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Preface

Two approaches to the mathematical foundations of relativistic quan-
tum theory began in the USA. Both evolved from the application
of quantum field methods to electron theory in the late 1940s by
Feynman, Schwinger, and Tomonaga (see [SC1]).

The first program is well known and was begun in the early 1950s
by Professor A.S. Wightman of Princeton University (1922–2013). Fol-
lowing a tradition inspired by Hilbert, the program was called ax-
iomatic field theory. It sought to provide rigorous justification for
the complicated and difficult method of renormalization successfully
employed by the physics community (see [SW] and [GJ]). Professor
Wightman is considered the founding father of modern mathematical
physics, but he also strongly influenced a number of other areas in
mathematics.

In 1982, Sokal notice some difficulties with the constructive ap-
proach to field theory (the concrete version of axiomatic field theory)
and conjectured that this approach may not work as expected in four
space-time dimensions (see [SO]). His conjecture was later verified by
Aizenman and Graham [AG] at Princeton and Fröhlich [FO] at ETS,
Zurich. These results have had a damping effect on research in this
direction.

In response to the work of Aizenman, Graham, and Fröhlich, a sec-
ond, less well-known program was initiated by the present authors at
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Howard University in 1986. We sought to understand the issues affect-
ing relativistic quantum theory based on a series of problems suggested
by Dirac, Dyson, Feynman, Schwinger, and other major architects of
quantum field theory. This book is an outgrowth of our investigations
into the mathematical issues facing any attempt to develop a reason-
able relativistic quantum theory. Our investigations into the physical
foundations are the subject of a future project. (However, those with
interest in this subject are directed to [GZ5] and [GMK, see Chap. 5]
for some partial results in this direction.)

In 1951, Richard Feynman published what became known as the
Feynman operator calculus. It served as the basis for his formula-
tion of quantum electrodynamics, for which he shared the Nobel Prize
in Physics with Schwinger and Tomonaga. Freeman Dyson intro-
duced this work to the mathematics and physics communities, provid-
ing Feynman’s theory both the physical and mathematical legitimacy.
Dyson also showed that the two competing formulations of quantum
electrodynamics were based on different representations of Heisen-
berg’s S-matrix. Using his understanding of both theories, Dyson
made fundamental improvements and simplifications. (It is suggested
by Schweber [SC1] that Dyson’s contribution is also worthy of the
Nobel Prize.)

Feynman’s basic idea was to first lay out space-time as one would
a photographic film. He then imagined the evolution of a physical sys-
tem appearing as a three-dimensional motion picture on this film; one
seeing more and more of the future as more and more of the film comes
into view (see [F]). This gives time its natural role in ordering the flow
of events as it does in our conscious view of reality. Feynman suggested
that time should serve this role in the manipulation of operator-valued
variables in quantum field theory, so that operators acting at different
times actually commute. He demonstrated that this approach made
it possible to write down and compute highly complicated expressions
in a fast and effective manner. In one case, he was able to perform a
calculation in one night that had previously taken over 6 months (see
[SC1]).

Feynman’s faith in his operator calculus is expressed at the end
of his book on path integrals (with Hibbs [FH]); he states: “Never-
theless, many of the results and formulations of path integrals can
be re-expressed by another mathematical system, a kind of ordered
operator calculus. In this form many of the results of the preceding
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chapters find an analogous but more general representation . . . involv-
ing noncommuting variables.” Feynman is referring to [F], quoted
above.

To our knowledge, Fujiwara [FW] is the only physicist other then
Dyson who takes Feynman’s operator calculus seriously in the early
literature (1952). Fujiwara agreed with the ideas and results of Feyn-
man with respect to the operator calculus, but was critical of what
he called notational ambiguities, and introduced a slightly different
approach. “What is wanted, and what I have striven after, is a logical
well ordering of the main ideas concerning the operator calculus. The
present study is entirely free from ambiguities in Feynman’s notation,
which might obscure the fundamental concepts of the operator calcu-
lus and hamper the rigorous organization of the disentanglement tech-
nique.” Fujiwara’s main idea was that the Feynman program should
be implemented using a sheet of unit operators at every point except
at time t, where the true operator should be placed. He called the
exponential of such an operator an expansional to distinguish it from
the normal exponential so that, loosely speaking, disentanglement be-
comes the process of going from an expansional to an exponential.
(Araki [AK] formally investigated Fujiwara’s suggestion.) As will be
seen, Fujiwara’s fundamental insight is the centerfold of our approach
to the problem.

In our approach, the motivating research philosophy was that, the
correct mathematical foundation for the Feynman operator calculus
should in the least:

(1) Provide a transparent generalization and/or extension of cur-
rent mathematical theories without sacrificing the physically
intuitive and computationally useful methods of Feynman

(2) Provide a rigorous foundation for the general theory of path
integrals and its relationship to semigroups of operators and
partial differential equations

(3) Provide a direct approach to the mathematical study of time-
dependent evolution equations in both the finite and infinite-
dimensional setting

(4) Provide a better understanding of some of the major math-
ematical and physical problems affecting the foundations of
relativistic quantum theory
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This book is devoted to the mathematical development of the first
three items. We also briefly discuss a few interesting mathematical
points concerning item (4). (However, as noted earlier, a full discussion
of (4) is delayed to another venue.)

While no knowledge of quantum electrodynamics is required to un-
derstand the material in this book, at a few junctures, some physical
intuition and knowledge of elementary quantum mechanics would be
helpful. We assume a mathematical background equivalent to that
of a third year graduate student, which includes the standard courses
in advanced analysis, along with additional preparation in functional
analysis and partial differential equations. A course (or self-study)
based on the first volume of Reed and Simon [RS1, see Chap. 1] offers
a real advantage. An introduction to probability theory or undergrad-
uate background in physics or chemistry would also be valuable. In
practice, unless one has acquired a reasonable amount of mathematical
maturity, some of the material could be a little heavy going. (Mathe-
matical maturity means losing the fear of learning topics that are new
and/or at first appear difficult.) However, in order to make the transi-
tion as transparent as possible, for advanced topics we have provided
additional motivation and detail in many of the proofs.

We have three objectives. The first two, the Feynman opera-
tor calculus and path integrals and their relationship to the founda-
tions of relativistic quantum theory, occupy a major portion of the
book. Our third objective, infinite-dimensional analysis, provides the
purely mathematical background for the first two. We have also in-
cluded some closely related material that has independent interest. In
these cases, we also indicate and/or direct the interested reader to the
Appendix.

The book is organized in a progressive fashion with each chap-
ter building upon the previous ones. Almost all of the material in
Chaps. 2, 3, and 6–8 has not previously appeared in book form. In
addition, Chap. 5 is developed using a completely new approach to op-
erator theory on Banach spaces, which makes it almost as easy as the
Hilbert space theory.

Chapter 1 is given in two parts. Part I introduces some of the
background material, which is useful for review and reference. Basic
results and definitions from analysis, functional analysis, and Banach
space theory are included and should at least receive a glance before
proceeding.
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Part II is devoted to the presentation of a few advanced topics
which are not normally discussed in the first 2 years of a standard
graduate program, but are required for later chapters in the book. The
reader should at least review this part to identify unfamiliar topics, so
one may return when needed.

Chapter 2 is devoted to the foundations for analysis on spaces with
an infinite number of variables. Infinite dimensional analysis is inti-
mately related to the Feynman operator calculus and path integrals
and cannot be divorced from any complete study of the subject. Faced
directly, the first problem encountered is the need for a reasonable
version of Lebesgue measure for infinite-dimensional spaces. However,
research into the general problem of measure on infinite-dimensional
vector spaces has a long and varied past, with participants living in a
number of different countries, during times when scientific communi-
cation was constrained by war, isolation, and/or national competition.
These conditions have allowed quite a bit of misinformation and folk-
lore to grow up around the subject, so that even some experts have
a limited view of the subject. Yamasaki was the first to construct
a σ-finite version of Lebesgue measure on R

∞ in 1980 (see [YA1]),
and uniqueness has only been proved recently (2007) by Kirtadze and
Pantsulaia [KP2, see Chap. 6]. However, due to the nature of their
approach, the work of Yamasaki and Kirtadze and Pantsulaia is only
known to specialists in the field.

In Sect. 2.1 the Yamasaki version of Lebesgue measure for R
∞ is

constructed in a manner which is very close to the way one learns
measure theory in the standard analysis course. In Sect. 2.2, a ver-
sion of Lebesgue measure is constructed for every Banach space with
a Schauder basis (S-basis). In addition, a general approach to proba-
bility measures on Banach spaces is developed. The main result in this
direction is that every probability measure ν on B[R] with a density
induces a corresponding related family of probability measures {νnB}
on every Banach space B, with an S-basis, which is absolutely con-
tinuous with respect to Lebesgue measure. Under natural conditions,
the family converges to a unique measure νB. As particular exam-
ples, we prove the existence of universal versions of both the Gaussian
and Cauchy measures. Section 2.3 is devoted to measurable functions,
the Lebesgue integral, and the standard spaces of functions, contin-
uous, Lp, etc. Section 2.4 studies distributions on uniformly convex
Banach spaces. Section 2.5 introduces Schwartz space and the Fourier
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transform on uniformly convex Banach spaces. This allows us to ex-
tend the Pontryagin Duality Theorem to uniformly convex Banach
spaces in Sect. 2.6. In addition, we provide a direct solution to the
diffusion equation on Hilbert space as an interesting application of
our universal representation for Gaussian measure. Sections 2.4–2.6
are not required for a basic understanding of the Feynman operator
calculus and the theory of path integrals. However, there are natural
connections between these subjects. Thus, those with broader con-
cerns and/or interests in other applications will find the study both
rewarding and fruitful.

Chapter 3 introduces the Henstock–Kurzweil integral. This is the
easiest to learn and best known of those integrals that integrate non-
absolutely integrable functions and extend the Lebesgue integral. Sec-
tion 3.1 provides a fairly detailed account of the HK-integral and its
properties in the one-dimensional case and a brief discussion of the
n-dimensional case. Section 3.2 discusses a new class of Banach spaces
(KSp spaces) that are for nonabsolutely integrable functions as the Lp

spaces are for Lebesgue integrable functions. These spaces contain the
Lp spaces as continuous dense and compact embeddings. Section 3.3
covers some additional classes of Banach spaces associated with non-
absolutely integrable functions which may have future interest. First,
we define an important class of spaces SDp[Rn], 1 � p � ∞. These
spaces contain the test functions of Schwartz [SCH] D[Rn], as a dense
continuous embedding. In addition, they have the remarkable prop-
erty that for any multi-index α, ‖Dαu‖SD = ‖u‖SD, where D is the
distributional derivative. We call them the Jones strong distribution
Banach spaces. As an application, we obtain a nice a priori estimate for
the nonlinear term of the classical Navier–Stokes initial-value problem.
In Sect. 3.4, we introduce a class of spaces in honor of our deceased
colleague Woodford W. Zachary. These spaces all extend the class of
functions of bounded mean oscillation to include the HK-integrable
functions. (Sections 3.3 and 3.4 are not required for the rest of the
book.)

Chapter 4 is devoted to a fairly complete account of analysis and
operator theory on Hilbert space. The first part introduces the theory
of integration of operator-valued functions, and the second part gives
a first course in Hilbert space operator theory. The presentation is
standard, but an interesting extension of spectral theory is introduced
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based on the polar decomposition property of closed densely defined
linear operators.

Chapter 5 is devoted to operator theory on Banach spaces, with
major emphasis on semigroups of operators. Our approach is novel,
as it uses the theory of Chap. 4 in a unique manner, showing that the
theory on Banach spaces is much closer to the Hilbert space theory
then previously known. In the first section we show that, for uni-
formly convex Banach spaces with a Schauder basis, it is possible to
define the adjoint for every closed densely defined linear operator on
the space. (This result is extended to a larger class of spaces and op-
erators in the Appendix (Sect. 5.3).) We give a number of examples so
that one can see what the adjoint looks like in concrete cases. In the
second section, the adjoint is used to give a parallel treatment of semi-
groups of operators, which is very close to the Hilbert space theory.
In the Appendix (Sect. 5.3), in addition to an extension of the adjoint,
we extend the spectral theory and provide a complete version of the
Schatten classes of compact operators for uniformly convex Banach
spaces with a Schauder basis.

Chapter 6 develops infinite tensor product theory for Hilbert and
Banach spaces. The Banach space theory is a new subject, which of-
fers a number of advantages for analysis. Our approach generalizes
von Neumann’s infinite tensor product Hilbert space theory, so we
call them spaces of type v. We use infinite tensor products of Hilbert
and Banach spaces to construct the mathematical representation for
Feynman’s physical film. We also introduce the notion of an exchange
operator, which will prove important in Chaps. 7 and 8. (Infinite ten-
sor products of Banach spaces are also natural for the constructive
study of analysis in infinite-many variables. We have included a few
applications and possibilities in the Appendix (Sect. 6.7).)

In Chap. 7, we develop the Feynman operator theory on Hilbert
space, as a compromise for the two classes of potential users. Follow-
ing Fujiwara’s idea, we first define what we mean by time-ordering,
prove our fundamental theorem on the existence of time-ordered in-
tegrals, and extend the basic semigroup theory to the time-ordered
setting. This provides, among other results, a time-ordered version of
the Hille–Yosida Theorem. We construct time-ordered evolution oper-
ators and prove that they have all the expected properties. We define
what is meant by the phrase “asymptotic in the sense of Poincaré” for
operators. We then develop a general perturbation theory and use it to
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prove a generalized version of Dyson’s second conjecture for quantum
electrodynamics, namely, that all theories generated by semigroups are
asymptotic in the operator-valued sense of Poincaré. (Dyson conjec-
tured this result for unitary groups.)

In 1955, Hagg [HA, see Chap. 7] investigated the general condi-
tions which a relativistic quantum theory of interacting particles must
satisfy in order to be made mathematically rigorous. One of his ma-
jor conclusions was that the canonical commutation relations need
not have unique solutions and that the interaction representation in
sharp time does not exist. It has now been experimentally confirmed
that there is quantum interference in time (see Chap. 7, [HW]). Thus,
Hagg’s assumption of sharp time is not physically valid. In this sec-
tion, we modify Dyson’s theory to include an interaction representa-
tion which allows time interference of wave packets. Finally, we show
that the Fujiwara–Feynman approach to disentanglement can be im-
plemented in a direct manner. This approach also provides a nice
extension to the Trotter–Kato perturbation theory. In the last section
we develop a general approach to the mathematical foundations for
Feynman’s sum over paths, which is used in quantum theory.

Chapter 8 provides a few applications of the operator calculus.
We first develop a general theory for time-dependent parabolic and
hyperbolic evolution equations. We demonstrate that the operator
calculus allows us to unify methods and weaken domain requirements.

We then turn to the Feynman path integral. At this time, there
is an extensive literature on the development and application of path
integral methods in all aspects of physics, chemistry, mathematics,
and engineering, and it is impossible to provide a reasonable discus-
sion of these efforts. As a substitute, we provide references to some
of the important works on this subject and introduce a number of in-
teresting examples which are not covered in the literature. Our focus
is on the mathematical foundations. We first demonstrate that the
Kuelbs–Steadman space, KS2[R3], allows us to construct the elemen-
tary path integral in exactly the manner suggested by Feynman. Thus,
our approach does not encumber physical intuition or computational
efficiency. We further show that KS2[R3] is sufficient to provide a rig-
orous foundation for the Feynman formulation of quantum mechanics.

In order to further extend our theory, we introduce some results
due to Maslov and Shishmarev on hypoelliptic pseudodifferential op-
erators that allow us to construct a general class of path integrals
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generated by Hamiltonians, which are not perturbations of Laplacians
(see Shishmarev [SH]). We then use the results of Chap. 7 and our sum
over path theory to generalized and extend the well-known Feynman–
Kac Theorem. Our final result is independent of the space of contin-
uous functions, so that the question of the existence of measures is
more of a desire than a requirement. (The strong continuity of the
underlying semigroup ensures us that, whenever a measure exists, our
theory can be easily restricted to the space of continuous paths.) In
the last section, we provide a proof of the last remaining conjecture of
Dyson, concerning the cause for the ultraviolet divergency of quantum
electrodynamics.

Although our major focus is functional analysis and the Feynman
operator calculus, it is clear from the topics covered that the book has
much to offer for those with general research interests in both pure and
applied mathematics. The book can be used as a text for advanced
courses in analysis, functional analysis, operator theory, mathematical
physics, mathematical foundations of quantum theory, or special topic
seminars in these or related subjects.

Those with advanced training in quantum theory, who mainly work
on Hilbert spaces, could study the first part of Sect. 3.2 and the proof
of Theorem 3.25 in Chap. 3. A review of the first two subsections
of Chap. 6, Sect. 6.5.1 of Sect. 6.5, and Sect. 6.6 would be sufficient to
understand Chap. 7 and the main section on path integrals in Chap. 8.
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Chapter 1

Preliminary
Background

This chapter is composed of two parts: Basic Analysis and Intermedi-
ate Analysis.

The first part is a review of some of the basic background that is
required from the first 2 years of a standard program in mathematics.
There are program differences so that some areas may receive more
coverage while others receive less. Our purpose is to provide a reference
point for the reader and establish notation. In a few important cases,
we have provided proofs of major theorems. In other cases, we delayed
a proof when a more general result is proven in a later chapter.

In the second part of this chapter, we include some intermediate
to advanced material that is required later. In most cases, motivation
is given along with additional proof detail and specific references.

Part I: Basic Analysis

The first part of this chapter is devoted to a brief discussion of the
circle of ideas required for advanced parts of analysis and the basics
of operator theory. Those with a strong background in theoretical
chemistry or physics but little or no formal training in analysis will
find Reed and Simon (vol.1) to be an excellent copilot (see below).

1
© Springer International Publishing Switzerland 2016
T.L. Gill, W.W. Zachary, Functional Analysis and the Feynman
Operator Calculus, DOI 10.1007/978-3-319-27595-6 1



2 1. Preliminary Background

General references for this section are Dunford and Schwartz [DS],
Jones [J], Reed and Simon [RS], Royden [RO], and Rudin [RU].

1.1. Analysis

1.1.1. Sets. Let X be a nonempty set, let ∅ be the emptyset, and let
P(X) be the power set of X (i.e., the set of all subsets of X).

Definition 1.1. Let A,B,An ∈ P(X), n ∈ N, then

(1) Ac = {a ∈ X : a /∈ A}, the compliment of A.

(2) A\B = A ∩Bc.

(3) (De Morgan’s Laws)[ ∞⋃
k=1

Ak

]c
=

∞⋂
k=1

Ac
k,

[ ∞⋂
k=1

Ak

]c
=

∞⋃
k=1

Ac
k.

We define the lim inf and lim sup for sets by:

lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak lim sup
n→∞

An =

∞⋂
n=1

∞⋃
k=n

Ak.

Theorem 1.2. Let {An} ⊂ P(X), n ∈ N, then the lim inf and lim sup
satisfy:

(1)

lim inf
n→∞ An ⊂ lim sup

n→∞
An.

(2)

lim sup
n→∞

An = {a : a ∈ Ak for infinitely many k}.

(3)

lim inf
n→∞ An = {a : a ∈ Ak for all but finitely many k}.

(4)

(lim sup
n→∞

An)
c = lim inf

n→∞ Ac
n.

(5) If An ⊃ An+1, then

lim inf
n→∞ An = lim sup

n→∞
An = lim

n→∞An =

∞⋂
k=1

Ak.
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(6) If An ⊂ An+1, then

lim inf
n→∞ An = lim sup

n→∞
An = lim

n→∞An =

∞⋃
k=1

Ak.

Definition 1.3. Let A,B ⊂ X. (We assume they are nonempty.)

(1) The cartesian product, denoted A×B, is defined by

A×B = {(a, b) : a ∈ A, b ∈ B}.
In general, A × B 	= B × A, so that the order matters. If
{Ak} is a countable collection of subsets of X, we define the
cartesian product by:

∞∏
k=1

Ak = {(a1, a2, . . .) : ak ∈ Ak}.

Definition 1.4. A map f : A → B (a function, or a transformation),
with domainD(f) ⊂ A and range R(f) ⊂ B is a subset f ⊂ A×B such
that, for each x ∈ A, there is one and only one y ∈ B, with (x, y) ∈ f .
We write y = f(x) and call f(A) = {f(x) : x ∈ A} ⊂ B, the image
of f and, call f−1(B) = {x : f(x) ∈ B} ⊂ A, the inverse image of B.
We say that f is one to one or injective, if for all x1 	= x2 ∈ A, we have
that y1 = f(x1) 	= y2 = f(x2) ∈ B. We say that f is onto or surjective
if, for each y ∈ B, there is a x ∈ A, with y = f(x).

1.1.2. Topology. We only consider Hausdorff spaces or spaces with
the Hausdorff topology (see below). For an elementary introduction
to topology, we recommend Mendelson [ME]. Dugundji [DU] is more
advanced, but is also worth consulting.

Definition 1.5. Let X be a nonempty set and let τ be a set of subsets
of X. We say that τ defines a Hausdorff topology on X, or that X is
Hausdorff, if

(1) X and ∅ ∈ τ .

(2) If O1, . . . , On is a finite collection of sets in τ , then
⋂n

i=1Oi∈τ .
(3) If Γ is a index set and, for each γ ∈ Γ, there is a set Oγ ∈ τ ,

then
⋃

γ∈Γ Oγ ∈ τ .

(4) If x, y ∈ X are any two distinct points, there are two disjoint
sets O1, O2 ∈ τ (i.e., O1 ∩ O2 = ∅), such that x ∈ O1 and
y ∈ O2.
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We call the collection τ the open sets of the topology for X. A set
N ∈ τ is called a neighborhood for each point x ∈ N , and the set τx ⊂ τ
of all neighborhoods for x is called a complete neighborhood basis for x.
Thus, any set O, containing x, also contains some neighborhood basis
set N(x) ∈ τx.

A set P is said to be closed if P c is open. It follows that, if Γ is
any index set and, for each γ ∈ Γ, there is a closed set Pγ ∈ τ , then
by De Morgan’s Law,

⋂
γ∈Γ Pγ is also closed. Thus, we can also define

the same topology τ , using closed sets.

Let M 	= ∅, be a subset of X.

(1) The interior of M , denoted int(M), is the union of all O ∈ τ
such that O ⊂ M . If x ∈ int(M), we say that x is an interior
point of M .

(2) The closure of M , which we denote by M , is the set of all
x ∈ X such that, for all N(x) ∈ τx, N(x) ∩M 	= ∅.

(3) We say that M is dense in X if M = X. If M is also count-
able, we say that X is separable.

If M and N are any two subsets of X, then M ∪N = M ∪ N and,
M = M if and only if M is closed.

We say that x0 ∈ X is a limit point of M ⊂ X, if x0 ∈ M\{x0} or
equivalently, for every N(x0) ∈ τx0 , there is a y ∈ N(x0) and y /∈ M .

Definition 1.6. Let (X1, τ1) and (X2, τ2) be two Hausdorff spaces.
A function f , withD(f) = X1 and R(f) ⊂ X2, is said to be continuous
at a point x ∈ X1 if, for each neighborhood basis set N [f(x)] ∈ τ2,x,
there is a neighborhood basis set N(x) ∈ τ1,x such that f [N(x)] ⊂
N [f(x)]. In terms of inverse images, this says that f−1{N [f(x)]} is
open in X1 for each N [f(x)] in X2. (A little reflection shows that the
above definition may be translated to the one we learned in elementary
calculus, using ε’s and δ’s, when X1 = X2 = R.) We say that f is
continuous on X1 if it is continuous at each point of X1.

The topological space (X, τ) is said to be connected if it is not the
disjoint union of two open sets. In a connected space X and ∅ are the
only two sets that are both open and closed.

If Γ is a index set, {Aγ : γ ∈ Γ} ⊂ X is called a cover of M ⊂ X,
if M ⊂ ⋃

γ∈Γ Aγ . If each Aγ ∈ τ , we call {Aγ : γ ∈ Γ} an open cover
of M . If in addition Γ is finite, we call it a finite open cover of M .
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We say that M is compact if, for every open cover {Aγ : γ ∈ Γ}, there
always exists a finite subset of Γ, γ1, . . . , γn such that M ⊂ ⋃n

k=1Aγk .

Definition 1.7. Let (X1, τ1) and (X2, τ2) be two topological spaces,
with X1 ∩X2 = ∅. The coproduct space (X, τ) = (X1, τ1) ⊕ (X2, τ2)
is the unique topological space, with the property that each open set
O ⊂ X is of the form O = O1 ∪O2, where O1 ∈ τ1 and O2 ∈ τ2.

(X, τ) is also known as the disjoint union space or direct sum space.
(If (X1, τ1) and (X2, τ2) are Hausdorff, then it is easy to see that (X, τ)
is Hausdorff.)

1.1.3. σ-Algebras.

Definition 1.8. Let A ⊂ P(X) be a collection of subsets of X 	= ∅.
We say that A is an algebra if the following holds:

(1) X, ∅ ∈ A and,

(2) If A,B ∈ A then Ac, Bc ∈ A and A ∪B ∈ A.
It is easy to verify that:

(3) A ∩B ∈ A and A \B ∈ A.

(4) If n is finite and {Ak} ⊂ A, 1 ≤ k ≤ n, then
n⋃

k=1

Ak ∈ A,
n⋂

k=1

Ak ∈ A.

Definition 1.9. Let A ⊂ P(X) be an algebra. We say that A is a
σ-algebra if

∞⋃
k=1

Ak ∈ A,

for any countable family of sets {Ak} ∈ A. It is also easy to see that
∞⋂
k=1

Ak ∈ A,

along with
lim inf
n→∞ An ∈ A

and
lim sup
n→∞

An ∈ A.

Definition 1.10. If Σ is a nonempty class of subsets ofX, the smallest
σ-algebra A, with Σ ⊂ A is called the σ-algebra generated by Σ and
is written A(Σ).
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Remark 1.11. Since Σ ⊂ P(X), there is at least one σ-algebra con-
taining Σ.

Lemma 1.12. If J is an index set and for each α ∈ J, Aα is σ-algebra,
then A =

⋂
α∈J Aα is a σ-algebra.

Definition 1.13. If A is a σ-algebra of subsets of a nonempty set X,
we call the couple (X,A) a measurable space.

Definition 1.14. If A is a σ-algebra of subsets of a nonempty set X,
we call a sequence {Ak} ⊂ A a partition of X if the sequence is disjoint
and

⋃∞
k=1Ak = X.

Definition 1.15. If X is a topological space and Σ is the class of open
sets of X, then A(Σ) = B(X) is called the Borel σ-algebra of X.

1.1.4. Measure Spaces.

Definition 1.16. Let X be a nonempty set. An outer measure ν∗ is
a function on P(X) → [0,∞], such that

(1) ν∗(∅) = 0.

(2) If B ⊂ A, then ν∗(B) ≤ ν∗(A).
(3) If A ⊂ ⋃∞

k=1Ak, then

ν∗(A) ≤
∞∑
k=1

ν∗(Ak).

If for each sequence of disjoint sets {Ak} ⊂ A,

ν

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

ν(Ak),

we say that ν is a measure. We also say that ν is σ-additive and call
the triple (X,A, ν) a measure space.

Definition 1.17. Let (X,A) be a measurable space and let ν(A) ∈ C,
the complex numbers, for each A ∈ A. We say that ν is a complex
measure if ν(∅) = 0 and for each disjoint countable union

⋃∞
k=1Ak of

sets in A, we have

ν

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

ν(Ak),

where the convergence on the right is absolute.
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Definition 1.18. Let (X,A, ν) a measure space.

(1) We say that ν is a finite measure if ν(X) < ∞.

(2) We say that ν is concentrated on a set A ∈ A, if A = U c and
U is the largest open set with the property that ν(U) = 0.
We also call A the support of ν.

(3) We say that ν is a regular measure if given A ∈ A, for each
ε > 0, there is a open set O and a closed set K such that:
K ⊂ A ⊂ O and ν(O \K) < ε.

(4) We say that ν is a σ-finite measure if there is a sequence
{Ak} ⊂ A, with

X =

∞⋃
k=1

Ak, and ν(Ak) < ∞.

(5) We say that ν is a Radon measure, if the set K in (3) can be
chosen as compact or the sequence {Ak} ⊂ A in (4) can be
chosen with each Ak is compact.

(6) We say that ν is a complete measure if A ∈ A, with B ⊂ A
and ν(A) = 0 then B ∈ A and ν(B) = 0.

(7) We say that ν is a probability measure if ν(X) = 1.

(8) We say that a complex measure ν is of bounded variation if

|ν| (X) = sup
∞∑
k=1

|ν(Ak)| < ∞,

where the supremum is taken over all partitions of X. We call
|ν| (X) the total variation of ν.

(9) We say that the complex measure ν is a signed measure if
both |ν|+ν and |ν|−ν are real valued. In this case, we define
the positive part and the negative part by: ν+ = 1

2(|ν| + ν)

and ν− = 1
2(|ν| − ν). We call this the Jordan Decomposition.

Theorem 1.19 (The Hahn Decomposition Theorem). Let ν be a
signed measure on (X,A). Then there exists a partition X1,X2 of
X such that, for every A ∈ A:

ν+(A) = ν(A ∩X1) and ν−(A) = −ν(A ∩X2).

Theorem 1.20 (The Jordan Decomposition Theorem). Let ν be a
signed measure on (X,A). If μ1 and μ2 are positive measures and
ν = μ1 − μ2, then ν+ ≤ μ1 and ν− ≤ μ2.
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Thus, the Jordan decomposition ν = ν+ − ν−, has the above
minimal property. If ν is complex, this decomposition becomes ν =
ν+1 − ν−1 + i(ν+2 − ν−2 ), for two positive measures, ν1 and ν2.

Definition 1.21. We say that X is an Abelian group if for each pair
x, y ∈ X, x⊕ y ∈ X and

(1) x⊕ y = y ⊕ x. (The Abelian property.)

(2) For all x, y, z ∈ X (x⊕ y)⊕ z = x⊕ (y ⊕ z).

(3) There is an element 0 ∈ X called the identity and x ⊕ 0 =
0⊕ x = 0, for all x ∈ X.

(4) For each y ∈ X, there is a unique element y− ∈ X, such that
y ⊕ y− = y− ⊕ y = 0.

(5) We say that Y is a subgroup of X if Y ⊂ X and for all
y1, y2 ∈ Y, y1 ⊕ y2 ∈ Y , satisfying conditions (1)–(4) above.

The real or complex numbers form an Abelian group with addition
(or multiplication if we exclude zero). The rational numbers (real or
complex) form a subgroup, with the same exception for multiplication.

When X is an Abelian group (with ⊕ = +) and (X,A, ν) is a
measure space, we say that T is an admissible translation invariance
group for (X,A, ν) if T is a subgroup of X and ν(A − t) = ν(A), for
all t ∈ T. If T = X, we say that ν is translation invariant on X.

1.1.5. Integral. Let (X,A, ν) a measure space.

Definition 1.22. Let f be a function on X, f : X → K, where
K = R or C.

(1) We say that f is measurable if f−1(B) ∈ A, for every set
B ∈ B[K], the Borel algebra on K. In this case, we say that
f ∈ M[X] or M, when X is understood.

(2) We say that two functions f and g are equal almost every-
where and write f(x) = g(x), ν-(a.e.), if they have the same
domain and ν{x : f(x) 	= g(x)} = 0. In general, a property
is said to hold ν-(a.e.) on X if the set of points where this
property fails has ν-measure zero.

Definition 1.23. A (nonnegative) simple function s is defined onX by

s(x) =

n∑
k=1

akχAk
(x),



1.1. Analysis 9

where the ak ∈ [0,∞) and the family of measurable sets {Ak} form a
(finite) partition of X (i.e., ν(Ai ∩ Aj) = 0, i 	= j and

⋃n
k=1Ak = X).

(By convention, if need be, we can always add a set An+1 to the
collection and define an+1 = 0 so that the union is always X.)

Lemma 1.24. If 0 ≤ f ∈ M, then there is a sequence of simple
functions {sn}, with sn ≤ sn+1 and sn → f (a.e.) at each point of X,
as n →∞.

Definition 1.25. If f : X → [0,∞] is a measurable function and
A ∈ B(X), we define the integral of f over A by:∫

A
f(x)dν = lim

n→∞

∫
A
sn (x) dν,

where {sn} is any increasing family of simple functions converging
to f(x).

Theorem 1.26. If f, g are nonnegative measurable functions and 0 ≤
c < ∞, we have:

(1)
∫
X f(x)dν(x) is independent of the family of simple functions
used;

(2) 0 ≤ ∫
X f(x)dν(x) ≤ ∞;

(3)
∫
X cf(x)dν(x) = c

∫
X f(x)dν(x);

(4)∫
X
[f(x) + g(x)]dν(x) =

∫
X
f(x)dν(x) +

∫
X
g(x)dν(x).

(5) If f ≤ g, then
∫
X f(x)dν(x) ≤ ∫

X g(x)dν(x).

Theorem 1.27 (Fatou’s Lemma). Let {fn} ⊂ M be a nonnegative
family of functions, then:∫

X

(
lim inf
n→∞ fn(x)

)
dν(x) ≤ lim inf

n→∞

∫
X
fn(x)dν(x).

Theorem 1.28 (Monotone Convergence Theorem). Let {fn} ⊂ M be
a nonnegative family of functions, with fn ≤ fn+1. Then:

lim
n→∞

∫
X
fn(x)dν(x) =

∫
B

(
lim
n→∞ fn(x)

)
dν(x).

Definition 1.29. If f ∈ M, we define∫
X
f(x)dν(x) =

∫
X
f+(x)dν(x) −

∫
X
f−(x)dν(x),
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where f+(x) = 1
2 (|f(x)|+ f(x)) and f−(x) = 1

2 (|f(x)| − f(x)).
We say that f is integrable whenever both integrals on the right are fi-
nite. The set of all integrable functions is denoted by L1[X,B(X), ν] =
L1[X].

Remark 1.30. As is carefully discussed in elementary analysis, the
functions in L1[X] are not uniquely defined. Following tradition, we let
L1[X] denote the set of equivalence classes of functions in L1[X] that
differ by a set of ν-measure zero. By a slight abuse, we will identify
an integrable function f as measurable (in L1[X]) and its equivalence
class in L1[X]. The same convention also applies to functions in Lp[X]
and will be used later without further comment.

Theorem 1.31 (Dominated Convergence Theorem). Let fn ∈ M[X,
ν], n ∈ N, g ∈ L1(X), with g ≥ 0 and |fn(x)| ≤ g(x), ν-(a.e.). If
limn→∞ fn(x) exists ν-(a.e.), then limn→∞ fn ∈ L1[X] and

lim
n→∞

∫
X
fn(x)dν(x) =

∫
X

(
lim
n→∞ fn(x)

)
dν(x).

1.2. Functional Analysis

In this section, we include a few basic background results from func-
tional analysis and Banach space theory. Detailed discussions can be
found in Dunford and Schwartz [DS], Hille and Phillips [HP], Lax [L1],
Reed and Simon [RS], Rudin [RU], or Yosida [YS].

1.2.1. Topological Vector Spaces.

Definition 1.32. A vector space X over C is an Abelian group under
addition that is closed under multiplication by elements of C. That is:

(1) For each x, y ∈ X, x+ y ∈ X.

(2) For all x, y, z ∈ X, x+y = y+x and (x+y)+z = x+(y+z).

(3) There is a unique element 0 ∈ X called zero and x + 0 =
0 + x = x for all x ∈ X.

(4) For all x ∈ X, there is a unique element −x ∈ X and x +
(−x) = (−x) + x = 0.

(5) For all x, y ∈ X and a, b ∈ C, ax ∈ X, 1x = x, (ab)x = a(bx)
and a(x+ y) = ax+ ay. We call b ∈ C a scalar.

If X is a vector space over C, a mapping ρ(·) : X → [0,∞) is a
seminorm on X if:
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(1) For each x, y ∈ X, ρ(x) ≥ 0 and ρ(x+ y) ≤ ρ(x) + ρ(y).

(2) For each λ ∈ C and each x ∈ X, ρ(λx) = |λ| ρ(x).
Definition 1.33. Let V be a subset of X.

(1) We say that V is a convex subset of X if for each x, y ∈
V, αx+ (1− α)y ∈ V , for all α ∈ [0, 1].

(2) We say that V is an balanced subset of X if for each x ∈ V
and α ∈ C, with |α| ≤ 1, αx ∈ V .

(3) We say that V is an absolutely convex subset of X if it is both
convex and balanced.

(4) We say that V is a absorbent subset of X if for each x ∈
X, αx ∈ V , for some α > 0. Thus, every point in x ∈ X is in
αV for some positive α.

Definition 1.34. A locally convex topological vector space is a vector
space with its topology defined by a family of semi-norms {ργ}, where
γ is in some index set Γ. Given any x ∈ X, a base of ε-neighborhoods
about x is a set of the form VΓ0,ε(x), where Γ0 is a finite subset of Γ
and

VΓ,ε(x) = { y ∈ X : ργ(x− y) < ε, γ ∈ Γ }.
Definition 1.35. A locally convex topological vector space X is a
Fréchet space if it satisfies the following:

(1) X is a Hausdorff space.

(2) The neighborhood base about each x ∈ X is induced by a
countable number of seminorms (i.e., Γ is a countable set).

(3) X is a complete relative to the family of seminorms.

Theorem 1.36. The vector space X is a Fréchet space if and only if:

(1) X is a locally convex.

(2) There is a metric d : X×X → [0,∞) such that, for all x, y, z ∈
X, d(x+ z, y + z) = d(x, y).

(3) X is a complete relative to the metric d(·, ·).
Remark 1.37. If the index Γ for the family of semi-norms is count-
able, then we can define a metric d(x, y) by:

d(x, y) =

∞∑
n=1

1

2n
ρn(x− y)

1 + ρn(x− y)
.
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A sequence {xn} in a metric space X converges to a limit x ∈ X if and
only if limn→∞d (xn, x) = 0. In this case, by the triangle inequality

d (xn, xm) ≤ d (xn, x) + d (xm, x) .

We say that a sequence satisfies the Cauchy convergence condition, or
is a Cauchy sequence if

lim
m,n→∞ d (xn, xm) = 0.

A metric space is said to be complete if every Cauchy sequence con-
verges to a point in the space.

1.2.2. Separable Banach Spaces. Hilbert and Banach spaces are
discussed further in Chaps. 4 and 5. Let B be a vector space over
R or C. We say that B is separable if it contains a countable dense
subset.

Definition 1.38. A norm on a vector space B is a mapping ‖·‖B :
B → [0,∞], such that

(1) ‖x‖B = 0 if and only if x = 0.

(2) ‖ax‖B = |a| ‖x‖B for all x ∈ B and a ∈ C.

(3) ‖x+ y‖B ≤ ‖x‖B + ‖y‖B, for all x, y ∈ B.
(4) We say that B is uniformly convex if, for each ε > 0, there is

a δ = δ(ε) > 0 such that, for all x, y ∈ B with

max (‖x‖ , ‖y‖) � 1, ‖x− y‖ � ε ⇒ 1
2 ‖x+ y‖ � 1− δ.

The topology on B is generated by the metric defined by:

d(x, y) = ‖x− y‖B ,

so that {x : ‖x− y‖B < r} is an open ball about y of radius r.

The space B is complete if every Cauchy sequence in the above
norm converges to an element in B. A complete normed space is called
a Banach space.

Definition 1.39. Let B be a Banach space and let A be a transfor-
mation on B, with domain D(A) (i.e., A : D(A) ⊂ B → B).

(1) We say that A is a linear operator on B, if A(ax + by) =
aAx+ bAy, for all a, b ∈ C and all x, y ∈ D(A).

(2) We say that A is densely defined if D(A) is dense in B.
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(3) We say that A is a closed linear operator if and only if the
following condition is satisfied: {xn} ⊂ D(A), xn → x and
Axn → z always implies that x ∈ D(A) and z = Ax.

(4) We say that A is a bounded linear operator if and only if
D(A) = B and

sup
‖x‖B�1

‖Ax‖B < ∞.

In this case we define the norm of A, ‖A‖B, by the above
supremum.

1.2.2.1. Dual Spaces.

Definition 1.40. Let B be a Banach space.

(1) The dual space B′ is the set of all bounded linear operators
x∗ : B → C (called bounded linear functionals on B). The
norm of x∗ is defined by:

‖x∗‖B′ = sup
‖x‖B≤1

|x∗(x)| = sup
‖x‖B≤1

|〈x, x∗〉| .

With this norm B′ is a Banach space. We write B′ as B′
s and

call it the strong dual. The topology is known as the strong
topology.

(2) The weak and weak∗ topology are defined on B and B′

respectively in the following manner:
• A sequence {xn} ⊂ B is said to converge in the weak
topology to x ∈ B if and only if, for each bounded linear
functional y∗ ∈ B′,

lim
n→∞ y∗(xn) = y∗(x).

We also write w − limn→∞ xn = x.
• A sequence {x∗n} ⊂ B′ is said to converge in the weak∗

topology to x∗ ∈ B′ if and only if, for each y ∈ B,
lim
n→∞x∗n(y) = x∗(y).

We also write w∗ − limn→∞ x∗n = x∗.
(3) If B = B′′, we say that B is reflexive.

(4) A duality map J : B �→ B′ is a set

J (u) =
{
u∗ ∈ B′

∣∣∣u∗(u) = 〈u, u∗〉 = ‖u‖2 = ‖u∗‖2
}
, for all u ∈ B.
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Remark 1.41. The following remarks are important.

(1) In the definition, we used x∗ to represent an element in B′.
The notation used varies with the tradition of the particular
topical area. To the extent possible, we will try to be con-
sistent within topics studied and the tradition of the field so
that the reader will see some correspondence when consulting
references for different topics.

(2) It is easy to see that

|y∗(xn)− y∗(x)| ≤ ‖xn − x‖B ‖y∗‖B′

for all y∗ ∈ B, so that norm convergence in B always implies
weak convergence. It is also easy to see that

|x∗n(y)− x∗(y)| ≤ ‖x∗n − x∗‖B′ ‖y‖B ,

for all y ∈ B, so that norm convergence in B′ always implies
weak∗ convergence. However (in both cases), the reverse is
not true (see Lax [L1, p. 106]).

(3) It is known that every uniformly convex Banach space is re-
flexive. Furthermore, when B is uniformly convex, the duality
set J (u), is single valued and uniquely defined by u. How-
ever, if B is not uniformly convex, the duality set J (u) can
have the power of the continuum.

The following examples will help one see what is possible in con-
crete cases.

(1) If λn is Lebesgue measure on R
n, u ∈ Lp[Rn], 1 < p < ∞ and

q is such that 1
p + 1

q = 1, then

J (u)(x) = ‖u‖2−p
p |u(x)|p−2 u(x) = u∗ ∈ Lq

R
n],

and

〈u, u∗〉 = ‖u‖2−p
p

∫
Rn

|u(x)|p dλn(x) = ‖u‖2p = ‖u∗‖2q .

Thus, it is easy to see that (Lp[Rn])′′ = Lp[Rn], so that Lp[Rn]
is reflexive for 1 < p < ∞.

(2) The space L1[Rn] is not reflexive, for if u ∈ L1[Rn], then

J (u)(x) = {v ∈ L∞[Rn]| : v(x) ∈ {‖u‖1 sign[u(x)]}} ,
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where

sign [u(x)] =

⎧⎨
⎩

1, u(x) > 0,
−1, u(x) < 0,

[−1, 1], u(x) = 0.

It follows that J (u)(x) is uncountable for each u ∈ L1[Rn].

The transpose matrix on R
n or the transpose conjugate matrix on

C
n has its parallel for Banach spaces. In this case, they are known

as dual operators. They are also known as adjoint operators, but we
will reserve this term for a special class of operators on Banach spaces,
discussed in Chap. 5. We will also use adjoint for the same class defined
on Hilbert spaces in the next section and explain the distinction.

Definition 1.42. Let A : D(A) → B be a closed linear operator on
B with a dense domain D(A). The dual of A, A′ is defined on B′ as
follows. Its domain D(A′) is the set of all y∗ ∈ B′ for which there
exists an x∗ ∈ B′ such that

〈Ax, y∗〉 = 〈x, x∗〉 ,
for all x ∈ D(A); in this case we define A′y∗ = x∗.

A proof of the following theorem can be found in [HP] or [YS].

Theorem 1.43. Let A : D(A) → B be a closed linear operator on B
with a dense domain D(A).

(1) Then A′ : D(A′) → B′ is a closed linear operator on B′ and
its domain D(A′) is dense in B′.

(2) If, in addition, ‖A‖B < ∞, then D(A′) = B′ and ‖A′‖B′ =
‖A‖B.

1.2.2.2. Hilbert Space.

Definition 1.44. An inner product on B = H is a bilinear mapping
(·, ·)H : H×H → C, such that

(1) (x, x)H ≥ 0 and (x, x)H = 0 if and only if x = 0.

(2) (ax + by, z)H = a(x, z)H + b(y, z)H and (w, ax + by)H =
ac(w, x)H + bc(w, y)H.

If (·, ·)H is a inner product, it induces a norm on H by

‖x− y‖H =
√

(x− y, x− y)H.

If H is complete with this norm, we call it a Hilbert space.
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If (·, ·)H is the inner product on the Hilbert space H, then the same
Cauchy–Schwarz inequality from R

n still holds, |(x, y)H| ≤ ‖x‖H ‖y‖H.
The following polarization identity also holds for a general Hilbert

space:

(x, y)H = 1
4

(
‖x+ y‖2H − ‖x− y‖2H

)
,

if the field of H is R and

(x, y)H = 1
4

{(
‖x+ y‖2H − ‖x− y‖2H

)
+ i

(
‖x+ iy‖2H − ‖x− iy‖2H

)}
,

if the field of H is C.

Definition 1.45. Let A : D(A) → H be a closed linear operator on
H with a dense domain D(A). The adjoint of A, A∗ is defined on H
as follows. Its domain D(A∗) is the set of all y ∈ H for which there
exists an x ∈ H such that

(Ax, y)H = (x,A∗y)H.

We will always call A∗ the adjoint of A when it is defined on the
same space and A′, the dual of A when it is defined on the dual space.
In Chap. 5, we will see that the adjoint is also possible for a certain
class of Banach spaces, which include the uniformly convex ones.

Theorem 1.43 can be slightly modified to show that D(A∗) is dense
in H and, if ‖A‖H < ∞, then D(A∗) = H and ‖A∗‖H = ‖A‖H.

Recall that, two functions f, g ∈ H are orthogonal, if (f, g)H = 0
and they are orthonormal if in addition, ‖f‖H = ‖g‖H = 1. A set
{φn} ⊂ H is an orthonormal basis for H if they are orthonormal and
each x ∈ H can be written as x =

∑∞
k=1 akφk, for a unique family of

scalars {an} ⊂ C.

Definition 1.46. Let A be a linear operator defined on H.

(1) We say that A is a projection operator if A2x = Ax for all
x ∈ H.

(2) We say that A is the self-adjoint if D(A) = D(A∗) and Ax =
A∗x, for all x ∈ D(A).

(3) We say that a bounded linear operator A is the compact, if
for every bounded sequence {xn} ⊂ H, the sequence {Axn}
has a convergent subsequence.

(4) We say that a compact operator A is trace class if, for some
orthonormal basis {φn} of H, the trace of A, tr[A] is finite,
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where

tr[A] =

∞∑
n=1

(Aφn, φn).

It is easy to check that the trace (if it exists) is independent of the
basis used.

1.2.3. The Hahn–Banach Theorem.

Theorem 1.47. Let B be a Banach space over C and let p : B → R

be such that, for all x, y ∈ B
p(ax+ by) ≤ |a| p(x) + |a| p(y), whenever |a|+ |b| = 1. (1.1)

If L̄ is a linear functional defined on a subspace D ⊂ B, with ∣∣L̄(x)∣∣ ≤
p(x), for all x ∈ D, then L̄ can be extended to a linear functional L
on B such that |L(x)| ≤ p(x), x ∈ B and L(x) = L̄(x) on D.

Proof. We first assume that the field is R. Suppose that x ∈ B but
x /∈ D. Let E = (x,D) be the vector space spanned by x and D. If we
have an extension L of L̄ from D to E , it must satisfy

L (ax+ by) = λL(x) + L̄(y), y ∈ D.

and from (1.1), |a|+ |b| = 1 implies that

p(ax+ by) ≤ |a| p(x) + |b| p(y).
Suppose that y1, y2 ∈ D, a, b > 0, a+ b = 1. Then

aL̄(y1) + bL̄(y2) = L̄(ay1 + by2) � p[a(y1 − 1
ax) + b(y2 +

1
bx)]

� ap(y1 − 1
ax) + bp(y2 +

1
bx).

We see that for all y1, y2 ∈ D and all a, b > 0, a+ b = 1, we have

1
a

[−p[y1 − ax) + L̄(y1)
]
� 1

b

[
p(y2 + bx)− L̄(y2)

]
.

It now follows that we must be able to find a number c such that for
all a > 0,

sup
y∈D

1
a

[−p[y − ax) + L̄(y)
]
� c � inf

y∈D
1
a

[
p(y + ax)− L̄(y)

]
.

We can define L(x) = c. It is easy to check that L(x) ≤ p(x), for
all x ∈ E . We now appeal to Zorn’s Lemma (see Yosida [YS, p. 2]), to
show that L̄ can be extended to all of B, when the field is R.


