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Preface

Admittedly, as useful a matter as the motion of fluid and related
sciences has always been an object of thought. Yet until this day
neither our knowledge of pure mathematics nor our command of
the mathematical principles of nature have a successful
treatment.

–Daniel Bernoulli

Incompressible Navier–Stokes equations describe the dynamic motion (flow) of
incompressible fluid, the unknowns being the velocity and pressure as functions of
location (space) and time variables. To solve those equations would mean to predict
the behavior of the fluid under knowledge of its initial and boundary states. These
equations are one of the most important models of mathematical physics. Although
they have been a subject of vivid research for more than 150 years, there are still
many open problems due to the nature of nonlinearity present in the equations.
The nonlinear convective term present in the equations leads to phenomena such
as eddy flows and turbulence. In particular the question of solution regularity for
three-dimensional problem was appointed by Clay Mathematics Institute as one of
the Millennium Problems, that is, the key problems in modern mathematics. This is,
on one hand, due to the fact that the problem remains challenging and fascinating
for mathematicians and, on the other hand, that the applications of the Navier–
Stokes equations range from aerodynamics (drag and lift forces), through design
of watercrafts and hydroelectric power plants, to the medical applications of the
models of flow of blood in vessels.

This book is aimed at a broad audience of people interested in the Navier–Stokes
equations, from students to engineers and mathematicians involved in the research
on the subject of these equations.

It originated in part from a series of lectures of the first author given over the past
15 years at the Faculty of Mathematics, Informatics and Mechanics of the University
of Warsaw; at summer schools at UNICAMP, Campinas, Brasil; and at Université
Jean Monnet, Saint-Etienne, France. The lectures were based on the leading books
on the then young theory of infinite dimensional dynamical systems, focused on
mathematical physics, in particular, on Temam [220]; Chepyzhov and Vishik [61];
Doering and Gibbon [88]; Foiaş, Manley, Rosa, and Temam [99]; and Robinson
[197].
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viii Preface

The lectures at the Mathematics Faculty of the University of Warsaw were also
attended by students and PhD students from the Faculty of Physics and Faculty
of Geophysics, and it became clear that a routine mathematical lecture had to be
extended to include additional aspects of hydrodynamics. Some students asked for
“more physics and motivation” and “more real applications”; others were mainly
interested in the mathematics of the Navier–Stokes equations, and yet others would
like to see the Navier–Stokes equations in a more general context of evolution
equations and to learn the theory of infinite dimensional dynamical systems on the
research level. These several aspects of hydrodynamics well suited the tastes and
interests of the lecturer, and also the second author was welcomed to join the project
of the book at a later stage.

In consequence, the audience of the book is threesome:

Group I: Mathematicians, physicists, and engineers who want to learn about the
Navier–Stokes equations and mathematical modeling of fluids
Group II: University teachers who may teach a graduate or PhD course on fluid
mechanics basing on this book or higher-level students who start research on the
Navier–Stokes equations
Group III: Researchers interested in the exchange of current knowledge on
dynamical systems approach to the Navier–Stokes equations

Although, in principle, all these three groups can find interest in all chapters of
the book, Chaps. 2–7 are primarily targeted at Group I, Chaps. 3, 4, 7, 8, 11, and 12
aimed mainly at Group II, and Chaps. 7–16 for Group III.

For a reader with reasonable background on calculus, functional analysis, and
theory of weak solutions for PDEs, the whole book should be understandable.

The book was planned to be a monograph which could also be used as a textbook
to teach a course on fluid mechanics or the Navier–Stokes equations. Typical
courses could be “Navier–Stokes equations”, “partial differential equations”, “fluid
mechanics”, “infinite dimensional dynamics systems.” To this end many chapters
of this book include exercises. Moreover, we did not restrain ourselves to include
a number of figures to liven the text and make it more intuitive and less formal.
We believe that the figures will be helpful. Special care was undertaken to keep the
individual chapters self-contained as far as possible to allow the reader to read the
book linearly (in linear portions). That demanded several small repetitions here and
there.

To understand the first chapters of this book, just the basic knowledge on
calculus, that can be learned from any calculus textbook, should be enough.

The book is planned to be self-contained, but, to understand its last chapters,
some knowledge from a textbook like “Partial Differential Equations” by L.C. Evans
(which contains all necessary knowledge on functional analysis and PDEs) would
be helpful. Each chapter contains an introduction that explains in simple words the
nature of presented results and a section on bibliographical notes that will place it
in the context of past and current research.
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Several people greatly contributed, knowingly or not knowingly, to the creation
of the book. Our thanks go to our colleagues and collaborators: Guy Bayada, Mahdi
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1
Introduction and Summary

When you put together the science of movements of water,
remember to put beneath each proposition its applications, so
that such science may not be without uses.

– Leonardo da Vinci

This chapter provides, for the convenience of the reader, an overview of the whole
book, first of its structure and then of the content of the individual chapters.

The outline of the book structure is as follows.
Chapter 2 shows the derivation of the Navier–Stokes equations from the prin-

ciples of physics and discusses their physical and mathematical properties and
examples of the solutions for some particular cases, without going into complicated
mathematics. This part is aimed to fill in a gap between an engineer and mathe-
matician and should be understood by anybody with basic knowledge of calculus
no more complicated than the Stokes theorem.

In Chap. 3, a necessary mathematical background including these parts of func-
tional analysis and theory of Sobolev spaces which are needed to understand modern
research on the Navier–Stokes equations is presented. Chapters 4–6 comprise three
examples of stationary problems.

Then we smoothly move to the research level part of the book (Chaps. 7–16)
which presents the analysis from the point of view of global attractors of the
asymptotic (in time) behavior of the velocities being the solutions of the Navier–
Stokes system. Roughly speaking we endeavor to show how the modern theory of
global attractors can be used to construct the mathematical objects that enclose the
seemingly chaotic and unordered eddy and turbulent flows. We tame these flows
by showing their fine properties like the finite dimensionality of global attractors,
which means that the description of unrestful and turbulent states can be done by
finite number of parameters or existence of invariant measures which means that the
flow becomes, in statistical sense, stationary.

We deal with non-autonomous problems using the recent and elegant theory of
so-called pullback attractors that allows to cope with flows with changing in time
sources, sinks, or boundary data. We also solve problems with multivalued boundary
conditions that allow to model various contact conditions between the fluid and
enclosing object, such as the stick/slip frictional boundary behavior.
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2 1 Introduction and Summary

The analysis is primarily done for the two-dimensional Navier–Stokes equations,
where, as a model, the problem from lubrication theory, that can be reduced to two
dimensions is used. The study with various types of boundary conditions, including
multivalued ones, is presented.

Some of the results presented in this part are based on the previous and already
published work of the authors, but some results, that are the subjects of current
research, are yet unpublished elsewhere.

Below we present the content of the book in some more detail.
In Chap. 2 we give an overview of the equations of classical hydrodynamics.

We provide their derivation, discuss the associated physical quantities, comment on
the constitutive laws, stress tensor, and thermodynamics, finally we present some
elementary properties of the derived system and also some cases where it is possible
to calculate the exact solutions of the following system of the incompressible
Navier–Stokes equations,

@u

@t
� ��u C .u � r/u C 1

�
rp D f ;

div u D 0;

which are the main subject of the book.
In Chap. 3 we introduce the basic preliminary mathematical tools to study the

Navier–Stokes equations, including results from linear and nonlinear functional
analysis (e.g., the Lax–Milgram lemma, fixed point theorems) as well as the theory
of function spaces (e.g., compactness theorems). We present, in particular, some
of the most frequently used in the sequel embedding theorems and inequalities.
We discuss the versions of the Gronwall lemma used in the sequel, and provide
some necessary background in the theory of Clarke subdifferential and differential
inclusions.

In Chaps. 4–6 we consider stationary problems. Chapter 4 is devoted to the
stationary Navier–Stokes equations in a bounded three-dimensional domain Q,

���u C .u � r/u C rp D f in Q;

divu D 0 in Q;

with one of the boundary conditions:

1. Q D Œ0;L�3 in R
3 and we assume periodic boundary conditions, or

2. Q is a bounded domain in R
3, with smooth boundary, and we assume the

homogeneous boundary condition u D 0 on @Q.

This basic problem serves as an introduction to the mathematical theory of
the Navier–Stokes equations. We introduce the suitable function spaces in which
we (usually) seek solutions of the stationary problem, then we present the weak
formulation. It allows us to use the theories of linear and nonlinear functional
analysis (Lax–Milgram lemma and fixed point theorems, respectively) to prove the
existence of solutions.
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To show typical methods used when dealing with nonlinear problems, we present
a number of proofs based on various linearizations and fixed point theorems in
standard function spaces. The solutions, due to the nonlinearity of the Navier–Stokes
equations are not in general unique, however, under some restriction on the mass
force and viscosity coefficient (quite intuitive from the physical point of view), one
can prove their uniqueness.

In Chap. 5 we consider the stationary Navier–Stokes equations with friction in
the three-dimensional bounded domain ˝. The domain boundary @˝ is divided
into two parts, namely the boundary �D on which we assume the homogeneous
Dirichlet boundary condition and the contact boundary �C on which we decompose
the velocity into the normal and tangent directions. In the normal direction we
assume u � n D 0, i.e., there is no leak through the boundary, while in the tangent
direction we set �T� 2 h.x; u� /, the multivalued relation between the tangent
stress and tangent velocity. This relation is the general form of the friction law on
the contact boundary. The existence of solution is shown by the Kakutani–Fan–
Glicksberg fixed point theorem and some cut-off techniques.

In Chap. 6 we consider a typical problem for the hydrodynamic equations coming
from the lubrication theory. In this theory the domain of the flow is usually very thin
and the engineers are interested in the distribution of the pressure therein. Because
of the thinness of the domain, in practice one assumes that the pressure would
depend only on two and not three independent variables. The pressure distribution
is governed then by the Reynolds equation, which depends on the original boundary
data. Our aim is to obtain the Reynolds equation starting from the stationary Stokes
equations, considered in the three-dimensional domains ˝", " > 0,

���u C rp D f in ˝";

div u D 0 in ˝";

with a Fourier boundary condition on the top � "
F and Tresca boundary conditions

on the bottom part of the boundary �C, respectively. We show how to pass, in a
precise mathematical way, as " ! 0, from the three-dimensional Stokes equations
to a two-dimensional Reynolds equation for the pressure distribution (see Fig. 1.1).

The passage from the three-dimensional problem to a two-dimensional one
depends on several factors and additional scaling assumptions. The existence of
solutions of the limit equations follows from the existence of solutions of the
original three-dimensional problem. Finally, we show the uniqueness of the limit
solution.

In Chaps. 7–10 we consider the nonstationary autonomous Navier–Stokes
equations

ut � ��u C .u � r/u C rp D f ; (1.1)

div u D 0; (1.2)

in two-dimensional domains. In these chapters the solutions are global in time and
unique.
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Fig. 1.1 Schematic view of the problem considered in Chap. 6. Incompressible static Stokes
equation is solved on the three-dimensional domain ˝". The domain thickness is given by "h,
where h is a function of the point in the two-dimensional domain !. As " ! 0, Reynolds equation
on ! is recovered

Chapter 7 is a general introduction to evolutionary two-dimensional Navier–
Stokes equations. We prove some basic properties of solutions assuming that the
external forces do not depend on time and that the domain of the flow is bounded.
The boundary conditions are either periodic or homogeneous Dirichlet ones. In this
chapter we introduce the notion of the global attractor, one of the main objects to
study also in Chaps. 8–10.

In Chap. 8 we prove the existence of invariant measures associated with two-
dimensional autonomous Navier–Stokes equations. The invariant measures are
supported on the global attractor. Then we introduce the notion of a stationary
statistical solution and prove that every invariant measure is also such a solution.
Existence of the invariant measures (stationary statistical solutions) supported on
the global attractor reveals the statistical properties of the potentially chaotic fluid
flow after a long time of evolution when the external forces do not depend on time.
The non-autonomous case is considered in Chap. 12.

In Chaps. 9–10 we consider system (1.1) and (1.2) in the domain ˝ depicted in
Fig. 1.2, with homogeneous condition u D 0 on �D, periodic condition u.0; x2/ D
u.L; x2/ on �L, and several contact boundary conditions on �C. The motivation for
such problem setup comes again from problems in contact mechanics, the theory of
lubrication and shear flows in narrow films.

One may look at the domain ˝ as a rectification of the ring-like domain
considered in the theory of lubrication, where it represents a cross section of an
infinite journal bearing. The problem reduces to describing a flow between two
cylinders. The outer cylinder is at rest and the inner cylinder rotates providing a
driving force to the fluid (lubricant). Since the cylinders are infinitely long it can
be assumed in the first approximation that the flow is two-dimensional. Described
domain geometry is schematically presented in Fig. 1.3.

The boundary conditions on �C include the following ones.
In Chap. 9 we pose

u D Ue1; U 2 R; U > 0 on �C;
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Fig. 1.2 Schematic view of
the flow domain and its
boundaries in Chaps. 9 and 10

Fig. 1.3 Three-dimensional infinite ring-like domain and its rectification considered in Chaps. 9
and 10

by which we mean that the boundary �C is moving with a constant velocity
U0e1 D .U0; 0/ and the velocity of the fluid at the boundary equals the velocity
of the boundary.

We prove the existence of a global attractor and estimate from above its fractal
dimension in terms of given data and geometry of the domain of the flow.

In Chap. 10 we consider two problems. We assume that there is no flux across �C

so that the normal component of the velocity on �C satisfies

u � n D 0 on �C;

and that the tangential component of the velocity u� on �C is unknown and satisfies
the Tresca friction law with a constant and positive maximal friction coefficient k.
This means that
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jT� .u; p/j � k

jT� .u; p/j < k ) u� D U0e1

jT� .u; p/j D k ) 9� � 0 such that u� D U0e1 � �T� .u; p/

9
>>>>>=

>>>>>;

on �C;

(1.3)

where T� is the tangential component of the stress tensor on �C and U0e1 D .U0; 0/,
U0 2 R, is the velocity of the lower surface producing the driving force of the flow.

In the second problem the boundary �C is also assumed to be moving with
the constant velocity U0e1 D .U0; 0/ which, together with the mass force, produces
the driving force of the flow. The friction coefficient k is assumed to be related to
the slip rate through the relation k D k.ju� � U0j/, where k W RC ! R

C. If there
is no slip between the fluid and the boundary then the friction is bounded by the
threshold k.0/

u� D U0 ) jT� j � k.0/ on �C; (1.4)

while if there is a slip, then the friction force density (equal to tangential stress) is
given by the expression

u� ¤ U0 ) �T� D k.ju� � U0j/ u� � U0

ju� � U0j on �C: (1.5)

Note that (1.4) and (1.5) generalize the Tresca law (1.3) where k was assumed to
be a constant. Here k depends of the slip rate, this dependence represents the fact
that the kinetic friction is less than the static one, which holds if k is a decreasing
function.

We prove that for both problems above there exist exponential attractors, in
particular the global attractors of finite fractal dimension.

In Chaps. 11–13 we consider the time asymptotics of solutions of the two-dimen-
sional Navier–Stokes equations. First, in Chap. 11 we prove two properties of the
equations in a bounded domain, concerning the existence of determining modes and
nodes. Then we study the equations in an unbounded domain, in the framework of
the theory of infinite dimensional non-autonomous dynamical systems, introducing
the notion of the pullback attractor.

Chapter 12 presents a construction of invariant measures and statistical solutions
for the non-autonomous Navier–Stokes equations in bounded and some unbounded
domains in R

2. More precisely, we construct the family of probability measures
f	tgt2R and prove the relations 	t.E/ D 	�.U.t; �/�1E/ for t; � 2 R, t � � and
Borel sets E in H. The support of each measure 	t is included in the section A.t/
of the pullback attractor. We prove also the Liouville and energy equations. Finally,
we consider statistical solutions of the Navier–Stokes equations supported on the
pullback attractor.
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In Chap. 13 we consider the problem of existence and finite dimensionality of the
pullback attractor for a class of two-dimensional turbulent boundary driven flows.
We generalize here the results from Chap. 9 to the non-autonomous problem. The
new element in our study with respect to that in Chap. 9 is the allowance of the
velocity of �C to depend on time, i.e.,

u D U.t/e1; U.t/ 2 R on �C:

Our aim is to study the time asymptotics of solutions in the frame of the dynamical
systems theory. We prove the existence of the pullback attractor and estimate its
fractal dimension. We shall apply the results from Chap. 11, reformulated here in
the language of evolutionary processes.

Chapters 14–16 are devoted to global in time solutions of the Navier–Stokes
equations which are not necessary unique. We introduce theories of global attractors
for multivalued semiflows and multivalued processes to include this situation.
We study further examples of contact problems in both autonomous and non-
autonomous cases.

In Chap. 14 we consider two-dimensional nonstationary Navier–Stokes shear
flows in the domain ˝ as in Fig. 1.2, with nonmonotone and multivalued boundary
conditions on �C. Namely, we assume the following subdifferential boundary
condition

Qp.x; t/ 2 @j.un.x; t// on �C;

where Qp D p C 1
2
juj2 is the Bernoulli (total) pressure, un D u � n, j W R ! R is a

given locally Lipschitz superpotential, and @j is a Clarke subdifferential of j.
Our considerations are motivated here by feedback control problems for fluid

flows in domains with semipermeable walls and membranes and by the theory of
lubrication. We prove the existence of global in time solutions of the considered
problem which is governed by a partial differential inclusion, and then we prove
the existence of a trajectory attractor and a weak global attractor for the associated
multivalued semiflow.

In Chap. 15 we study the three-dimensional problem in a bounded domain ˝.
The problem domain is the three-dimensional counterpart of the one presented in
Fig. 1.2. The boundary of ˝ is divided into three parts: the lateral one �L on which
we assume the periodic boundary conditions, the homogeneous Dirichlet one and,
finally, the contact one �C on which we consider a general form of multivalued
frictional type boundary conditions �T� 2 g.u� /. We prove the existence of the
Leray–Hopf weak solutions and, using the framework of evolutionary systems,
existence of the weak global attractor.

Finally, in Chap. 16 we consider further non-autonomous and multivalued evo-
lution problems, this time in the frame of the theory of pullback attractors for
multivalued processes. First we prove an abstract theorem on the existence of
pullback D-attractor and then apply it to study a two-dimensional incompressible
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Navier–Stokes flow with a general form of multivalued frictional contact conditions
on �C. We assume that there is no flux across �C and hence we have

un.t/ D 0 on �C;

and that the tangential component of the velocity u� on �C is in the following
relation with the tangential stresses T� ,

�T� .t/ 2 @j.x; t; u� .t// on �C:

In above formula j W �C � R � R ! R is a potential which is locally Lipschitz and
not necessarily convex with respect to the last variable, and @ is the subdifferential
in the sense of Clarke taken with respect to the last variable u� .

The tangent conditions on �C in Chaps. 15 and 16 represent the frictional contact
between the fluid and the wall, where the friction force depends in a nonmonotone
and even discontinuous way on the slip rate, and are a generalization of the
conditions considered in Chap. 10. For this case we prove the existence of the
attractor.

Most chapters are devoted to two-dimensional problems. Three-dimensional
problems are considered only in Chaps. 2, 4, 5, 6, and 15. One reason for that is
associated with the character of the Navier–Stokes equations, namely the fact that
in the two-dimensional problems it is relatively easy to prove the uniqueness of the
solutions which allows us to use the well-developed theory of infinite dimensional
dynamical systems for semigroup and processes, while the uniqueness of the three-
dimensional Navier–Stokes equations is in general an open question. We also
consider the two- and three-dimensional problems without assuming the solution
uniqueness in the framework of (more recent) theories of trajectory attractors,
multivalued semiflows, evolutionary systems, and multivalued processes.

The other reason to focus on the two-dimensional flows concern the simplicity.
Our aim was to test first the more elementary two-dimensional models of some
real engineering problems. The word “test” here means not only checking the well
posedness of a particular problem. In Chap. 9 we estimate the attractor dimension
and show how it depends on the shape of the domain (cf. [24, 26], where the upper
bounds of the attractor dimension depend also on the geometry of �D). Assume
that the answer to the question on the dependence of the attractor dimension on the
geometry of the boundary is such that in the two-dimensional case the estimate from
above of the attractor dimension is independent of geometry (for example, on the
roughness of the boundary represented by the oscillations of the function h D h.x1/
describing �D). Such a result would be contradictory to our intuition, provided the
intuitive hypotheses

attractor dimension � level of chaos in the flow � geometry of the flow domain

where “�” means “is related to,” are justified.
Such a contradiction with our intuition could be resolved in the following

ways:
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1. there is no such contradiction in the “real” three-dimensional case, it appears
only in the two-dimensional case (but where lies the difference?),

2. the attractor dimension does not represent the level of chaos in the fluid flow
described by the (good) model of the Navier–Stokes equations,

3. the Navier–Stokes equations model is not good enough to give the right answer
to the problems of chaotic movement of the classical fluids.

The close correspondence between the level of chaos in the fluid flow and the
geometry of the domain is evident as a physical phenomenon (recall observing a
flow of water in the river).

To confirm the agreement of the results provided by the modeling with our
physical intuition or else to confront the above potential possibilities motivated us
to study the problems of the existence and properties of the attractor. There are still
many interesting and important problems close to these considered in the book and
we were able to touch only a few ones. One example is to further study the relations
between the (type of) boundary conditions and the attractor dimension.

Finally, we remark that this book is devoted to incompressible flows, for the
mathematical treatise of compressible ones see, e.g., [157, 187].



2
Equations of Classical Hydrodynamics

The neglected borderline between two branches of knowledge is
often that which best repays cultivation, or, to use a metaphor of
Maxwell’s, the greatest benefits may be derived from a
cross-fertilization of the sciences.

– John William Strutt, 3rd Baron Rayleigh

In this chapter we give an overview of the equations of classical hydrodynamics.
We provide their derivation, comment on the stress tensor, and thermodynamics,
finally we present some elementary properties and also some exact solutions of the
Navier–Stokes equations.

2.1 Derivation of the Equations of Motion

Fluid flow may be represented mathematically as a continuous transformation of
three-dimensional Euclidean space into itself. The transformation is parametrized
by a real parameter t representing time.

Let us introduce a fixed rectangular coordinate system .x1; x2; x3/. We refer to
the coordinate triple .x1; x2; x3/ as the position and denote it by x. Now consider
a particle P moving with the fluid, and suppose that at time t D 0 it occupies a
position X D .X1;X2;X3/ and that at some other time t, �1 < t < C1, it has
moved to a position x D .x1; x2; x3/. Then x is determined as a function of X and t

x D x.X; t/ or xi D xi.X; t/ : (2.1)

If X is fixed and t varies, Eq. (2.1) specifies the path of the particle initially at X.
On the other hand, for fixed t, (2.1) determines a transformation of a region initially
occupied by the fluid into its position at time t.

© Springer International Publishing Switzerland 2016
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We assume that the transformation (2.1) is continuous and invertible, that is, there
exists its inverse

X D X.x; t/; .or Xi D Xi.x; t// :

Also, to be able to differentiate, we assume that the functions xi and Xi are
sufficiently smooth.

From the condition that the transformation (2.1) possess a differentiable inverse
it follows that its Jacobian

J D J.X; t/ D det

�
@xi

@Xj

�

satisfies

0 < J < 1 : (2.2)

The initial coordinates X of the particle will be referred to as the material
coordinates of the particle. The spatial coordinates x may be referred to as its
position, or place. The representation of fluid motion as a point transformation
violates the concept of the kinetic theory of fluids, as in this theory the particles are
molecules, and they are in random motion. In the theory of continuum mechanics
the state of motion at a given point x and at a given time t is described by a number
of functions such as � D �.x; t/, u D u.x; t/, 
 D 
.x; t/ representing density,
velocity, temperature, and other hydrodynamical variables.

Due to the transformation (2.1), each such variable f can also be expressed in
terms of material coordinates

f .x; t/ D f .x.X; t/; t/ D F.X; t/ : (2.3)

The velocity u at time t of a particle initially at X is given, by definition, as

u.x; t/ D U.X; t/ D d

dt
x.X; t/ ; .x D x.X; t// : (2.4)

Above, X is treated as a parameter representing a given fixed particle, and this is the
reason that we use the ordinary derivative in (2.4).

Having the velocity field u.x; t/, we can (in principle) determine the transforma-
tion (2.1), solving the ordinary differential equation

d

dt
x.X; t/ D u.x.X; t/; t/;

with x.X; 0/ D X, where X is a parameter.
We shall always write

d

dt
F.X; t/ and

@

@t
f .x; t/ ;
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where F and f are related by (2.3). We have thus

d

dt
F.X; t/ D d

dt
f .x.X; t/; t/ D @f

@xi
.x.X; t/; t/

dxi

dt
C @f

@t
.x.X; t/; t/ ;

so that by (2.4) we obtain a general formula

d

dt
F.X; t/ D D

Dt
f .x; t/ ; (2.5)

where D
Dt f .x; t/ � @f

@t .x; t/C u.x; t/ � rf .x; t/ is called the material derivative of f .

Transport Theorem Let ˝.t/ denote an arbitrary volume that is moving with the
fluid and let f .x; t/ be a scalar or vector function of position and time. The transport
theorem states that

d

dt

Z

˝.t/
f .x; t/ dx (2.6)

D
Z

˝.t/

�
@f

@t
.x; t/C u.x; t/ � rf .x; t/C f .x; t/ div u.x; t/

�

dx :

For the proof consider the transformation

x W ˝.0/ ! ˝.t/; x D x.X; t/ ;

as in (2.1). Then

Z

˝.t/
f .x; t/ dx

D
Z

˝.0/

f .x.X; t/; t/J.X; t/ dX D
Z

˝.0/

F.X; t/J.X; t/ dX ;

so that

d

dt

Z

˝.t/
f .x; t/dx D d

dt

Z

˝.0/

F.X; t/J.X; t/ dX (2.7)

D
Z

˝.0/

�
d

dt
F.X; t/J.X; t/C F.X; t/

d

dt
J.X; t/

�

dX :
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By (2.5) we have

Z

˝.0/

d

dt
F.X; t/J.X; t/ dX

D
Z

˝.0/

�
@f

@t
.x.X; t/; t/C u.x.X; t/; t/ � rf .x.X; t/; t/

�

J.X; t/ dX

D
Z

˝.t/

�
@f

@t
.x; t/C u.x; t/ � rf .x; t/

�

dx :

To prove (2.6) it remains to prove the Euler formula

d

dt
J.X; t/ D div u.x.X; t/; t/J.X; t/ ; (2.8)

the proof of which we leave to the reader as an exercise.
The fluid is called incompressible if for any domain ˝.0/ and any t,

volume .˝.t// D volume .˝.0// :

From (2.7) with f .x; t/ � 1 we have

d

dt
volume .˝.t// D d

dt

Z

˝.t/
dx D

Z

˝.0/

d

dt
J.X; t/dX ;

hence by (2.8), (2.2), and the arbitrariness of choice of the domain ˝.t/ via ˝.0/ a
necessary and sufficient condition for the fluid to be incompressible is

div u.x; t/ D 0 :

Exercise 2.1. Prove that the transport theorem can be written in the form

d

dt

Z

˝.t/
f .x; t/ dx D

Z

˝.t/

@f

@t
.x; t/ dx C

Z

@˝.t/
f .x; t/u.x; t/ � n.x; t/ dS ;

where n.x; t/ is the outward unit normal to @˝.t/ at x 2 @˝.t/.
Equation of Continuity Let � D �.x; t/ be the mass per unit volume of a fluid at
point x and time t. Then the mass of any finite volume ˝ is

m D
Z

˝

�.x; t/ dx :
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The principle of conservation of mass says that the mass of a fluid in a material
volume ˝ does not change as ˝ moves with the fluid; that is,

d

dt

Z

˝.t/
�.x; t/ dx D 0 :

From the transport theorem (2.6) it follows that

Z

˝.t/

�
@�

@t
C div .�u/

�

dx D 0 ;

whence

@�

@t
C div .�u/ D 0 : (2.9)

Sometimes the principle of conservation of mass is expressed as follows. Let ˝ be
a fixed volume. Then

d

dt

Z

˝

�.x; t/ dx D �
Z

@˝

�u � n dS ; (2.10)

that is, the rate of change of mass in a fixed volume ˝ is equal to the mass flux
through its surface.

We notice also the general formula

d

dt

Z

˝.t/
�f dx D

Z

˝.t/
�

D

Dt
f dx : (2.11)

Exercise 2.2. Derive (2.9) from (2.10).

Exercise 2.3 (Cf. [212]). Show that in material coordinates the equation of conti-
nuity is

d

dt
f�.X; t/J.X; t/g D 0 ;

or

�.X; t/J.X; t/ D �.X; 0/ :

Exercise 2.4 (Cf. [5]). Show that if �0.X/ is the distribution of density of the fluid
at time t D 0 and r.div u/ D 0, then

�.x; t/ D �0.X.x; t// exp

�

�
Z t

0

div u.x; t/ dt

�

:
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Exercise 2.5. Find �.x; t/ for the motion

ui D xi

1C ait
.a1 D 2 ; a2 D 1 ; a3 D 0/;

if �0.X/ is the distribution of density of the fluid at time t D 0.

Exercise 2.6. Prove (2.11).

Principle of Conservation of Linear Momentum We assume that the forces
acting on an element of a continuous medium are of two kinds. External, or body,
forces, such as gravitation or electromagnetic forces, can be regarded as reaching
into the medium and acting throughout the volume. If f represents such a force per
unit mass, then it acts on an element ˝ as

Z

˝

�f dx :

The internal, or contact, forces are to be regarded as acting on an element of volume
˝ through its bounding surface. Let n be the unit outward normal at a point of
the surface @˝, and tn the force per unit area exerted there by the material volume
outside @˝. Then the surface force exerted on the volume ˝ can be expressed by
the integral

Z

@˝

tn dS :

The Cauchy principle says that tn depends at any given time only on the position
and the orientation of the surface element dS; in other words,

tn D tn.x; t; n/ :

The principle of conservation of linear momentum says that the rate of change of
linear momentum of a material volume equals the resultant force on the volume

d

dt

Z

˝.t/
�udx D

Z

˝.t/
�f dx C

Z

@˝.t/
tn dS ; (2.12)

where f is assumed to be known.
By (2.11), (2.12) yields

Z

˝.t/
�

Du

Dt
dx D

Z

˝.t/
�f dx C

Z

@˝.t/
tn dS : (2.13)

From this equation we derive a very important fact, namely, that the vector tn (called
normal stress) can be expressed as a linear function of n, in the form

tn.x; t; n/ D n.x; t/T.x; t/ ; (2.14)
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where T D fTijg is a matrix called the stress tensor. This will allow us to pass from
the integral form (2.13) of the equation of conservation of linear momentum to a
differential one.

Let l3 be the volume of˝ D ˝.t/. Dividing both sides of (2.13) by l2 and letting
the volume tend to zero we obtain

lim
j˝j!0

l�2
Z

@˝

tn dS D 0 ; (2.15)

that is, the stress forces are in local equilibrium.
Let ˝ be a domain containing a fluid, and consider a regular tetrahedron with

vertex at an arbitrary point x 2 @˝, and with three of its faces parallel to the
coordinate planes. Let the slanted face have normal n D .n1; n2; n3/ and area ˙ .
The normals to the other faces are �e1, �e2, and �e3, and their areas are n1˙ , n2˙ ,
and n3˙ . Applying (2.15) to the family of tetrahedrons obtained by letting ˙ ! 0,
we obtain

t.n/C n1t.�e1/C n2t.�e2/C n3t.�e3/ D 0 ; (2.16)

where t.n/ D tn D tn.x; t; n/, t.�h/ D t�h for h 2 fe1; e2; e3g, and ni > 0. By
a continuity argument, (2.16) holds for all ni � 0, and then we prove easily that
t.ei/ D �t.�ei/, i D 1; 2; 3, and that it holds for all n. This means that t.n/ may be
expressed as a linear function of n; that is, we can write it in the form (2.14). Thus,
by (2.13) and by the Green theorem we obtain

Z

˝.t/
�

Du

Dt
dx D

Z

˝.t/
.�f C div T/ dx ;

whence, by the arbitrariness of the domain of integration,

�
Du

Dt
D �f C div T ; (2.17)

or

�

0

@
@

@t
ui C

3X

jD1
uj
@

@xj
ui

1

A D �fi C Tji;j; i D 1; 2; 3 :

This is the general Cauchy equation of motion in differential form.

Exercise 2.7. Give a physical interpretation of the components of the stress tensor.

Notice that we have not specified T yet, that is, we have not made any
assumptions concerning the nature of forces acting on surface elements. These
forces depend on the kind of fluid, or, more generally, on the kind of medium under
consideration.
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In the simplest model the contact forces act perpendicularly to the surface
elements. We have then

t.n/ D �p.x/n ;

and call p the pressure. The minus sign is chosen so that when p > 0, the contact
forces on a closed surface tend to compress the fluid inside; p represents the pressure
exerted from outside on a surface of the element of the fluid.

In particular, all fluids at rest exhibit this stress behavior, namely that an element
of area always experiences a stress normal to itself, and this stress is independent of
the orientation. Such stress is called hydrostatic.

We call this idealized model a perfect fluid. The equation of motion for perfect
fluids is

�

�
@u

@t
C .u � r/u

�

D �f � rp ;

where

.u � r/ui D
3X

jD1
uj
@

@xj
ui ; i D 1; 2; 3 :

All real fluids when in motion can exert tangential stresses across surface elements,
in which case the tensor T is not diagonal.

The stress tensor may always be written in the form

Tij D �pıij C Pij :

In this case Pij is called the viscous stress tensor.
In classical fluid dynamics it is assumed that the stress tensor is symmetric, that is,

Tij D Tji :

This assumption has very important consequences. It may be also considered as a
theorem if we assume a specific form of the equation of conservation of angular
momentum. We shall discuss this in Sect. 2.2.

Exercise 2.8 (Cf. [5]). Show that the Cauchy equation of motion can be written as

@

@t
.�ui/ D �fi C .Tji � �ujui/;j ;

and interpret it physically.
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Exercise 2.9 (Cf. [5]). Show that if F is any function of position and time, then
Z

@˝

FTjinj dS D
Z

˝

�

TjiF ;j C�F

�
Dui

Dt
� fi

��

dx

(theorem of stress means).

Equation of Energy The first law of thermodynamics in classical hydrodynamics
states that the increase of total energy (we shall consider here only kinetic and
internal energies) in a material volume is the sum of the heat transferred and the
work done on the volume. We denote by q the heat flux (then �q � n is the heat flux
into the volume) and by E the specific internal energy. Then the balance expressed
by the first law of thermodynamics is, cf. [5],

d

dt

Z

˝.t/
�

�
1

2
juj2 C E

�

dx (2.18)

D
Z

˝.t/
�f � u dx C

Z

@˝.t/
tn � u dS �

Z

@˝.t/
q � n dS :

The first integral on the right-hand side is the rate at which the body force does work,
the second integral represents the work done by the stress, and the third integral
is the total heat flux into the volume.

We shall write this equation in another form. From the theorem of stress means
(Exercise 2.9) we have, with F D ui,

Z

@˝.t/
uiTjinj dS D

Z

˝.t/

�

Tjiui;j C �ui
Dui

Dt
� �fiui

�

dx :

Rearranging the terms and using the transport theorem, we obtain

d

dt

Z

˝.t/
�
1

2
juj2 dx D

Z

˝.t/
�
1

2

D

Dt
juj2 dx (2.19)

D
Z

˝.t/
�fiui dx �

Z

˝.t/
Tjiui;j dx C

Z

@˝.t/
ui.tn/i dS :

Thus the rate of change of kinetic energy of a material volume is the sum of three
parts: the rate at which the body forces do work, the rate at which the internal
stresses do work, and the rate at which the surface stresses do work.

From (2.18), (2.19), the transport theorem, and the Green theorem we obtain

Z

˝.t/

�

�
DE

Dt
C r � q � T W .ru/

�

dx D 0 ;

where T W .ru/ is the dyadic notation for Tjiui;j, the scalar product of T and ru.
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Thus

�
DE

Dt
D �r � q C T W .ru/ :

Conservation Laws of Classical Hydrodynamics Above we obtained the follow-
ing system of conservation laws of classical hydrodynamics

D�

Dt
D ��r � u ; (2.20)

�
Du

Dt
D r � T C �f ; (2.21)

�
DE

Dt
D �r � q C T W .ru/ : (2.22)

They are laws of conservation of mass, momentum, and energy, respectively.
If we assume the Fourier law for the conduction of heat,

q D �kr
 .k � 0/ ; (2.23)

where k is the thermal conductivity of the fluid then the energy equation takes the
form

�
DE

Dt
D r � .kr
/C T W .ru/ :

2.2 The Stress Tensor

In the classical hydrodynamics the stress tensor T is defined by

Tij D .�p C �uk;k/ıij C 	.ui;j C uj;i/ : (2.24)

If we define the deformation tensor

Di;j D 1

2
.ui;j C uj;i/; (2.25)

then the above formula takes the form

Tij D .�p C �uk;k/ıij C 2	Dij : (2.26)

Remark 2.1. Formula (2.26) is a consequence of a number of postulates, coming
originally from G. Stokes, about the fundamental properties of fluids. These
postulates can be formulated as follows (cf. [5, 212]):

(a) The stress tensor T is a continuous function of the deformation tensor D and the
local thermodynamic state, but independent of other kinematic quantities.
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(b) The fluid is homogeneous; that is, T does not depend explicitly on x.
(c) The fluid is isotropic; that is, there is no preferred direction.
(d) When there is no deformation (D D 0), and the fluid is incompressible

(uk;k D 0), the stress is hydrostatic (T D �pI, I is the unit matrix).

Fluids that satisfy these postulates are called Stokesian. It can be proved (cf. [5, 212])
that the most general form of the stress tensor in this case is

T D .�p C ˛/I C ˇD C �D2 ;

where p; ˛; ˇ; � are some functions that depend on the thermodynamic state, ˛; ˇ; �
being dependent as well on the invariants of the tensor D.

Moreover, when the dependence of the components of T on the components of
D is postulated to be linear, the stress tensor can be written as

T D .�p C � div u/I C 2	D ;

which coincides with (2.24). Such linear Stokesian fluids are called Newtonian.
Fluids that are not Newtonian are called non-Newtonian. One important example
of the latter are the micropolar fluids [92, 159].

The Stress Tensor and the Law of Conservation of Angular Momentum
Looking at the form of the equation of conservation of linear momentum

d

dt

Z

˝.t/
�u dx D

Z

˝.t/
�f dx C

Z

@˝.t/
tn dS ;

and recalling the definition of angular momentum in mechanics of mass points
or rigid particles, it seems natural to assume the following form of the law of
conservation of angular momentum:

d

dt

Z

˝.t/
�.x � u/ dx D

Z

˝.t/
�.x � f / dx C

Z

@˝.t/
x � tn dS : (2.27)

In fact, this form of the law of conservation of angular momentum holds if we
assume that all torques arise from macroscopic forces. This is the case in most
common fluids, but a fluid with a strongly polar character, e.g., a polyatomic fluid,
is capable of transmitting stress torques and being subjected to body torques. We
call such fluids polar.

Theorem 2.1. For an arbitrary continuous medium satisfying the continuity
equation (2.9) and the dynamical equation (2.17) the following statements are
equivalent:

(i) the stress tensor is symmetric,
(ii) equation (2.27) holds.
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Remark 2.2. In classical hydrodynamics the stress tensor is symmetric, and the law
of conservation of angular momentum is defined by Eq. (2.27). In consequence,
in classical hydrodynamics the law of conservation of angular momentum can be
derived from the law of conservation of mass and the law of conservation of linear
momentum, and as such adds nothing to the description of the fluid.

Proof. Let us assume (ii), and we shall deduce (i). Applying formula (2.11), we
have from (2.27)

d

dt

Z

˝.t/
�.x � u/ dx (2.28)

D
Z

˝.t/
�

D

Dt
.x � u/ dx D

Z

˝.t/
�

�

x � Du

Dt

�

dx

D
Z

˝.t/
�.x � f / dx C

Z

@˝.t/
x � tn dS :

By the Green theorem,
Z

@˝.t/
x � tn dS D

Z

˝.t/
.x � .r � T/C Tx/ dx ; (2.29)

where r � T is another notation for div T , and Tx is the vector �ijkTjk (�ijk is the
alternating tensor of Levi-Civita), so that by (2.28)

Z

˝.t/
x �

�

�
Du

Dt
� �f � r � T

�

dx D
Z

˝.t/
Tx dx :

The left-hand side vanishes identically by the Cauchy equation; hence the right-hand
side vanishes for an arbitrary volume, and so Tx D 0. However, the components of
Tx are T23 � T32, T31 � T13, T12 � T21, and the vanishing of these implies Tij D Tji,
so that T is symmetric.

We leave to the reader the proof that (i) implies (ii). ut

2.3 Field Equations

Substituting the stress tensor (2.24) into the system (2.20)–(2.22) we obtain the
system of field equations of classical hydrodynamics

D�

Dt
D ��r � u ; (2.30)

�
Du

Dt
D �rp C .�C 	/r div u C 	�u C �f ; (2.31)
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�
DE

Dt
D �p div u C �˚ � r � q ; (2.32)

where

�˚ D �.div u/2 C 2	D W D (2.33)

is the dissipation function of mechanical energy per mass unit.
Let us assume that the fluid is viscous and incompressible, namely, that 	 > 0

and

div u D 0 ; (2.34)

that the specific internal energy of the fluid is proportional to its temperature,

E D cr
 ; where cr D const > 0 ; (2.35)

and that Fourier’s law (2.23) (with k D const � 0) holds. With (2.34), (2.35), (2.23),
and (2.33), system (2.30)–(2.32) becomes

@�

@t
C u � r� D 0 ; div u D 0 ; (2.36)

�

�
@u

@t
C .u � r/u

�

D �rp C 	�u C �f ; (2.37)

�cr

�
@


@t
C u � r


�

D 2	D W D C k�
: (2.38)

2.4 Navier–Stokes Equations

Assuming that the density � of the fluid is uniform and denoting � D 	

�
,  D k

�
(�

is called the kinematic viscosity coefficient), Eqs. (2.36)–(2.38) reduce to

@u

@t
C .u � r/u D �1

�
rp C ��u C f ; (2.39)

div u D 0 ; (2.40)

cr

�
@


@t
C u � r


�

D 2�D W D C �
: (2.41)
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When the body forces f do not depend on temperature, the first two equations of the
above system,

@u

@t
C .u � r/u D �1

�
rp C ��u C f ; (2.42)

div u D 0 (2.43)

constitute a closed system of equations with respect to variables u; p, and are called
Navier–Stokes equations of viscous incompressible fluids with uniform density (we
shall call them just the Navier–Stokes equations). The mechanical energy of the flow
governed by (2.42) and (2.43) due to viscous dissipation is lost and appears as heat.
This can be seen from Eq. (2.41) in which the term 2�D W D is positive, provided
the flow is not uniform. In real fluids, however, density depends on temperature,
so that our system (2.39)–(2.41) may be physically impossible. In fact, due to
viscosity and high velocity gradients the temperature rises in view of (2.41), and this
produces density fluctuations, contrary to our assumption that density is uniform in
the flow domain. Thus, reduced problems often play the role of more or less justified
approximations. For more considerations of this kind cf. [109, Chap. 1].

When the body forces depend on temperature, f D f .
/, we have to take into
account the whole system (2.39)–(2.41). One of the considered in the literature
system of equations of heat conducting viscous and incompressible fluid are the
so-called Boussinesq equations,

@u

@t
C .u � r/u D � 1

�0
rp C ��u C 1

�0
g˛.
 � 
0/ ; (2.44)

div u D 0 ; (2.45)

@


@t
C u � r
 D 

cr
�
 ; (2.46)

where g represents the vertical gravity acceleration, ˛ is the thermal expansion
coefficient, and 

cr
is the thermal diffusion coefficient. Moreover, �0 and 
0 are

some reference density and temperature, respectively. In the velocity equation the
vertical buoyancy force 1

�0
g˛.
 � 
0/ results from changes of density associated

with temperature variations � � �0 D �˛.
 � 
0/. This is the only term in the
system where changes of density were taken into account. We have also abandoned
the viscous dissipation term in the temperature equation.

2.5 Vorticity Dynamics

Taking the curl of the equation of motion

@u

@t
C .u � r/u D �1

�
rp C ��u;
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we obtain

@!

@t
C .u � r/! D .! � r/u C ��!; (2.47)

where the vector field ! D r � u is called vorticity of the fluid. It has a simple
physical interpretation. In the case of two-dimensional motion with

u D .u1.x; y/; u2.x; y/; 0/;

the vorticity reduces to

! D .0; 0; !3.x1; x2// D
�

0; 0;
@u2.x1; x2/

@x1
� @u1.x1; x2/

@x2

�

;

where the third component represents twice the angular velocity of a small
(infinitesimal) fluid element at point .x1; x2/. The vorticity field is, by definition,
divergence free,

div! D 0:

In the case of two-dimensional motions the Eq. (2.47) reduces to

@!

@t
C .u � r/! D ��!;

and we can see that the vorticity in the fluid is transported by two agents: convection
and diffusion, just as the temperature in the system (2.44)–(2.46).

For inviscid fluids (� D 0) the vorticity field has very important properties that
allow us to imagine behavior of complicated turbulent flows [83]. In this case,
vorticity is a local variable which means that we can isolate a patch of vorticity and
observe how it is transported along the velocity field trajectories with a finite speed.
For two-dimensional flows this is evident as then the vorticity equation reduces to

@!

@t
C .u � r/! D 0:

For more information, cf. [166].

Exercise 2.10. Vorticity has nothing in common with rotation of the fluid as a
whole. Calculate the vorticity of the flows: (a) u.x1; x2; x3/ D .u1.x2/; 0; 0/ and
(b) u.r; �; z/ D .0; k=r; 0/ for r > 0.
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2.6 Thermodynamics

Equations of State From the point of view of thermodynamics the state of a
homogeneous fluid can be described by some definite relations among a number
of certain state variables, the most important being the volume V .V D 1=�/, the
entropy S, the internal energy E, the pressure p, and the absolute temperature 
 ,
cf. [212].

In such a description one may start with a relation of the form (cf. [212])

E D E.S;V/ (Gibbs relation) (2.48)

and define p and 
 by

p D �@E

@V
; 
 D @E

@S
; (2.49)

with p; 
 > 0 by assumption. In this case, taking the total differential in (2.48) and
using (2.49), we obtain

dE D 
 dS � p dV or dE D 
 dS � p
1

�2
d� : (2.50)

A simple phase system is said to undergo a differentiable process if its state variables
are differentiable functions of time: V D V.t/, S D S.t/, etc. Assuming such a
dependence one usually assumes, together with (2.50), that

DE

Dt
D 


DS

Dt
� p

DV

Dt

or

DE

Dt
D 


DS

Dt
� p

1

�2
D�

Dt
: (2.51)

Relation (2.51) makes it possible to write a definite form of the balance of entropy
when we know the laws of conservation of mass and internal energy. We shall use
this relation in the sequel.

Second Law of Thermodynamics and Constraints on Viscosity Coefficients
Consider the law of conservation of energy (2.32)

�
DE

Dt
D r � .kr
/ � p div u C �˚ ; (2.52)

where Fourier’s law is assumed, and �˚ is given by (2.33). We see that the internal
energy increases with the influx of heat transfer, compression, and the viscous
dissipation.


