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Chapter 1
Introduction

Abstract Continuous monitoring of physiological parameters (e.g., the moni-
toring of stress and emotion, personal psychological analysis) enabled by brain—
machine interface (BMI) circuits is not only beneficial for chronic diseases, but
for detection of the onset of a medical condition and the preventive or therapeu-
tic measures. It is expected that the combination of ultra-low power sensor- and
ultra-low power wireless communication technology will enable new biomedi-
cal devices that will be able to enhance our sensing ability, and can also provide
prosthetic functions (e.g., cochlear implants, artificial retina, motor functions).
Practical multichannel BMI systems are combined with CMOS electronics for
long term and reliable recording and conditioning of intra-cortical neural signals,
on-chip processing of the recorded neural data, and stimulating the nervous sys-
tem in a closed-loop framework. To evade the risk of infection, these systems are
implanted under the skin, while the recorded neural signals and the power required
for the implant operation is transmitted wirelessly. This migration, to allow prox-
imity between electrodes and circuitry and the increasing density in multichannel
electrode arrays, is, however, creating significant design challenges in respect to
circuit miniaturization and power dissipation reduction of the recording system.
Furthermore, the space to host the system is restricted to ensure minimal tissue
damage and tissue displacement during implantation. In this book, this design
problem is addressed at various abstraction levels, i.e., circuit level and system
level. It therefore provides a broad view on the various solutions that have to be
used and their possible combination in very effective complementary techniques.
Technology scaling, circuit topologies, architecture trends, (post-silicon) cir-
cuit optimization algorithms and yield-constrained, power-per-area minimization
framework specifically target power-performance trade-off, from the spatial reso-
lution (i.e., number of channels), feasible wireless data bandwidth and information
quality to the delivered power of implantable batteries.

© Springer International Publishing Switzerland 2016 1
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2 1 Introduction

1.1 Brain—Machine Interface: Circuits and Systems

Best way to predict the future is to invent it. Medicine in the twentieth century
relied primarily on pharmaceuticals that could chemically alter the action of neu-
rons or other cells in the body, but twenty-first century health care may be defined
more by electroceuticals: novel treatments that will use pulses of electricity to
regulate the activity of neurons, or devices that interface directly with our nerves.
Systems such as brain—machine interface (BMI) detect the voltage changes in
the brain that occur when neurons fire to trigger a thought or an action, and they
translate those signal into digital information that is conveyed to the machine, e.g.,
prosthetic limb, speech prosthesis, a wheelchair.

Recently, many promising technological advances are about to change our con-
cept about healthcare, as well as the provision of medical cares. For example, the
telemedicine, e-hospital, and ubiquitous healthcare are enabled by emerging wire-
less broadband communication technology. While initially becoming main-stream
for portable devices such as notebook computers and smart phones, wireless
communication (e.g., wireless sensor network, body sensor network) is evolving
toward wearable and/or implantable solutions. The combination of two technol-
ogies, ultra-low power sensor technology and ultra-low power wireless commu-
nication technology, enables long-term continuous monitoring and feedback to
medical professionals wherever needed.

Neural prosthesis systems enable the interaction with neural cells either by
recording, to facilitate early diagnosis and predict intended behavior before under-
taking any preventive or corrective actions, or by stimulation, to prevent the onset
of detrimental neural activity. Monitoring the activity of a large population of neu-
rons in neurobiological tissue with high-density microelectrode arrays in multi-
channel implantable BMI is a prerequisite for understanding the cortical structures
and can lead to a better conception of stark brain disorders, such as Alzheimer’s
and Parkinson’s diseases, epilepsy and autism [1], or to reestablish sensory (e.g.,
hearing and vision) or motor (e.g., movement and speech) functions [2].

Metal-wire and micro-machined silicon neural probes, such as the Michigan
probe [3] or the Utah array [4], have aided the development of highly integrated
multichannel recording devices with large channel counts, enabling study of brain
activity and the complex processing performed by neural systems in vivo [5-7].
Several studies have demonstrated that the understanding of certain brain functions
can only be achieved by monitoring the electrical activity of large numbers of indi-
vidual neurons in multiple brain areas at the same time [8]. Consequently, real-time
acquisition from many parallel readout channels is thus needed both for the suc-
cessful implementation of neural prosthetic devices as well as for a better under-
standing of fundamental neural circuits and connectivity patterns in the brain [9].

One of the main goals of the current neural probe technologies [10-21] is to
minimize the size of the implants while including as many recording sites as pos-
sible, with high spatial resolution. This enables the fabrication of devices that
match the feature size and density of neural circuits [22], and facilitates the spike



