Let
s(x) = {yα(x)} : U → Y be a section of the configurational bundle π that de-
livers an extremum (minimum or maximum) of the action functional AU (s) (see
(3.1)). The extremal property of the section s is determined by comparing the value
of the action functional at the section s with its action at neighborhood sections
s(x) + εξ(x). Thus, we need to introduce variations of a section s in a convenient
form.

4.1. First Variations. Let s : U → Y be a section of the the configurational
bundle π : Y → X defined in a open subset U ⊂ X. In local fibred coordinates,
section s(x) is presented by its components s(x) = (sα(xk), α = 1, . . . , m).

Definition 1. (1) A variation of section s : D → Y is the one-parameter
family t → st(x) of local sections of the configurational bundle (defined in
D) such that s0 = s.

(2) Infinitesimal variation, corresponding to the variation st(x) is the π-vertical
vector field ξ = ξμ∂μ along the image of section s (i.e. defined at the points
s(D) ⊂ Y ).

Here and below, ∂μ is the shortened notation for the partial derivative

∂μ =
∂

∂yμ
.

ξ(s(x)) =
d

dt |t=0

st(x). (4.1)

Vice versa, let ξ = ξμ(x, y) ∂
∂yμ be a vertical vector field defined in the domain

V ⊂ Y of a fibred chart (V, xi, yμ) and let φt be the phase flow of this vector field.
Then, the association t → φt(s(x)) is the variation of a section s(x).

Yet, in order to define variations of action AD(s) (see (3.1)), we have to define
values of derivatives ∂sα

∂xi for variated sections st(x). A natural way to do this (called
the flow prolongation) is to define variations of sections s(x) by the phase flow of
a vertical vector field ξ(x, y), then extend (lift) this flow to the 1-jet space
J1π and apply obtained 1-parametrical (local) group of transformations to the 1-jet
j1s(x) of section s(x).

Let a variation of section s, given by the collection of components sα(x) (dynam-
ical fields), be defined by a π-vertical vector field ξ = ξα∂yα ∈ V (π)(U0) (where
U0 = π−1U ⊂ Y ). In terms of components, an infinitesimal variation of section
s(x) has the form s(x) = {sα(x)} → {sα(x) + ξα(x, y)ε} for small ε.

NOTES ON THE NONCOMMUTING VARIATIONS. 5



Corresponding variations of derivatives entering the Lagrangian L and, there-
fore, the action functional

AD(s) =
∫

D

L(j1s)dv (4.2)

are determined by a prolongation procedure lifting vector fields ξ in Y to the
vector fields in the 1-jet space J1(π).

ξ = ξα∂α → ξ1 = ξ + ξα
i ∂yα

i
.

Remark 3. Flow prolongation procedure ξ → Pr1(ξ) has the form (see Ap-
pendix II for more details)

Pr1(ξ) = ξα∂α + ξα
i ∂yα

i
= ξα∂α + diξ

α∂yα
i
. (4.3)

Here ξα
i = diξ

α = ∂iξ
α + yβ

i ∂βξα is the total derivative of the coefficients ξα ∈
C∞(J1(π)) by xi. The second term in the expression (4.3) can be interpreted
as the analog of the derivative by xi of the variation of the dynamical field yα, a
component of dδyα.

The 1-jet component {ξα
i } of the prolonged vector field in J1(π) represent the

variation of the derivative - δyα
,i .

The conventional rule “variation of the derivatives is equal to the derivative
of variation” δdyα = dδyα now takes the form of the following condition for a
variational vector field ξ = ξα(xi, yα, yα

i )∂yα + ξα
i ∂yα

i
:

ξα
i (z) = δyα

i = dδyα = diξ
α. (4.4)

Thus, the commutativity rule of prolongation of variations to the first
jet bundle is equivalent to the statement that the π-vertical variations
ξ = ξα∂α of dynamical fields yα(x) are prolonged to the 1-jet space by the
flow prolongation.

This rule of prolongation, basic in the Variational Calculus with one-dimensional
base (Mechanics), is expressed by the relation δẏα = ˙δyα, [44]. The same property
is basic in the Lagrangian Field Theory, [44, 45, 106].

It is this rule that has been challenged in the works cited in the Introduction. So,
in order to present the methods of B.Vujanovic, H.Kleinert and their coauthors in
the geometrical form we have to study a natural modifications of the prolongation
procedure (4.3). This includes the prolongation of the vector fields on the base X
to the jet spaces which is imperative, for instance, for the study of symmetries of
Euler-Lagrange equations and corresponding Noether balance laws.

Remark 4. Unfortunately, modifying the rule of variations of jet bundle variables,
one has, in general, to sacrifice some properties of these variations that are taken
for granted in the Variational Calculus. In Ch.3, Sec.18 we show that the basic
properties of the flow prolongation - Lie algebra morphism and the preservation
of the Cartan distribution are generically lost in the modified picture of lifting
ξ → Pr1

K(ξ). We also introduce the geometrical structures responsible for this loss
and, in some sense, characterizing it. In Chapter 4 we describe the modification of
Cartan distribution preservation property suggested by E.Pucci and G.Saccomandi
( [115],). Their condition can be applied to a large class of prolongation procedures
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defined by the C.Muriel and J.Romano for ordinary differential equations and ex-
tended by the group of italian mathematicians to the systems of partial differential
equations (see Chapter 4 and references therein).

4.2. Euler-Lagrange Equations and natural boundary conditions. Form
the variation of the action AD(s) using this flow prolongation (4.3) of a vertical
variational vector field ξ = ξα(x, y)∂α. Infinitesimal variations of fields and their
derivatives (independent variables xμ are not variated) have the form{

yα → yα + εξα(x, y),
yα

i → yα
i + εdiξ

α.

Calculate the first variation of action:

ΔAD(s)(εξ) = AD(sε) − AD(s) =

=
∫

D

[L(x, sα(x) + εξα(x, s(x)), sα
,i(x) + ε(diξ

α(x, s(x)))) − L(x, s(x), sα
,i(x))]dv =

= ε

∫
D

[
∂L

∂yα
ξα(x, s(x)) +

∂L

∂yα
i

(diξ
α(x, s(x)))

]
dv + O(ε2) =

= ε

∫
D

[
∂L

∂yα
− di

(
∂L

∂yα
i

)]
ξα(x, s(x))dv + ε

∫
∂D

∂L

∂yα
i

ξαnidS + O(ε2) (4.5)

First variation of the action AD(s) at a section s(x) = (xi, yμ(x)) has the form

δAD(s) =
∫

D

[
∂L

∂yα
− di

(
∂L

∂yα
i

)
]ξα(x, s(x))εdv + ε

∫
∂D

∂L

∂yα
i

ξαnidS. (4.6)

where the boundary term
∫

∂D
∂L
∂yα

i
ξαdSn−1 appears after integrating by parts.

If the variational vector field ξ = ξα∂α vanishes on the boundary ∂D, the last
term in the previous expression for the variation vanish and the arbitrariness of the
variations ξα lead to the system of Euler-Lagrange equations in the form

Eβ(L) =
∂L

∂yβ
− di

(
∂L

∂yβ
i

)
= 0, β = 1, . . . , m. (4.7)

Here di = ∂
∂xi + yμ

i
∂

∂yμ is the total derivative by xi (see Appendix II).
If, having this equation, we omit the condition that the variational vector fields ξ

vanish on the boundary ∂D of the domain D together with its normal derivatives,
we extend the class of admissible variations. If, in such a case, we integrate by
parts in the expression for variation of action (4.2), the boundary integral in the
sum (4.6) ∫

∂D

L,yα
i
(s)ξαdSi

appears to be nonzero.
. As a result, using at first, the variational vector fields that vanishes on the

boundary ∂D, and then the general variations we get, in addition to the Euler-
Lagrange equations (4.7), the natural boundary conditions

L,yα
i
(s) · ni = πi

μni = 0, α = 1, . . . , m, (4.8)

where n∗ = {ni} is the covariant vector corresponding to the unit normal vector ni

on the boundary ∂D and πi
μ = L,yα

i
(s) is the momentum (1,1)-tensor

NOTES ON THE NONCOMMUTING VARIATIONS. 7



. Thus, the natural boundary condition requires that the normal component of
the momenta vanish.

4.3. Symmetries and Noether Theorem. Let L(xi, yμ, yμ
i ) be a first order La-

grangian and let G ⊂ Diff(Y ) be a finite-dimensional Lie group of diffeomorphisms
of the space Y that is, at the same time, the group (geometrical) symmetries of
the Lagrangian L (see Appendix III, Sec. 77) where definitions and properties of
groups of variational and divergent symmetries are presented). In particular,
A Lie group G of (diffeomorphic) transformations of the manifold Y is a group
of divergent symmetries of Lagrangian L if the infinitesimal condition (78.7)
(see Appendix III, Sec.78) is fulfilled.

Locally, in terms of fibred coordinates (xi, yμ), transformations φ of the space
Y , corresponding to the elements g ∈ G, have the form

φ : (xi, yμ) → (φ̄i(xj , yν), ), φμ(xj , yν)), (4.9)

with φ̄i, φμ(x, y) being smooth functions of corresponding variables.
An important special case of geometrical transformations is the case of pro-

jectable transformations (”automorphisms of the bundle π : Y → X”). In fi-
bred coordinates, projectable transformations, are characterized by the condition
φ̄i = φ̄i(xj) in (4.9).

Infinitesimally, Lie algebra g of the group G of geometrical transformations is
formed by the vector fields in Y , ζ = ζi(x, y)∂xi +ζμ(x, y)∂yμ , while the Lie algebra
of a group of automorphisms of π formed by the projectable vector fields ζ =
ζi(x)∂xi + ζμ(x, y)∂yμ . In the case of projective transformations, transformations
φ ∈ G generate (by taking projections) the group Ḡ of transformations φ̄ of the
base X.

Notice that the defining property of a one-parameter group φt to be the group of
symmetries of Lagrangian L is that the action of fase field transformations φt, t ∈ R
transform solutions of Euler-Lagrange Equations to the other solutions of the same
Euler-Lagrange system.

Therefore, infinitesimal (phase) fields of such one-parameter groups act as the
infinitesimal variations of the action AD(s) corresponding to L. Thus, in order to
realize this symmetry of the action AD(s), geometrical symmetries (acting in Y )
should be lifted to the 1-jet bundle J1(π) by the same procedure ξ → Pr1(ξ) as
the variational vector fields.

Let ζ ∈ g be an arbitrary element of Lie algebra g. Let Pr1(ζ) be the flow
prolongation of vector field ζ to the 1-jet bundle J1(π). Then, the vector field ζ
is the infinitesimal divergent symmetry of Lagrangian, that generates the (at
least local) one-parameter group of symmetries of L - phase flow) if and only if
there exists a horizontal 1-form B = Bk(xi, yμ, yμ

i )dxi in J1(π) such that

pr1(ζ)L + Ldiv(ζ) = div(B), (4.10)

see (80.90) or [106], Chapter 4 for more details.
Divergence here is defined using the volume form dv defined by the metric g in

the base X.
Now we formulate the Noether Theorem for the variational and the divergent

symmetry groups. See Appendix III for the proof of this Theorem.
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Theorem 1. Let L be a Lagrangian of order k and let

Eα(L) = 0, α = 1, . . . , m, (4.11)

be an Euler-Lagrange system with the Lagrangian L of order k. Let ξ be a vector
field in Y i an infinitesimal variational symmetry of Lagrangian L.

Let Prk(ξ) be the prolongation of vector field ξ of order k - to the k-jet bundle
Jkπ.Then there exist an n-tuple of the smooth functions P i such that for some
functions A ∈ C∞(Jkπ the following equality (Noether conservation law) is fulfilled

Div(A + Lξ) = −QμEμ(L). (4.12)

As a result, for all solutions y of the Euler Lagrange system of equations,

Div(P )(y) = 0. (4.13)

For the proof of this theorem, see [106], Ch.4 or here, Appendix III, Section 79.
par

If a Lie group acting on the space Y is a group of divergent symmetries (see
Appendix III), relation (4.12) is replaces by the relation

Div(A + Lξ) = +QμEμ(L) = Div(B), (4.14)
for the n-tuple of functions Bi ∈ C∞(Jkπ).

As a result, conservation law (4.13) in Theorem 1 for the solutions of Euler
Lagrange system holds with the following modification:

P = B − A − Lξ. (4.15)

corresponding Noether conservation law for the solution of Euler-Lagrange
equations has the form (comp. (79.7).)

Div(P ) = 0, where P i = ζμL,yμ
i

+ ζiL − ζjyν
j L,yμ

i
− B. (4.16)

As an example, illustrating the Noether method, to associating conservation
(or balance) laws to the symmetry Lie groups of transformations, we present the
Stress-Energy-Momentum balance law for the Lagrangian Field Theory.

4.4. Energy-Momentum balance law. Here we write down the canonical stress-
energy-momentum (CEM) balance law corresponding to a Lagrangian L ∈ C∞(Jk(π)).
We will be using the approach of [106], modified to produce the balance law, see
Appendix III.

We take the base space X = R4 to be the physical space-time endowed with
standard Euclidian or standard Lorentz metric.

In this case ξ = ξk = ∂xk lifted to Y by a connection Γ in the bundle π:
∂xk → ξ̂k = ∂xk + Γμ

k∂μ. Then, the characteristic of the vector field ξ̂k has the
components Qμ = Γμ

k − yμ
k and we define the Energy-Momentum Tensor in its

standard form [80].
T i

k = Lδi
k − (Γμ

k − yμ
k )L,yμ

i
. (4.17)

As a result the balance equation 81.4 corresponding to this vector field (stress-
energy-momentum ”balance” law) has the form

diT
i
k = di

(
Lδi

k − yμ
k L,yμ

i

)
= − ∂L

∂xk expl.
, k = 0, 1, 2, 3. (4.18)

If L does not depend explicitly on xk, this balance law becomes the “conservation
law”.
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In particular, for k = 0 we get the energy balance law (or conservation law if
∂L
∂x0 expl.

= 0)

diT
i
0 = di

(
Lδi

0 − yσ
0 L,yσ

i

)
= − ∂L

∂x0 expl.
. (4.19)

Notice the linear dependence of the second term in T i
0 on the velocities yσ

0 and on
the momenta −πi

σ = L,yσ
i
.

4.5. General variations, group of automorphisms of the configurational
bundle: case when φt ∈ Aut(π).. In order to define the Euler-Lagrange equations
(4.7) and the natural boundary conditions (4.8) corresponding to an action (4.2),
it is sufficient to use m independent vertical variations generated by one-parameter
groups of automorphisms φt ∈ Aut(π) of the configurational bundle π : Y → X (See
Appendix I) acting along the fibers Yx. In local fibred coordinates (W,xi, yμ)
such authomorphisms have the representation (x, y) → (x, φμ

t (x, y)). Infinitesimal
variations of this type have the form

ξ = φμ(x, y)∂μ.

Such variations are sometimes called the “outer variations”, [47], Ch.3.
On the other hand, in order to get conservation laws related to the Noether sym-

metries of the Lagrangian, one has to use vector fields of as general type as possible,
therefore including variations of independent variables xi - inner variations. In
particular, the energy-momentum balance law (4.16) appears from applying the
variations ∂i generated by the translation of independent variables - space-time
coordinates t, x1, x2, x3.

Thus, it is interesting to see a result of variations of action (4.2) generated by the
one-parameter groups φt of general automorphisms of the configurational bundle
π:

(x, y) → (φ̄i(x), φμ(x, y)). (4.20)
Transformations of such one-parameter groups act on the sections as follows:

s(x) → φts(φ̄−t).
In the infinitesimal form, the variational vector field corresponding to such 1-

parameter subgroup is
ξ = −ξi(x)∂i + ξμ(x, y)∂μ, (4.21)

and its flow prolongation to the 1-jet bundle J1π is

Pr1(ξ) = ξ + (diξ
μ − yμ

j diξ
j)∂yμ

i
= (ξi∂i − yμ

j diξ
j∂yμ

i
) + (ξμ∂μ + diξ

μ∂yμ
i
). (4.22)

Using such variations of the action (1.1) and the standard flow prolongation (4.3)
of vector field ξ to the 1-jet bundle J1(π), we obtain for the first variation of the
action

δAD(s) = ε

∫
D

[
∂L

∂yα
− di(

∂L

∂yα
i

)
]ξα(x, s(x))dv + ε

∫
∂D

∂L

∂yα
i

ξαnidS+

+ ε

∫
D

(L,xk(−ξk) + L,yμ
i
yμ

j di(ξj) + L(−ξi
,xi))dv. (4.23)

Notice that the trace ξi
,xi of the Jacobi matrix ξi

,xj in the last term appears due to
the action of transformation φ̄i(x) on the volume form dv.
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Integrating by parts the terms containing derivatives of the components of the
vector fields in the last integral we get the expression for the first variation of action
AD for an arbitrary variation φt ∈ Aut(π),

δAD(s) = ε

∫
D

[
∂L

∂yα
− di

(
∂L

∂yα
i

)
]ξα(x, s(x))dv + ε

∫
∂D

∂L

∂yα
i

ξαnidS+

+ ε

∫
D

[Lδj
i − L,xkδk

i + dj

(
yμ

i L,yμ
j

)
]ξidv − ε

∫
D

di(L,yμ
i
yμ

j ξj)dv. (4.24)

Recall the form of the energy-momentum tensor (see 4.14) T i
j = Lδj

i − yμ
j L,yμ

i
.

Requiring that the first variations of action AD(s) vanish at any variation of
general type, and using the independence of variations ξμ and ξi, we get, in addition
to the Euler-Lagrange equations (4.7) and the natural boundary conditions (4.8),
one more equation - the energy-momentum balance law-

dj

(
Lδj

i − yμ
i L,yμ

j

)
= −L,xi (4.25)

in the domain D, and the additional condition

L,yμ
i
yμ

j ξj · ni = 0 (4.26)

on the boundary ∂D. This condition is the consequence of the natural boundary
condition (4.8).

We refer to [47],Ch.3 for more details about the properties of inner and outer
variations in the smooth situations, the notion of inner extremals and their
relations to the usual (outer) extremals. We also refer to the article ([49]) and
to the references therein for the exposition of the use of inner and outer variations
in the important case of non-smooth (Lipschitz) variations and examples of non-
smooth minimizers in applications.

1

1I would like to thank L.Truskinovsky who has sent to me this paper containing an example
of non-commuting inner and outer variations in a situation with Lipschitz variations.
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