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Preface

In these notes I try to show the way through the relatively difficult theory of
retarded layer potentials and integral operators for the acoustic wave equation in
two and three dimensions. I will also introduce convolution quadrature techniques
for the time discretization of potentials and integral equations, giving the reader a
taste of their challenging but exciting theory and their huge and partly unexplored
potentialities. Part of the aim of these notes has been to set a clear path to learn
the mathematical techniques needed to understand time domain boundary integral
equations. This is part of a joint effort with Antonio Laliena (Universidad de
Zaragoza, Spain), Lehel Banjai’s research group (formerly at the Max-Planck-
Institut in Leipzig, Germany, and at the time of finishing these notes at Heriot-Watt
University, Edinburgh, UK), and my own group at the University of Delaware. This
monograph is intended as a learning tool, and that is why the tone will be somewhat
colloquial. Apart from some more narrative sections (those with less mathematical
rigor), everything else will be duly divided into paragraphs—in the LATEX sense of
the word—(plus propositions and their proofs) so that at each moment we know
where we are. A more computational approach to convolution quadrature for wave
propagation can be found in the notes written in collaboration with Matthew Hassell
[54].

An informal table of contents. Here is a guide of what each of the ten chapters
contains:

1. We start with an informal presentation of the retarded layer potentials. We then
derive the corresponding boundary integral calculus based on a few elements
(the potentials and a uniqueness theorem) and its use for scattering problems.
This chapter is, again, informal.

2. We introduce the basic tools for vector-valued distributions and their Laplace
transforms. (Not all the proofs will be given here, but all steps will be duly
sketched.) We next give the distributional form of the problem of scattering by
an obstacle. We study the Laplace transform of the single layer potential and
operator and prove estimates depending on the Laplace transform parameter for
all of them.

vii
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3. We start this chapter by giving formulas for (strong) inversion of the Laplace
transform and the differentiation theorem and then use them to delimit a precise
class of symbols (Laplace transforms) and their time domain distributional
counterparts. Convolution operators with this class of distributions are the setting
for the remainder of the theory. We show how layer potentials, boundary integral
operators, and their inverses (whenever they exist) are in this class. A rigorous
proof of Kirchhoff’s formula (the integral representation theorem for causal
acoustic waves) gives the necessary justification for the Calderón-type calculus
we had introduced in the first chapter. We finally have a look at how causality,
finite speed of propagation, and some kind of coercivity are hidden in the Laplace
transform of the potentials and operators.

4. Of the two classes of convolution quadrature methods, we introduce here the
one that is based on multistep methods. We present an almost finished portrait
of the theory of these methods applied to the class of convolution operators
and equations that was introduced in the previous chapter and detail the kind
of results that are derived in the case of scattering by a sound-soft obstacle.

5. We go back to the single layer retarded potential and go as far as we can with the
Laplace domain techniques to prove estimates for the full discretization (Galerkin
in space, convolution quadrature in time) of the model equation that solves the
scattering problem by a sound-soft obstacle using an indirect formulation. Once
we have finished with the single layer operator, we will repeat the process for the
double layer potential representation of the scattering by sound-hard obstacles.

6. This chapter is a simplified introduction to a class of abstract differential
equations of the second order in Hilbert spaces. The hypotheses are much
reduced with respect to what is common in the Hille-Yosida theory, but they
will be those that we will meet later on. All the results of this chapter are
proved in Appendix B using quite rudimentary arguments of separation of space-
time variables, arguments which are related to the discrete spectrum of a given
unbounded operator.

7. The techniques of Chapter 6 are now used to prove again all the estimates for
the single layer retarded potential and operator (as well as general Galerkin
semidiscretization-in-space for the associated equation) using time domain tools.
We will develop a streamlined way of proving the time domain results, by
working on a cut-off domain and identifying the resulting solution with the
beginning of the evolution of the potential solution.

8. We now repeat all the time domain arguments on the double layer potential
and its use for an indirect formulation of the scattering problem by a sound-
hard obstacle. As the reader will easily realize when reading this chapter, the
arguments end up being very similar in each particular situation, and we will
only have to take care of whatever is different in each concrete problem.

9. We next mix the time domain theory with convolution quadrature and, case by
case, prove new estimates for the fully discrete methods for one model problem.
This chapter shows how classical techniques for the numerical analysis of low-
order time discretizations can be easily extended to the much more complicated
situation we are dealing with.
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10. In this chapter we collect the ideas of Chapters 7 and 8, looking for common
patterns that allow us to easily guess what kind of bounds we will obtain in new
situations. We also show easy (not to say straightforward) extensions to screen
problems and to linear elasticity.

There are five appendices:

• Appendix A contains some Laplace domain arguments for the Maxwell transient
single layer potential

• Appendix B contains the proofs of the results on evolution equations that were
presented in Chapter 6.

• Appendix C presents some algorithms for the implementation of convolution
quadrature.

• Appendix D contains a precise but very terse introduction of the Sobolev space
background material needed for this monograph.

• Appendix E shows some numerical illustrations of two-dimensional scattering
problems.

Although the theory of time domain boundary integral equations is far from
finished (as its full potential in applications is only partially exploited), let me
drop here some names of some of the originators of the current excitement in the
area. First of all, the focus of these notes lies in the realm of integral equations for
wave propagation, although boundary integral equations are also used for parabolic
problems. While over ten years old, Costabel’s encyclopedia article [33] contains
an excellent introduction to the use of integral equations for evolutionary partial
differential equations.

What follows is a highly non-exhaustive list, so please, nobody take offense if
their name does not appear here.

• The theory of time domain boundary integral equations (at least, the theory that
we numerical analysts use) stems from two papers by Alain Bamberger and
Tuong Ha-Duong [9, 10] in 1986. Many other papers were published [7, 23, 49],
and even more theses were written (unfortunately much of this material was left
unpublished and is now very difficult to locate) in the buoyant French numerical
analysis school. The names of Jean-Claude Nédélec (at the Polytechnique)
and Alain Bachelot (at the University of Bordeaux) are attached to quite a
lot of these doctoral dissertations. Much of this is reported and referenced
in the survey paper [50]. Touffic Abboud and Isabelle Terrasse can be held
responsible for the practical development of these methods, evolving in their (to
the best of my knowledge) only commercial implementation. Interest in research
aspects of this approach seems to be back: Abboud and Terrasse together with
Patrick Joly (INRIA Rocquencourt, France) and Jerónimo Rodríguez (Santiago
de Compostela, Spain) have recently developed one of the few sets of integral
transparent boundary conditions [1].

• Convolution quadrature originated as a completely independent tool for approx-
imation of convolutions. It came to age very much at the same time as time
domain integral equations, with two articles by Christian Lubich [64, 65] in
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1988. This technique was first devised for problems with parabolic structure
(exemplified in the operators having Laplace transforms defined on a sector
instead of a half-plane). A second family of convolution quadrature methods,
based on Runge-Kutta methods, originated in the joint work of Lubich with
Alexander Ostermann [67]. Almost at the same time, Lubich applied his ideas
to problems with hyperbolic structure, including the single layer potential for
the three-dimensional equation [66]. This was only natural, since CQ is based in
Laplace transform methods and the theory of Bamberger and Ha-Duong is based
on exactly the same principle. The theory of CQ based on RK schemes applied
to hyperbolic problems was left unfinished and was only recently completed by
Lubich in collaboration with Lehel Banjai and Jens Markus Melenk [18, 19].

• Not being as popular as their frequency domain cousins, time domain boundary
integral equations have known a rich development in the engineering community.
Galerkin methods (the original ones developed in the French school) are a
particular case of marching-on-in-time (MoT) methods for time domain integral
equations. The group of Eric Michielssen at the University of Michigan and
a large array of researchers in European universities (with a strong group
in Ghent) have developed applications to electromagnetism and searched the
limits of the known world in computational time domain integral equations
[6, 24, 32, 72, 74, 86, 87].

• The convolution quadrature point of view was initially not very well tended
by the mathematical boundary integral community, but there was a strong
development in the field of applications to elastodynamics, much of it led by
the group of Martin Schanz [21, 57, 63, 69, 75, 76] at the Graz University of
Technology (Austria). An early account of this development can be found in the
monograph [82]. A more recent survey can be found in [22]. Applications to
electromagnetism have been developed by the group of Daniel Weile and Peter
Monk at the University of Delaware [28, 30, 31, 62, 89], while researchers in all
corners of the world have been developing CQ-BEM [29, 46–48].

• Some papers by Stefan Sauter (University of Zurich) with different collaborators
[51, 52] re-sparked the interest of numerical analysts in time domain integral
equations, specially with a focus on convolution quadrature techniques. Galerkin
methods with smooth basis functions have also attracted the interest of the
Zurich group [79, 88]. Lehel Banjai and his group are making rapid progress
in this direction [8, 11, 12, 14–17, 20]. Myself, working with my then graduate
student Antonio Laliena, proved that the Laplace domain contained much more
information than we had expected and that convolution quadrature techniques
combined perfectly with space Galerkin discretization in many nontrivial sit-
uations of scattering of acoustic and elastic waves with penetrable obstacles,
including nonhomogeneous obstacles where numerical modeling is carried out
with the finite element method [60]. We were happy to find a quite general (and I
want to say innovative) approach that has since been applied to electromagnetism
or more complicated elastodynamic problems. Contributions of my group in the
area of CQ appear in recent papers [13, 20, 43, 56, 73, 81].
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• Penny Davies and Dougald Duncan in the UK have explored alternatives for
MoT schemes with different shapes of basis functions or collocation in time
[36–40]. The full Galerkin approach is also being jointly developed by the
groups of Ernst Stephan at the University of Hanover (Germany) and Matthias
Maischak at Brunel University (England) with a current focus on acoustics.
Several researchers in Italy (among them, Alessandra Aimi and Mauro Diligenti
at Parma) are also readdressing the full Galerkin method for the acoustic
equations [2–5].
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Chapter 1
The retarded layer potentials

In this chapter we are going to introduce the basic concepts of time domain acoustic
layer potentials and how they can be used to represent the solutions of scattering
problems. All notions introduced in this chapter will be given at an intuitive level
and with basically no formalization. The reader will find a precise sketch of the
theory in the next chapters. For the sake of clarity, let me remark here:

• Sections 1.1 through 1.3 deal with three-dimensional waves.
• Just by looking at the mathematical expressions therein, it will be clear that

Sections 1.4 through 1.6 are dimension-independent.
• Section 1.7 revisits the particular three-dimensional case, using the specific

formulas for the Huygens’ single layer potential.
• Finally, Section 1.8 will present formulas for the two-dimensional case.

1.1 Acoustic sources and dipoles

Let us start this chapter by having a look at a spherical wave. We consider a function
(a signal) � W R ! R such that �.t/ D 0 for all t < 0. A function of the time
variable that vanishes for t < 0 will be always referred to as a causal function. We
now choose x0 2 R

3 and consider the function

u.x; t/ WD �.t � c�1jx � x0j/
4�jx � x0j : (1.1)

A more or less boring computation shows that

c�2 @2u
@t2
D �u 8x ¤ x0 8t > 0;
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2 1 The retarded layer potentials

as long as � 2 C2.R/, where the Laplace operator � is taken in the space variables.
(The result is actually true for less smooth �, but we are not going to worry about
regularity at this point.) It is interesting to notice the following facts.

• The function u moves on spherical surfaces. Actually,

u.x; t/ D �.t � c�1r/
4�r

jx � x0j D r: (1.2)

This shows that points on a sphere centered at x0 perceive the same solution at
the same time.

• The previous formula shows also that for a point at distance r of the point source,
we need to wait c�1r time units to start perceiving any signal. Apart from this
delay, the entire signal is received at speed c (and with a damping factor 4�r).
The signal goes through, exactly as emitted.

There are other kinds of solutions of the wave equation that can be understood as
traveling on spherical surfaces. If u is a sufficiently smooth solution of the wave
equation, so are the three components of ru and therefore, so is ru � n0, where n0
is a fixed vector. With this idea, and starting in (1.1), we can create a new family of
solutions to the wave equation:

u.x; t/ WD rx0

�
'.t � c�1jx � x0j/

4�jx � x0j
�
� n0 (1.3)

D �rx

�
'.t � c�1jx � x0j/

4�jx � x0j
�
� n0

D '.t � c�1jx � x0j/ .x � x0/ � n0
4�jx � x0j3 C c�1 P'.t � c�1jx � x0j/ .x � x0/ � n0

4�jx � x0j2 :

We will assume that n0 is a unit vector. This formula bears some similitude
with (1.1). For instance, at time t, al points on the surface jx � x0j D r receive
information from the signal ' emitted at time t � c�1r. However, the points on the
surface do not only observe the value '.t� c�1r/ but also its trend P'.t� c�1r/. The
main difference between the wave (1.3) and the spherical wave (1.1) is directionality.
While points seeing the source in the direction n0 get to perceive the signal, all
points such that .x � x0/ � n0 D 0 are in a deaf spot and miss the entire signal.
Actually, if the angle between x � x0 and n0 is � , then

u.x; t/ D 1

4�r

�'.t � c�1r/
r

C P'.t � c�1r/
c

�
cos � (1.4)

The points x0 ˙ rn0 (respective North and South pole of the sphere with axis n0)
get the signal with the same amount of attenuation, but mirrored. The reader is
encouraged to check the physical dimensions of all the elements in formulas (1.2)
and (1.4) to recognize that the respective transmitted signals (� and ') have
different dimensions. (We can understand the dimensional mismatch by noticing
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the differentiation in the space variables in (1.3)–(1.4), which seems to require some
kind of compensation.)

Another way of motivating the directional spherical wave (1.3) uses the physical
idea of dipole. Take two source points

x0 ˙ h
2
n0;

separated a distance h in the direction n0. The upper point x0 C h
2
n0 emits a signal

h�1' and simultaneously the point x0 � h
2
n0 emits the signal �h�1'. The receiver

gets to hear the signal

1

h

�'.t � c�1jx � x0 � h
2
n0j/

4�jx � x0 � h
2
n0j

� '.t � c�1jx � x0 C h
2
n0j/

4�jx � x0 C h
2
n0j

�

which in the limit h! 0 turns into (1.3).

1.2 Acoustic layer potentials

The single layer potential can be understood as the (continuous) superposition of
spherical waves (1.1) being emitted from points on a surface �:

.S � �/.x; t/ WD
Z
�

�.y; t � c�1jx � yj/
4�jx � yj d�.y/: (1.5)

The causal signal �.t/ has been substituted by a density distribution of causal signals
�.y; t/, i.e., � W � � R ! R such that �. � ; t/ � 0 for t < 0. The convolution sign
in the notation of this is purely formal for the time being. This also applies to the
symbol for the double layer potential that we will define shortly.

The reader who meets this kind of potential expression for the first time is
encouraged to have a close look at the relatively bad aspect that it has: there is
integration in the space variable y that somehow got its way into the time variable
(through the delay). A particular set of densities is the addition of tensor products
of functions of space and time

�.y; t/ D
NX

jD1
ˆj.y/�j.t/;

producing simpler propagated signals

NX
jD1

Z
�

ˆj.y/�j.t � c�1jx � yj/
4�jx � yj d�.y/:
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Simplifying even more, we can assume that the surface � has been subdivided into
N panels f�1; : : : ; �Ng andˆj is just the characteristic function of the panel �j. This
is how the single layer potential looks like now:

NX
jD1

Z
�j

�j.t � c�1jx � yj/
4�jx � yj d�.y/:

In any of the above expressions, it is easy to check that if a point is at a distance r
from � , it will take T D c�1r time units for the signal to reach the point. Apart from
very simple configurations, different points x will perceive different outputs, since
the balance of distances jx � yj with the spacial distribution of the density is going
to differ depending on the point of view.

Another class of signals we can plug into the potential expression are time-
harmonic signals. A noncausal time harmonic signal emitted from � would be

Re .�.y/e�{!t/ � W � ! C;

which is heard as a time harmonic signal

Re
�

e�{!t
Z
�

e{!c�1jx�yj

4�jx � yj �.y/d�.y/„ ƒ‚ …
�
:

The underbraced expression can be recognized as a single layer potential associated
with the Helmholtz equation � C k2, (k D !=c is the wave number) which is
the equation satisfied by the spatial part of a time harmonic solution to the wave
equation.

A double layer potential can be defined with the same idea of superposition. The
directionality at the point y 2 � is given by the unit normal vector �.y/:

.D � '/.x; t/WD
Z
�

ry

�
'.z; t � c�1jx � yj/

4�jx � yj
� ˇ̌̌

zDy
� �.y/d�.y/

D
Z
�

.x � y/ � �.y/
4�jx � yj3

�
'.y; t � c�1jx � yj/

C c�1jx � yj P'.y; t � c�1jx � yj/�d�.y/:
Obviously, for this expression to make sense we need an orientable surface with
a well-defined normal vector field (almost everywhere, so polyhedra are not a
problem).
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1.3 Jump relations

Let us try to see some properties of the possible limits of the layer potentials when
we get close to the surface.

Continuity of the single layer potentials. A possible way to study the single layer
potential is by studying functions of the form

w.x; Ox; t/ WD
Z
�

�.y; t � c�1jOx � yj/
4�jx � yj d�.y/; (1.6)

since .S ��/.x; t/ D w.x; x; t/. Let z 2 � . We first take the limit Ox! z in (1.6) and
we obtain (formally at least)

Z
�

�.y; t � c�1jz � yj/
4�jx � yj d�.y/: (1.7)

In a second step, we recognize in (1.7) the form of a Coulomb potential (the single
layer potential for the Laplacian), which is continuous across � . This means that

lim
x!z2�.S � �/.x; t/ D

Z
�

�.y; t � c�1jz � yj/
4�jz � yj d�.y/ DW .V � �/.z; t/:

Discontinuity of the normal derivative of the single layer potential. We next
look at directional derivatives of S � �. Let � D �.z/ with z 2 � . Then:

�rx.S � �/ � �
�
.x; t/ D �c�1

Z
�

P�.y; t � c�1jx � yj/
4�jx � yj

.x � y/ � �
jx � yj d�.y/

�
Z
�

�.y; t � c�1jx � yj/
4�jx � yj

.x � y/ � �
jx � yj2 d�.y/

DW a.x; t/C b.x; t/:

With arguments similar to those we used in the continuity analysis of S � �, we can
prove that a is continuous across � . We are now going to give a simplified argument
demonstrating that

b.z � "�.z/; t/ � b.zC "�.z/; t/ "!0�! �.z; t/;

which is equivalent to showing that the jump of the normal derivative of S�� across
� is �. Note that when x ! z 2 � , only a neighborhood of z in � is relevant from
the point of view of creating a discontinuity in the integral:

b.x; t/ D �
Z
�

�.y; t � c�1jx � yj/
4�jx � yj

.x � y/ � �.y/
jx � yj2 d�.y/:
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To further simplify the exposition, let us assume that � is a flat surface around z.
After translation, rotation, and localization, we can assume that

z D 0 � D .0; 0; 1/ � D f.y; 0/ W y 2 R
2; jyj < Rg D B.0;R/ � f0g:

If x D z˙ "�.z/ D ˙".0; 0; 1/, then

b.0 � "�; t/ � b.0C "�; t/ D "

Z
B.0;R/

�.y; t � c�1j.y; "/j/
2�j.y; "/j3 dy

D �.0; t/
Z

B.0;R/

"

2�j.y; "/j3 dy

C "

Z
B.0;R/

�.y; t � c�1j.y; "/j/ � �.0; t/
4�j.y; "/j3 dy: (1.8)

Note that
Z

B.0;R/

"

2�j.y; "/j3 dy D
Z R

0

" rp
.r2 C "2/3 dr D 1 � "p

R2 C "2
"!0�! 1: (1.9)

On the other hand, for smooth �

j�.y; t � c�1j.y; "/j/ � �.0; t/j � C1jyj C C2"; (1.10)
Z

B.0;R/

"2

2�j.y; "/j3 dy
"!0�! 0; (1.11)

and

Z
B.0;R/

"jyj
2�j.y; "/j3 dy D

Z R

0

"r2p
.r2 C "2/3 dr

D " log.
p

R2 C "2 C R/ � "Rp
R2 C "2 � " log "

"!0�! 0: (1.12)

Using (1.9), (1.10), (1.11), and (1.12) in (1.8), the result follows. The case of curved
boundaries is very similar.

Discontinuity of the double layer potential. The expression for the double layer
potential

.D � '/.x; t/ D c�1
Z
�

P'.y; t � c�1jx � yj/
4�jx � yj

.x � y/ � �.y/
jx � yj d�.y/

C
Z
�

'.y; t � c�1jx � yj/
4�jx � yj

.x � y/ � �.y/
jx � yj2 d�.y/
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definitely resembles that of the directional derivative of the single layer potential.
We can recognize two terms: the first one is continuous and in the second one, we
can use exactly the same arguments to prove that for every z 2 � such that � is flat
around z

.D � '/.zC h�.z/; t/ � .D � '/.z � h�.z/; t/
"!0�! '.z; t/:

Note that the sign of the jump is the opposite to the one of the normal derivative of
S � �.

Continuity of the normal derivative of the double layer potential. Assuming
more regularity for the density ', it is possible to show that the normal derivative
of D � ' is continuous across smooth points of � . The proof is more involved
(tangential integration by parts is involved and finite part integrals make their
appearance) and requires a certain amount of patience. Because we will take a
different point of view, using Laplace transform techniques and basing our results
on well-established properties of layer potentials for elliptic problems, we will just
accept this result for the time being.

1.4 A Calderón type calculus

The structure of the boundary integral calculus for the wave equation is very similar
to that of elliptic operators, so those accustomed to the many formulas (Green
representation theorem, boundary integral identities, Calderón projector, etc) of the
boundary integral calculus will recognize here exactly the same basic structure. The
main difference is at the analytic level: spaces are much less clear and the theory
requires quite some effort to be developed. The boundary integral calculus can
be derived in several ways. My favorite is the following. It develops from three
concepts:

• a uniqueness theorem for transmission problems,
• a concept of single layer operator,
• a concept of double layer operator.

(The three concepts can be grouped in one: an existence and uniqueness theo-
rem for transmission problems.) Once these elements have been established, the
representation theorem (Green’s Theorem for steady state problems, Kirchhoff’s
formula for waves) is a direct consequence of these elements. The boundary
integral operators are the averages of the Cauchy data of layer operators and they
yield a collection of integral identities satisfied by interior and exterior solutions.
Two sound mathematically oriented references on boundary integral equations are
the monographs of Hsiao and Wendland [55] and the more numerically oriented
presentation of Sauter and Schwab [80]. The many intricacies of the theory of
Calderón projectors, boundary integral operators and potentials, are thoroughly
explained in McLean’s celebrated book [68].
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We are going to informally expose this theory. We will need Chapters 2 and 3
to develop a rigorous theory for the main building blocks. The geometric layout
is composed of a bounded domain ��, with Lipschitz boundary � and exterior
�C WD R

d n �� (that is supposed to be connected). The restriction (trace) of a
function u to the boundary � from the interior and exterior of � will be denoted
	�u and 	Cu, respectively. The normal derivative (with the normal vector pointing
outwards) from inside and outside are @�


 u and @C

 u. Jumps of these two quantities

across the interface � are denoted

ŒŒ	u�� WD 	�u � 	Cu; ŒŒ@
u�� WD @�

 u � @C


 u:

Averages are denoted with double curly brackets

ff	ugg WD 1
2
.	�uC 	Cu/; ff@
ugg WD 1

2
.@�

 uC @C


 u/:

In the background of this theory there is a class of functions u.x; t/ for which we can
take second time derivatives, spatial Laplacian, traces and normal derivatives on the
boundary and initial values at t D 0. For the moment let us refer to these functions
as admissible functions.

The uniqueness result. The first key ingredient is a uniqueness result for a kind of
transmission problem of the wave equation. It can be informally stated as follows:
if an admissible function u satisfies

c�2utt D �u in R
d n � � .0;1/;

ŒŒ	u�� D 0 on � � .0;1/;
ŒŒ@
u�� D 0 on � � .0;1/;

u. � ; 0/ D 0 in R
d n �;

ut. � ; 0/ D 0 in R
d n �;

then u is necessarily zero.
Those used to frequency domain problems will be wondering where the radiation

condition is. This can be dealt with in several ways, such as demanding finite energy
for each time, or asking for bounded spatial support for each time, etc. At this level,
we assume that the class of admissible functions includes this radiation condition.
When we develop the correct theoretical frame, radiation will be part of causality
and will not have to be expressed as a separate condition.

A single layer potential. For a function � W � � .0;1/ ! R in a certain class of
functions, there exists an admissible function u WD S � � such that

c�2utt D �u in R
d n � � .0;1/;

ŒŒ	u�� D 0 on � � .0;1/;
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ŒŒ@
u�� D � on � � .0;1/;
u. � ; 0/ D 0 in R

d n �;
ut. � ; 0/ D 0 in R

d n �:

Obviously, S � � is the unique solution of this problem.

A double layer potential. For a function ' W � � .0;1/ ! R in a certain class,
there exists an admissible function u WD D � ' such that

c�2utt D �u in R
d n � � .0;1/;

ŒŒ	u�� D �' on � � .0;1/;
ŒŒ@
u�� D 0 on � � .0;1/;

u. � ; 0/ D 0 in R
d n �;

ut. � ; 0/ D 0 in R
d n �:

There is an inherent compatibility condition between the three classes of
functions where u, �, and � take values. It can be expressed as follows: given u
in the class of pressure (wave) fields, the quantities � WD ŒŒ@
u�� and ' WD ŒŒ	u�� can
be used as respective inputs of the single and double layer potentials.

First consequence: Kirchhoff’s formula. If u is a solution of the wave equation
around �

c�2utt D �u in R
d n � � .0;1/;

u. � ; 0/ D 0 in R
d n �;

ut. � ; 0/ D 0 in R
d n �;

then

u D S � ŒŒ@
u�� �D � ŒŒ	u��: (1.13)

This is a direct consequence of the definitions of layer potentials and the uniqueness
theorem for transmission problems.

New definitions: boundary integral operators. The properties of potentials

ŒŒ	.S � �/�� D 0 and ŒŒ@
.D � '/�� D 0 (1.14)

allow us to define the following four operators:

V � � WD ff	.S � �/gg D 	�.S � �/ D 	C.S � �/;
Kt � � WD ff@
.S � �/gg;



10 1 The retarded layer potentials

K � ' WD ff	.D � '/gg;
W � ' WD �ff@
.D � '/gg D �@�


 .D � '/ D �@C

 .D � '/:

The superscript t in Kt is not the time variable, but a sort of transposition symbol,
that is difficult to explain at this moment. We will come back to this issue in
Chapter 2. Since

ŒŒ@
.S � �/�� D � and ŒŒ	.D � '/�� D �';

the definitions imply that

@
̇ .S � �/ D � 1
2
�CKt � � and 	˙.D � '/ D ˙ 1

2
' CK � ': (1.15)

The collection of all these formulas is often referred to as the jump relations of
potentials.

Boundary integral identities. Starting at the representation theorem (Kirchhoff’s
formula)

u D S � ŒŒ@
u�� �D � ŒŒ	u��

and using the jump relations, we can write, for instance,

� ff	ugg
ff@
ugg

	
D
��K V
W Kt

	
�
�
ŒŒ	u��
ŒŒ@
u��

	
: (1.16)

Exterior solutions: direct method. The previous presentation was carried out for
solutions of transmission problems. The reader might wonder what to do when we
only have an exterior solution at our disposal, i.e., a solution of

c�2utt D �u in �C � .0;1/;
u. � ; 0/ D 0 in �C;

ut. � ; 0/ D 0 in �C:

The simplest thing to do is to consider that u � 0 in���.0;1/ naturally completes
the exterior solution. Then

ŒŒ	u�� D �	Cu; ff	ugg D 1
2
	Cu; ŒŒ@
u�� D �@C


 u; ff@
ugg D 1
2
@C

 u:

Therefore, Kirchhoff’s formula (1.13) for this u is rewritten as

u D D � 	Cu � S � @C

 u; (1.17)


