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Preface

Preface to the first edition

The analysis of experimental data is at heart of science from its beginnings. But it

was the advent of digital computers in the second half of the 20th century that rev-

olutionized scientific data analysis twofold: Tedious pencil and paper work could

be successively transferred to the emerging software applications so sweat and tears

turned into automated routines. In accordance with automation the manageable data

volumes could be dramatically increased due to the exponential growth of computa-

tional memory and speed. Moreover highly non-linear and complex data analysis

problems came within reach that were completely unfeasible before. Non-linear

curve fitting, clustering and machine learning belong to these modern techniques

that entered the agenda and considerably widened the range of scientific data anal-

ysis applications. Last but not least they are a further step towards computational

intelligence.

The goal of this book is to provide an interactive and illustrative guide to these

topics. It concentrates on the road from two-dimensional curve fitting to multidi-

mensional clustering and machine learning with neural networks or support vector

machines. Along the way topics like mathematical optimization or evolutionary al-

gorithms are touched. All concepts and ideas are outlined in a clear cut manner

with graphically depicted plausibility arguments and a little elementary mathemat-

ics. Difficult mathematical and algorithmic details are consequently banned for the

sake of simplicity but are accessible by the referred literature. The major topics are

extensively outlined with exploratory examples and applications. The primary goal

is to be as illustrative as possible without hiding problems and pitfalls but to ad-

dress them. The character of an illustrative cookbook is complemented with specific

sections that address more fundamental questions like the relation between machine

learning and human intelligence. These sections may be skipped without affecting

the main road but they will open up possibly interesting insights beyond the mere

data massage.
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viii Preface

All topics are completely demonstrated with the aid of the computing platform

Mathematica and the Computational Intelligence Packages (CIP), a high-level func-

tion library developed with Mathematica’s programming language on top of Math-

ematica’s algorithms. CIP is open-source so the detailed code of every method is

freely accessible. All examples and applications shown throughout the book may

be used and customized by the reader without any restrictions. This leads to an

interactive environment which allows individual manipulations like the rotation of

3D graphics or the evaluation of different settings up to tailored enhancements for

specific functionality.

The book tries to be as introductory as possible calling only for a basic mathe-

matical background of the reader - a level that is typically taught in the first year of

scientific education. The target readerships are students of (computer) science and

engineering as well as scientific practitioners in industry and academia who deserve

an illustrative introduction to these topics. Readers with programming skills may

easily port and customize the provided code. The majority of the examples and ap-

plications originate from teaching efforts or solution providing. The outline of the

book is as follows:

• The introductory chapter 1 provides necessary basics that underlie the discus-

sions of the following chapters like an initial motivation for the interplay of data

and models with respect to the molecular sciences, mathematical optimization

methods or data structures. The chapter may be skipped at first sight but should

be consulted if things become unclear in a subsequent chapter.

• The main chapters that describe the road from curve fitting to machine learning

are chapters 2 to 4. The curve fitting chapter 2 outlines the various aspects of

adjusting linear and non-linear model functions to experimental data. A section

about mere data smoothing with cubic splines complements the fitting discus-

sions.

• The clustering chapter 3 sketches the problems of assigning data to different

groups in an unsupervised manner with clustering methods. Unsupervised clus-

tering may be viewed as a logical first step towards supervised machine learning

- and may be able to construct predictive systems on its own. Machine learning

methods may also need clustered data to produce successful results.

• The machine learning chapter 4 comprises supervised learning techniques, in

particular multiple linear regression, three-layer feed-forward neural networks

and support vector machines. Adequate data preprocessing and their use for re-

gression and classification tasks as well as the recurring pitfalls and problems are

introduced and thoroughly discussed.

• The discussions chapter 5 supplements the topics of the main road. It collects

some open issues neglected in the previous chapters and opens up the scope with

more general sections about the possible discovery of new knowledge or the

emergence of computational intelligence.

The scientific fields touched in the present book are extensive and in addition

constantly and progressively refined. Therefore it is inevitable to neglect an awful lot

of important topics and aspects. The concrete selection always mirrors an author’s



Preface ix

preferences as well as his personal knowledge and overview. Since the missing parts

unfortunately exceed the selected ones and people always have strong feelings about

what is of importance the final statement has to be a request for indulgence.

Recklinghausen, April 2011 Achim Zielesny

Preface to the second edition

The first edition was friendly reviewed as a useful introductory cookbook for the

novice reader. The second edition tries to keep this character and resists the temp-

tation to heavily expand topics or lift the discussion to more subtle academic lev-

els. Besides numerous minor additions and corrections throughout the whole book

(together with the unavoidable introduction of some new errors) the only substan-

tial extension of the second edition is the addition of Multiple Polynomial Regres-

sion (MPR) in order to support the discussions concerning the method crossover

from linear and near-linear up to highly non-linear machine learning approaches.

As a consequence several examples and applications have been reworked to im-

prove readability and line of reasoning. Also the construction of minimal predictive

models is outlined in an updated and more comprehensible manner.

The second edition is based on the extended version 2.0 of the Computational In-

telligence Packages (CIP) which now allows parallelized calculations that lead to an

often considerably improved performance with multiple (or multicore) processors.

Specific parallelization notes are given throughout the book, the description of CIP

is accordingly extended and reworked examples and applications make now use of

the new functionality.

With this second edition the book hopefully strengthens its original intent to pro-

vide a clear and straight introduction to the fascinating road from curve fitting to

machine learning.

Recklinghausen, February 2016 Achim Zielesny



Acknowledgements

Certain authors, speaking of their works, say, "My book", "My commentary", "My

history", etc. They resemble middle-class people who have a house of their own, and al-

ways have "My house" on their tongue. They would do better to say, "Our book", "Our

commentary", "Our history", etc., because there is in them usually more of other people’s

than their own.

Pascal

Acknowledgements to the first edition

I would like to thank Lhoussaine Belkoura, Manfred L. Ristig and Dietrich Woer-

mann who kindled my interest for data analysis and machine learning in chemistry

and physics a long time ago.

My mathematical colleagues Heinrich Brinck and Soeren W. Perrey contributed

a lot - may it be in deep canyons, remote jungles or at our institute’s coffee kitchen.

To them and my IBCI collaborators Mirco Daniel and Rebecca Schultz as well as the

GNWI team with Stefan Neumann, Jan-Niklas Schäfer, Holger Schulte and Thomas
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Chapter 1

Introduction

This chapter discusses introductory topics which are helpful for a basic understand-

ing of the concepts, definitions and methods outlined in the following chapters. It

may be skipped for the sake of a faster passage to the more appealing issues or only

browsed for a short impression. But if things appear dubious in later chapters this

one should be consulted again.

Chapter 1 starts with an overview about the interplay between data and models

and the challenges of scientific practice especially in the molecular sciences to mo-

tivate all further efforts (section 1.1). The mathematical machinery that plays the

most important role behind the scenes is dedicated to the field of optimization, i.e.

the determination of the global minimum or maximum of a mathematical function.

Basic problems and solution approaches are briefly sketched and illustrated (section

1.2). Since model functions play a major role in the main topics they are catego-

rized in an useful manner that will ease further discussions (section 1.3). Data need

to be organized in a defined way to be correctly treated by corresponding algo-

rithms: A dedicated section describes the fundamental data structures that will be

used throughout the book (section 1.4). A more technical issue is the adequate scal-

ing of data: This is performed automatically by all clustering and machine learning

methods but may be an issue for curve fitting tasks (section 1.5). Experimental data

experience different sources of error in contrast to simulated data which are only ar-

tificially biased by true statistical errors. Errors are the basis for a proper statistical

analysis of curve fitting results as well as for the assessment of machine learning out-

comes. Therefore the different sources of error and corresponding conventions are

briefly described (section 1.6). Machine learning methods may be used for regres-

sion or classification tasks: Whereas regression tasks demand a precise calculation

of the desired output values a classification task requires only the correct assignment

of an input to a desired output class. Within this book classification tasks are tackled

as adequately coded regression tasks which is sketched in a specific section (1.7).

The Computational Intelligence Packages (CIP) offer a largely unified structure for

different types of calculations which is summarized in a following section to make

their use more intuitive and less subtle. In addition a short description of Mathemat-

ica’s top-down programming and proper initialization is provided (section 1.8). This

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3_1
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2 1 Introduction

chapter ends with a note on the reproducibility of calculations reported throughout

the book (section 1.9).

1.1 Motivation: Data, models and molecular sciences

Essentially, all models are wrong, but some are useful.

G.E.P. Box

Science is an endeavor to understand and describe the real world out there to

(at best) alleviate and enrich human existence. But the structures and dynamics of

the real world are very intricate and complex. A humble chemical reaction in the

laboratory may already involve perhaps 1020 molecules surrounded by 1024 solvent

molecules, in contact with a glass surface and interacting with gases ... in the atmo-

sphere. The whole system will be exposed to a flux of photons of different frequency

(light) and a magnetic field (from the earth), and possibly also a temperature gra-

dient from external heating. The dynamics of all the particles (nuclei and electrons)

is determined by relativistic quantum mechanics, and the interaction between par-

ticles is governed by quantum electrodynamics. In principle the gravitational and

strong (nuclear) forces should also be considered. For chemical reactions in biolog-

ical systems, the number of different chemical components will be large, involving

various ions and assemblies of molecules behaving intermediately between solution

and solid state (e.g. lipids in cell walls) [Jensen 2007]. Thus, to describe nature,

there is the inevitable necessity to set up limitations and approximations in form of

simplifying and idealized models - based on the known laws of nature. Adequate

models neglect almost everything (i.e. they are, strictly speaking, wrong) but they

may keep some of those essential real world features that are of specific interest (i.e.

they may be useful).

The dialectical interplay of experiment and theory is a key driving force of mod-

ern science. Experimental data do only have meaning in the light of a particular

model or at least a theoretical background. Reversely theoretical considerations may

be logically consistent as well as intellectually elegant: Without experimental evi-

dence they are a mere exercise of thought no matter how difficult they are. Data

analysis is a connector between experiment and theory: Its techniques advise possi-

bilities of model extraction as well as model testing with experimental data.

Model functions have several practical advantages in comparison to mere enu-

merated data: They are a comprehensive representation of the relation between the

quantities of interest which may be stored in a database in a very compact manner

with minimum memory consumption. A good model allows interpolating or ex-

trapolating calculations to generate new data and thus may support (up to replace)

expensive lab work. Last but not least a suitable model may be heuristically used to

explore interesting optimum properties (i.e. minima or maxima of the model func-
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tion) which could otherwise be missed. Within a market economy a good model is

simply a competitive advantage.

The ultimate goal of all sciences is to arrive at quantitative models that describe

nature with a sufficient accuracy - or to put it short: to calculate nature. These cal-

culations have the general form

answer = f (question) or output = f (input)

where input denotes a question and output the corresponding answer generated

by a model function f. Unfortunately the number of interesting quantities which can

be directly calculated by application of theoretical ab-initio techniques solely based

on the known laws of nature is rather limited (although expanding). For the over-

whelming number of questions about nature the model functions f are unknown or

too difficult to be evaluated. This is the daily trouble of chemists, material’s sci-

entists, engineers or biologists who want to ask questions like the biological effect

of a new molecular entity or the properties of a new material’s composition. So in

current science there are three situations that may be sensibly distinguished due to

our knowledge of nature:

• Situation 1: The model function f is theoretically or empirically known. Then

the output quantity of interest may be calculated directly.

• Situation 2: The structural form of the function f is known but not the values of

its parameters. Then these parameter values may be statistically estimated on the

basis of experimental data by curve fitting methods.

• Situation 3: Even the structural form of the function f is unknown. As an ap-

proximation the function f may be modelled by a machine learning technique on

the basis of experimental data.

A simple example for situation 2 is the case that the relation between input and

output is known to be linear. If there is only one input variable of interest, denoted

x, and one output variable of interest, denoted y, the structural form of the function

f is a straight line

y = f (x) = a1 + a2x

where a1 and a2 are the unknown parameters of the function which may be sta-

tistically estimated by curve fitting of experimental data. In situation 3 it is not only

the values of the parameters that are unknown but in addition the structural form

of the model function f itself. This is obviously the worst possible case which is

addressed by data smoothing or machine learning approaches that try to construct a

model function with experimental data only.

Situations 1 to 3 are widely encountered by the contemporary molecular sciences.

Since the scientific revolution of the early 20th century the molecular sciences have

a thorough theoretical basis in modern physics: Quantum theory is able to (at least in

principle) quantitatively explain and calculate the structure, stability and reactivity
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of matter. It provides a fundamental understanding of chemical bonding and molecu-

lar interactions. This foundational feat was summarized in 1929 by Paul A. M. Dirac

with famous words: The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are thus completely

known ... it became possible to submit molecular research and development (R&D)

problems to a theoretical framework to achieve correct and satisfactory solutions -

but unfortunately Dirac had to continue ... and the difficulty is only that the exact

application of these laws leads to equations much too complicated to be soluble.

The humble "only" means a severe practical restriction: It is in fact only the small-

est quantum-mechanical systems like the hydrogen atom with one single proton in

the nucleus and one single electron in the surrounding shell that can be treated by

pure analytical means to come to an exact mathematical solution, i.e. by solving the

Schroedinger equation of this mechanical system with pencil and paper. Nonetheless

Dirac added an optimistic prospect: It therefore becomes desirable that approximate

practical methods of applying quantum mechanics should be developed, which can

lead to an explanation of the main features of complex atomic systems without too

much computation [Dirac 1929]. A few decades later this hope begun to turn into

reality with the emergence of digital computers and their exponentially increasing

computational speed: Iterative methods were developed that allowed an approximate

quantum-mechanical treatment of molecules and molecular ensembles with growing

size (see [Leach 2001], [Frenkel 2002] or [Jensen 2007]). The methods which are

ab-initio approximations to the true solution of the Schroedinger equation (i.e. they

only use the experimental values of natural constants) are still very limited in appli-

cability so they are restricted to chemical ensembles with just a few hundred atoms

to stay within tolerable calculation periods. If these methods are combined with ex-

perimental data in a suitable manner so that they become semi-empirical the range

of applicability can be extended to molecular systems with several thousands of

atoms (up to more than a hundred thousand atoms by the writing of this book [Clark

2010/2015]). The size of the molecular systems and the time frames for their simu-

lation can be even further expanded by orders of magnitude with mechanical force

fields that are constructed to mimic the quantum-mechanical molecular interactions

so that an atomistic description of matter exceeds the million-atoms threshold. In

1998 and 2013 the Royal Swedish Academy of Sciences honored these scientific

achievements by awarding the Nobel prize in chemistry with the prudent comment

in 1998 that Chemistry is no longer a purely experimental science (see [Nobel Prize

1998/2013]). This atomistic theory-based treatment of molecular R&D problems

corresponds to situation 1 where a theoretical technique provides a model function

f to "simply calculate" the desired solution in a direct manner.

Despite these impressive improvements (and more is to come) the overwhelm-

ing majority of molecular R&D problems is (and will be) out of scope of these

atomistic computational methods due to their complexity in space and time. This

is especially true for the life and the nano sciences that deal with the most com-

plex natural and artificial systems known today - with the human brain at the top.

Thus the molecular sciences are mainly faced with situations 2 and 3: They are a

predominant area of application of the methods to be discussed on the road from
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curve fitting to machine learning. Theory-loaded and model-driven research areas

like physical chemistry or biophysics often prefer situation 2: A scientific quantity

of interest is studied in dependence of another quantity where the structural form

of a model function f that describes the desired dependency is known but not the

values of its parameters. In general the parameters may be purely empirical or may

have a theoretically well-defined meaning. An example of the latter is usually en-

countered in chemical kinetics where phenomenological rate equations are used to

describe the temporal progress of the chemical reactions but the values of the rate

constants - the crucial information - are unknown and may not be calculated by

a more fundamental theoretical treatment [Grant 1998]. In this case experimental

measurements are indispensable that lead to xy-error data triples (xi,yi,σi) with an

argument value xi, the corresponding dependent value yi and the statistical error σi

of the yi value (compare below). Then optimum estimates of the unknown param-

eter values can be statistically deduced on the basis of these data triples by curve

fitting methods. In practice a successful model function may at first be only empiri-

cally constructed like the quantitative description of the temperature dependence of

a liquid’s viscosity (illustrated in chapter 2) and then later be motivated by more the-

oretical lines of argument. Or curve fitting is used to validate the value of a specific

theoretical model parameter by experiment (like the critical exponents in chapter 2).

Last but not least curve fitting may play a pure support role: The energy values of

the potential energy surface of hydrogen fluoride could be directly calculated by a

quantum-chemical ab-initio method for every distance between the two atoms. But

a restriction to a limited number of distinct calculated values that span the range of

interest in combination with the construction of a suitable smoothing function for

interpolation (shown in chapter 2) may save considerable time and enhance practical

usability without any relevant loss of precision.

With increasing complexity of the natural system under investigation a quantita-

tive theoretical treatment becomes more and more difficult. As already mentioned

a quantitative theory-based prediction of a biological effect of a new molecular en-

tity or the properties of a new material’s composition are in general out of scope

of current science. Thus situation 3 takes over where a model function f is simply

unknown or too complex. To still achieve at least an approximate quantitative de-

scription of the relationships in question a model function may be tried to be solely

constructed with the available data only - a task that is at heart of machine learning.

Especially quantitative relationships between chemical structures and their biologi-

cal activities or physico-chemical and material’s properties draw a lot of attention:

Thus QSAR (Quantitative Structure Activity Relationship) and QSPR (Quantitative

Structure Property Relationship) studies are active fields of research in the life, ma-

terial’s and nano sciences (see [Zupan 1999], [Gasteiger 2003], [Leach 2007] or

[Schneider 2008]). Cheminformatics and structural bioinformatics provide a bunch

of possibilities to represent a chemical structure in form of a list of numbers (which

mathematically form a vector or an input in terms of machine learning, see below).

Each number or sequence of numbers is a specific structural descriptor that describes

a specific feature of a chemical structure in question, e.g. its molecular weight, its

topological connections and branches or electronic properties like its dipole mo-
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ments or its correlation of surface charges. These structure-representing inputs alone

may be analyzed by clustering methods (discussed in chapter 3) for their chemical

diversity. The results may be used to generate a reduced but representative subset

of structures with a similar chemical diversity in comparison to the original larger

set (e.g. to be used in combinatorial chemistry approaches for a targeted structure

library design). Alternatively different sets of structures could be compared in terms

of their similarity or dissimilarity as well as their mutual white spots (these topics

are discussed in chapter 3). A structural descriptor based QSAR/QSPR approach

takes the form

activity/property= f (descriptor1,descriptor2,descriptor3, ...)

with the model function f as the final target to become able to make model-based

predictions (the methods used for the construction of an approximate model func-

tion f are outlined in chapter 4). The extensive volume of data that is necessary for

this line of research is often obtained by modern high-throughput (HT) techniques

like the biological assay-based high-throughput screening (HTS) of thousands of

chemical compounds in the pharmaceutical industry or HT approaches in materials

science all performed with automated robotic lab systems. Among others these HT

methods lead to the so called BioTech data explosion that may be thoroughly ex-

ploited for model construction. In fact HT experiments and model construction via

machine learning are mutually dependent on each other: Models deserve data for

their creation as well as the mere heaps of data produced by HT methods deserve

models for their comprehension.

With these few statements about the needs of the molecular sciences in mind

the motivation of this book is to show how situations 2 (model function f known, its

parameters unknown) and 3 (model function f itself unknown) may be tackled on the

road from curve fitting to machine learning: How can we proceed from experimental

data to models? What conceptual and technical problems occur along this path?

What new insights can we expect?

1.2 Optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

At the beginning of each section or subsection the global Clear command clears all earlier variables and

definitions and thus cares for a proper initialization. Then the necessary CIP packages are loaded, e.g. the

Graphics package for this section. A proper initialization prevents possible code interferences due to earlier

definitions. Note that Mathematica has a top-down programming style: Once a variable is assigned it keeps its

value.
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Optimization means a process that tries to determine the optima, i.e. the minima

and maxima of a mathematical function. A plethora of important scientific prob-

lems can be traced back to an issue of optimization so they are essentially optimiza-

tion problems. Optimization tasks also lie at heart of the road from curve fitting to

machine learning: The methods discussed in later chapters will predominantly use

mathematical optimization techniques to do their job. It should be noticed that the

following optimization strategies are also utilized for the (common) research situa-

tion where no direct path to success can be advised and a kind of educated trial and

error is the only way to progress.

A mathematical function may contain ...

• ... no optimum at all. An example is a 2D straight line, a 3D plane (illustrated

below) or a hyperplane in many dimension. But also non-linear functions like the

exponential function may not contain any optimum.

pureFunction=Function[{x,y},1.0+2.0*x+3.0*y];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

All CIP based calculations are scripted as shown above: First all variables are defined with intuitive names

and then passed to specific CIP functions to calculate results or create graphical illustrations. All variables

remain valid until the next global Clear command. Note that Mathematica allows the definition of pure functions

which may be used like normal variables. If a specific function definition is to be passed to a CIP method a

pure function is commonly used. The CIP methods internally use pure functions for distinct function value

evaluations. Pure functions are a powerful functional programming feature of the Mathematica computing

platform to simplify many operations in an elegant and efficient manner.
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• ... exactly one optimum, e.g. a 2D quadratic parabola, a 3D parabolic surface

(illustrated below) or a parabolic hyper surface in many dimensions.

pureFunction=Function[{x,y},xˆ2+yˆ2];

xRange={-2.0,2.0};

yRange={-2.0,2.0};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]
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• ... multiple up to an infinite number of optima like a 2D sine function, a curved

3D surface (illustrated below) or a curved hyper surface in multiple dimensions.

pureFunction=Function[

{x,y},1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]*Sin[7.0*y])];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]
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The sketched categorization holds for functions with one argument

y = f (x)

as well as functions with multiple arguments

y = f (x1,x2, ...,xM) = f (x) with x = (x1,x2, ...,xM)

i.e. from 2D curves f (x) up to M-dimensional hyper surfaces f (x1,x2, ...,xM).
If no optimum exists there is obviously nothing to optimize. For a curve or hyper

surface that contains exactly one optimum the optimization problem is usually suc-

cessfully solvable by analytical methods which are able to calculate the optimum

position directly. It is the last category of non-linear functions with multiple optima

that cause severe problems - and unfortunately the overwhelming majority of prac-

tical applications belong to this drama: The following sections try to reveal some of

its tragedy and ways to hold forth a hope again.

1.2.1 Calculus

Clear["Global‘*"];

<<CIP‘Graphics‘
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The standard analytical procedure to determine optima is known from calculus:

An example function of the form y = f (x) with one argument x may contain one

minimum and one maximum:

function=1.0+1.0*x+0.4*xˆ2-0.1*xˆ3;

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-2.0,5.0};

functionValueRange={0.0,6.0};

labels={"x","y","Function with one minimum and one maximum"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

Note that the function is defined twice for different purposes: First as a normal symbolic function and in addition

as a pure function. The normal function is used in subsequent calculations, the pure function as an argument

of the CIP method Plot2dFunction.

To calculate the positions of the optima the first derivative

firstDerivative=D[function,x]

1.+0.8x−0.3x2

D is Mathematica’s operator for partial differentiation to a specified variable which is x in this case.

and their (two) roots are determined:

roots=Solve[firstDerivative==0,x]

{{x →−0.927443},{x → 3.59411}}

Solve is Mathematica’s command to solve (systems of) equations. The Solve command returns a list in curly

brackets with two rules (also in curly brackets) for setting the x value to solve the equation in question, i.e.
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assigning -0.927443 or 3.59411 to x solves the equation. Also note that the number of digits of the result values

is a standard output only: A higher precision could be obtained on demand and is used for internal calculations

(usually the machine precision supported by the hardware).

Then the second derivative

secondDerivative=D[function,{x,2}]

0.8−0.6x

D may be told to calculate higher derivatives, i.e. the second derivative in this case.

is used to analyze the type of the two detected optima:

secondDerivative/.roots[[1]]

1.35647

roots[[1]] denotes the first expression of the roots list above, i.e. the rule {x → -0.927443}: This means that

the value -0.927443 is to be assigned to x. The /. notation applies this rule to the secondDerivative expres-

sion before, i.e. the x in secondDerivative gets the value -0.927443 and then secondDerivative is numerically

evaluated to 1.35647. These Mathematica specific notations seem to be a bit puzzling at first but they become

convenient and powerful with increased usage.

A value larger zero indicates a minimum at the first optimum position and

secondDerivative/.roots[[2]]

−1.35647

a value smaller zero a maximum at the second optimum position. The determined

minimum and maximum points

minimumPoint={x/.roots[[1]],function/.roots[[1]]};

maximumPoint={x/.roots[[2]],function/.roots[[2]]};

may be displayed for visual validation:

points2D={minimumPoint,maximumPoint};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

Method signatures may contain variables and options. Options are set with an arrow as shown in the

Plot2dPointsAboveFunction method above. In contrast to variables the options must not be specified: Then

their default values are used.



1.2 Optimization 13

Unfortunately this analytical procedure fails in general. Lets take a somewhat

more difficult function with multiple (or more precise: an infinite number of) op-

tima:

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-10.0,10.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Function with multiple optima"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

The first derivative may still be obtained

firstDerivative=D[function,x]

0.02xCos[x]

(1.+0.01x2)2 + Sin[x]

1.+0.01x2
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but the determination of the roots fails

roots=Solve[firstDerivative==0,x]

The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

Solve

[
0.02xCos[x]

(1.+0.01x2)2 + Sin[x]

1.+0.01x2 == 0,x

]

since this non-linear equation can no longer be solved by analytical means. This

problem becomes even worse with functions that contain multiple arguments

y = f (x1,x2, ...,xM) = f (x)

i.e. with M-dimensional curved hyper surfaces. The necessary condition for an

optimum of a M-dimensional hyper surface y is that all partial derivatives become

zero:

∂ f (x1,x2,...,xM)
∂xi

= 0 ; i = 1, ...,M

Whereas the partial derivatives may be successfully evaluated in most cases the

resulting system of M (usually non-linear) equations may again not be solvable by

analytical means in general. So the calculus-based analytical optimization is re-

stricted to only simple non-linear special cases (linear functions are out of question

since they do not contain optima at all). Since these special cases are usually taught

extensively at schools and universities (they are ideal for examinations) there is the

ongoing impression that the calculus-based solution of optimization problems also

achieves success in practice. But the opposite is true: The overwhelming majority of

scientific optimization problems is far too difficult for a successful calculus-based

treatment. That is one reason why digital computers revolutionized science: With

their exponentially growing calculation speed (known as Moore’s law which - suc-

cessfully - predicts a doubling of calculation speed every 18 months) they opened up

the perspective for iterative search-based approaches to at least approximate optima

in these more difficult and practically relevant cases - a procedure that is simply not

feasible with pencil and paper in a man’s lifetime.

1.2.2 Iterative optimization

Clear["Global‘*"];

<<CIP‘Graphics‘
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In general the optima of curves and hyper surfaces may only be approximated

by iterative step-by-step search procedures - but without any guarantee of success!

There are two basic types of iterative optimization strategies:

• Local optimization: Beginning at a start position the iterative search method

tries to find at least a local optimum (which may not necessarily be the next

neighbored optimum to the start position). This local optimum is in general dif-

ferent from the global optimum, i.e. the lowest minimum or the highest maximum

of the function.

• Global optimization: The iterative search method tries to find the global opti-

mum inside an a priori defined search space.

Global iterative optimization is usually far more computational demanding than

local optimization and therefore slower. Both optimization strategies may fail due

to two sources of problems:

• Function related problems: The function itself to optimize may not contain any

optima (e.g. a straight line or a hyperplane) or may otherwise be ill-shaped.

• Iterative search related problems: The search algorithm may encounter numer-

ical problems (like division by zero) or simply not find an optimum of required

precision within the allowed maximum number of iterations. Whereas in the lat-

ter case an increase of the number of iterations should help this solution would

fail if the search algorithm is trapped in oscillations around the optimum. Prob-

lems are often caused by an inappropriate start position or search space, e.g. if

the search algorithm relies on second derivative information but the curvature of

the function to be optimized is effectively zero in the search region.

As an example for an unfavorable start position for a minimum detection consider

the following situation:

function=1.0/xˆ12-1/xˆ6;

pureFunction=Function[argument,function/.x -> argument];

xStart=6.0;

startPointForOptimization={xStart,pureFunction[xStart]};

points2D={startPointForOptimization};

argumentRange={0.5,7.0};

functionValueRange={-0.3,0.2};

labels={"x","y","Where to go for the minimum?"};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]
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The start position (point) is fairly outside the interesting region that contains the

minimum: Its slope (first derivative)

D[function,x]/.x -> xStart

0.0000214326

and its curvature (second derivative)

D[function,{x,2}]/.x -> xStart

−0.0000250037

are nearly zero with the function value itself being nearly constant. In this situ-

ation it is difficult for any iterative algorithm to devise a path to the minimum and

it is likely for the search algorithm to simply run aground without converging to the

minimum.

In practice it is often hard to recognize what went wrong if an optimization fail-

ure occurs. And although there are numerous parameters to tune local and global

optimization methods for specific optimization problems that does not guarantee to

always solve these issues in general. And it becomes clear that any a priori knowl-

edge about the location of an optimum from theoretical considerations or practical

experience may play a crucial role. Throughout the later chapters a number of stan-

dard problems are discussed and strategies for their circumvention are described.

1.2.3 Iterative local optimization

Clear["Global‘*"];
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<<CIP‘Graphics‘

Iterative local optimization (or just minimization since maximizing a function f

is identical to minimizing − f or f−1) is in principle a simple issue: From a given

start position just move downhill as fast as possible by appropriate steps until a

local minimum is reached within a desired precision. Thus local optimization meth-

ods differ only in the amount of functional information they evaluate to set their

step sizes along their chosen downhill directions (see [Press 2007] for details). The

evaluation part determines the computational costs of each iteration whereas the di-

rectional part determines the convergence speed towards a local minimum where

both parts often oppose each other: The more functional information is evaluated

the slower a single iteration is performed but the number of iterative steps may be

reduced due to more appropriate step sizes and directions.

• Some methods do only use function value evaluations at different positions to

recognize more or less intelligent downhill paths with adaptive step sizes, e.g.

the Simplex method.

• More advanced methods use (first derivative) slope/gradient information in

addition to function values which allows steepest descent orientations: The so

called Gradient method and the more elaborate Conjugate-Gradient and Quasi-

Newton methods belong to this type of minimization techniques: The latter two

families of methods can find the (one and global) minimum of a M-dimensional

parabolic hyper surface with at most M steps (note that this statement just

describes a characteristic feature of these algorithms since the optimum of a

parabolic hyper surface may simply be calculated with second derivative infor-

mation by analytical means).

• Also (second derivative) curvature information of the function to be minimized

may be utilized for a faster convergence near a local minimum as implemented

by the so called Newton methods (which were already invented by the grand old

father of modern science). If a parabolic hyper surface is under investigation a

Newton step leads directly to the minimum, i.e. the Newton method converges

to this minimum in one single step (in fact each Newton step assumes a hyper

surface to be parabolic and thus calculates the position of its supposed minimum

analytically. This assumption is the more accurate the nearer the minimum is

located. Since a Newton method has to evaluate an awful lot of functional in-

formation for each iterative step which takes its time it is only effective in the

proximity of a minimum).

For special types of functions to be minimized like a sum of squares specific

combination methods like Levenberg-Marquardt are helpful that try to switch be-

tween gradient steps (far from a minimum) and Newton steps (near a minimum) in

an effective manner. And besides these general iterative local minimization tech-

niques there are numerous specific solutions for specific optimization tasks that try

to take advantage of their specific characteristics. But note that in general there is

nothing like the best iterative local optimization method: Being the most effective

and therefore fastest method for one minimization problem does not mean to be
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necessarily superior for another. As a rule of thumb Conjugate-Gradient and Quasi-

Newton methods have shown to exert a good compromise between computational

costs (function and first derivatives evaluations) and local minimum convergence

speed for many practical minimization problems. For the already used multiple op-

tima function

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-10.0,10.0};

functionValueRange={-0.2,2.2};

startPosition=8.0;

startPoint={startPosition,function/.x -> startPosition};

points2D={startPoint};

labels={"x","y","Function with multiple optima"};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

a local minimum may be found from the specified start position (indicated point)

with Mathematica’s FindMinimum command that provides a unified access to dif-

ferent local iterative search methods (FindMinimum uses a variant of the Quasi-

Newton methods by default, see comments on [FindMinimum/FindMaximum] in

the references):

localMinimum=FindMinimum[function,{x,startPosition}]

{0.28015,{x → 6.19389}}

FindMinimum returns a list with the function value at the detected local minimum and the rule(s) for the

argument value(s) at this minimum

Start point and approximated minimum may be visualized (the arrow indicates

the minimization path):
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minimumPoint={x/.localMinimum[[2]],localMinimum[[1]]};

points2D={startPoint,minimumPoint};

labels={"x","y","Local minimization"};

arrowGraphics=Graphics[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

Show[functionGraphics,arrowGraphics]

Mathematica’s Show command allows the overlay of different graphics which are automatically aligned.

From a different start position a different minimum is found

startPosition=2.0;

localMinimum=FindMinimum[function,{x,startPosition}]

{0.,{x → 9.64816×10−12}}

again illustrated as before:

startPoint={startPosition,function/.x -> startPosition};

minimumPoint={x/.localMinimum[[2]],localMinimum[[1]]};

points2D={startPoint,minimumPoint};

arrowGraphics=Graphics[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

Show[functionGraphics,arrowGraphics]
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In the last case the approximated minimum is accidentally the global minimum

since the start position was near this global optimum. But in general local optimiza-

tion leads to local optima only.

1.2.4 Iterative global optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

An optimization of a function usually targets the global optimum of the scientifi-

cally relevant argument space. An iterative local search may find the global optimum

but is usually only trapped in a local optimum near its start position as demonstrated

above. Global optimization strategies try to circumvent this problem by sampling a

whole a priori defined search space: They need a set of min/max values for each ar-

gument x1,x2, ...,xM of the function f (x1,x2, ...,xM) to be globally optimized where

it is assumed that the global optimum lies within the search space that is spanned

by these M min/max intervals [x1,min, x1,max] to [xM,min, xM,max]. The most straight-

forward method to achieve this goal seams to be a systematic grid search where the

function values are evaluated at equally spaced grid points inside the a priori defined

argument search space and then compared to each other to detect the optimum. This

grid search procedure is illustrated for an approximation of the global maximum of

the curved surface f (x,y) already sketched above

function=1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y]);

pureFunction=

Function[{argument1,argument2},

function/.{x -> argument1,y -> argument2}];

with a search space of the arguments x and y to be their [0, 1] intervals
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xMinBorderOfSearchSpace=0.0;

xMaxBorderOfSearchSpace=1.0;

yMinBorderOfSearchSpace=0.0;

yMaxBorderOfSearchSpace=1.0;

and 100 equally spaced grid points at z = 0 inside this search space (100 grid

points means a 10×10 grid, i.e. 10 grid points per dimension):

numberOfGridPointsPerDimension=10.0;

gridPoints3D={};

Do[

Do[

AppendTo[gridPoints3D,{x,y,0.0}],

{x,xMinBorderOfSearchSpace,xMaxBorderOfSearchSpace,

(xMaxBorderOfSearchSpace-xMinBorderOfSearchSpace)/

(numberOfGridPointsPerDimension-1.0)}

],

{y,yMinBorderOfSearchSpace,yMaxBorderOfSearchSpace,

(yMaxBorderOfSearchSpace-yMinBorderOfSearchSpace)/

(numberOfGridPointsPerDimension-1.0)}

];

The grid points are calculated with nested Do loops in the xy plane.

This setup can be illustrated as follows (with the grid points located at z = 0):

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

viewPoint3D={3.5,-2.4,1.8};

CIP‘Graphics‘Plot3dPointsWithFunction[gridPoints3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]
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The function values at these grid points are then evaluated and compared

winnerGridPoint3D={};

maximumFunctionValue=-Infinity;

Do[

functionValue=pureFunction[gridPoints3D[[i, 1]],

gridPoints3D[[i, 2]]];

If[functionValue>maximumFunctionValue,

maximumFunctionValue=functionValue;

winnerGridPoint3D={gridPoints3D[[i, 1]],gridPoints3D[[i, 2]],

maximumFunctionValue}

],

{i,Length[gridPoints3D]}

];

to evaluate the winner grid point

winnerGridPoint3D

{1.,0.222222,6.17551}

that corresponds to the maximum detected function value

maximumFunctionValue

6.17551

which may be visually validated (with the winner grid point raised to its function

value indicated by the arrow and all other grid points still located at z = 0):
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Do[

If[gridPoints3D[[i,1]] == winnerGridPoint3D[[1]] &&

gridPoints3D[[i,2]] == winnerGridPoint3D[[2]],

gridPoints3D[[i]] = winnerGridPoint3D

],

{i,Length[gridPoints3D]}

];

arrowStartPoint={winnerGridPoint3D[[1]],winnerGridPoint3D[[2]],0.0};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{arrowStartPoint,winnerGridPoint3D}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[

gridPoints3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

The winner grid point of the global grid search does only approximate the global

optimum with an error corresponding to the defined grid spacing. To refine the ap-

proximate grid search maximum it may be used as a start point for a following local

search since the grid search maximum should be near the global maximum which

means that the local search can be expected to converge to the global maximum (but

note that there is no guarantee for this proximity and the following convergence in

general). Thus the approximate grid search maximum is passed to Mathematica’s

FindMaximum command (the sister of the FindMinimum command sketched above

which utilizes the same algorithms) as a start point for the post-processing local

search
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globalMaximum=FindMaximum[function,{{x,winnerGridPoint3D[[1]]},

{y,winnerGridPoint3D[[2]]}}]

{6.54443,{x → 0.959215,y → 0.204128}}

to determine the global maximum with sufficient precision. The improvement

obtained by the local refinement process may be inspected (the arrow indicates the

maximization path from the winner grid point to the maximum point detected by

the post-processing local search in a zoomed view)

globalMaximumPoint3D={x/.globalMaximum[[2,1]],

y/.globalMaximum[[2,2]],globalMaximum[[1]]};

xRange={0.90,1.005};

yRange={0.145,0.26};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{winnerGridPoint3D,globalMaximumPoint3D}]}}];

points3D={winnerGridPoint3D,globalMaximumPoint3D};

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

and finally the detected global maximum (point in diagram below) may be visu-

ally validated:
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xRange={-0.1,1.1};

yRange={-0.1,1.1};

points3D={globalMaximumPoint3D};

CIP‘Graphics‘Plot3dPointsWithFunction[points3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

Although a grid search seams to be a rational approach to global optimization

it is only an acceptable choice for low-dimensional grids, i.e. global optimization

problems with only a small number of function arguments as the example above.

This is due to the fact that the number of grid points to evaluate explodes (i.e. grows

exponentially) with an increasing number of arguments: The number of grid point

is equal to NM with N to be number of grid points per argument and M the number

of arguments. For 12 arguments x1,x2, ...,x12 with only 10 grid points per argu-

ment the grid would already contain one trillion
(
1012

)
points so with an increasing

number of arguments the necessary function value evaluations at the grid points

would become quickly far too slow to be explored in a man’s lifetime. As an al-

ternative the number of argument values in the search space to be tested could be

confined to a manageable quantity. A rational choice would be randomly selected

test points because there is no a priori knowledge about any preferred part of the

search space. Note that this random search space exploration would be comparable

to a grid search if the number of random test points would equal the number of sys-

tematic grid points before (although not looking as tidy). For the current example

20 random test points could be chosen instead of the grid with 100 points:
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SeedRandom[1];

randomPoints3D=

Table[

{RandomReal[{xMinBorderOfSearchSpace,xMaxBorderOfSearchSpace}],

RandomReal[{yMinBorderOfSearchSpace,yMaxBorderOfSearchSpace}],

0.0},

{20}

];

CIP‘Graphics‘Plot3dPointsWithFunction[randomPoints3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

The generation of random points can be made deterministic (i.e. always the same sequence of random points is

generated) by setting a distinct seed value which is done by the SeedRandom[1] command.

The winner random point is evaluated

winnerRandomPoint3D={};

maximumFunctionValue=-Infinity;

Do[

functionValue=pureFunction[randomPoints3D[[i, 1]],

randomPoints3D[[i, 2]]];

If[functionValue>maximumFunctionValue,

maximumFunctionValue=functionValue;

winnerRandomPoint3D={randomPoints3D[[i, 1]],randomPoints3D[[i, 2]],

maximumFunctionValue}

],

{i,Length[randomPoints3D]}

];
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and visualized (with only the winner random point shown raised to its functions

value indicated by the arrow):

Do[

If[randomPoints3D[[i,1]] == winnerRandomPoint3D[[1]] &&

randomPoints3D[[i,2]] == winnerRandomPoint3D[[2]],

randomPoints3D[[i]] = winnerRandomPoint3D

],

{i,Length[randomPoints3D]}

];

arrowStartPoint={winnerRandomPoint3D[[1]],winnerRandomPoint3D[[2]],

0.0};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{arrowStartPoint,winnerRandomPoint3D}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[

randomPoints3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

But if this global optimization result

winnerRandomPoint3D

{0.29287,0.208051,4.49892}
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is refined by a post-processing local maximum search starting from the winner

random point

globalMaximum=FindMaximum[function,

{{x,winnerRandomPoint3D[[1]]},{y,winnerRandomPoint3D[[2]]}}]

{4.55146,{x → 0.265291,y → 0.204128}}

only a local maximum is found (point in diagram below) and thus the global

maximum is missed:

globalMaximumPoint3D={x/.globalMaximum[[2,1]],

y/.globalMaximum[[2,2]],

globalMaximum[[1]]};

points3D={globalMaximumPoint3D};

Plot3dPointsWithFunction[points3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

This failure can not be traced to the local optimum search (this worked perfectly

from the passed starting position) but must be attributed to an insufficient number of

random test points before: If their number is raised the global sampling of the search

space would improve and the probability of finding a good test point in the vicinity

of the global maximum would increase. But then the same restrictions apply as

mentioned with the systematic grid search: With an increasing number of parameters
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(dimensions) the size of the search space explodes and a random search resembles

more and more to be simply looking for a needle in a haystack.

In the face of this desperate situation there was an urgent need for global opti-

mization strategies that are able to tackle difficult search problems in large spaces.

As a knight in shining armour a family of so called evolutionary algorithms emerged

that rapidly drew a lot of attention. These methods also operate in a basically random

manner comparable to a pure random search but in addition they borrow approved

refinement strategies from biological evolution to approach the global optimum:

These are mutation (random change), crossover or recombination (a kind of random

mixing that leads to a directional hopping towards promising search space regions)

and selection of the fittest (amplification of the optimal points found so far). The

evolution cycles try to speed up the search towards the global optimum by suc-

cessively composing parts (schemata) of the optimum solution. Mathematica offers

an evolutionary-algorithm-based global optimization procedure via the NMinimize

and NMaximize commands with the DifferentialEvolution method option (see com-

ments on [NMinimize/NMaximize] for details). The global maximum search

globalMaximum=NMaximize[{function,

{xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace,

yMinBorderOfSearchSpace<y<yMaxBorderOfSearchSpace}},

{x,y},

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{6.54443,{x → 0.959215,y → 0.204128}}

Note the deactivation of the PostProcess in the Method definition: NMaximize automatically applies a local

optimization method to refine the result of a global search - the same was done in the grid and random search

examples above. The deactivation suppresses this refinement to get the pure result of the evolutionary algorithm.

now directly leads to a result of sufficient precision (compare global maximum

location above). But it should be noted that evolutionary algorithms in spite of their

popularity belong to the methods of last resort: They may be extremely computa-

tionally expensive, i.e. time-consuming. Evolutionary algorithms are regarded to be

very effective since they imitate the successful biological evolution. This widespread

view neglects the fact that natural evolution needed eons to develop life - and liv-

ing organisms are by no means optimum solutions. If the evolutionary algorithm is

applied to the multiple-optima function already demonstrated above

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

with an appropriate search space (not too small, not too large)

xMinBorderOfSearchSpace=-10.0;

xMaxBorderOfSearchSpace=15.0;
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the global minimum (point in diagram below) inside the search space (marked as

a background in diagram below)

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{5.16341×10−10,{x →−0.0000318188}}

is also approximated successfully:

minimumPoint={x/.globalMinimum[[2]],globalMinimum[[1]]};

points2D={minimumPoint};

argumentRange={-12.0,17.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Global minimization"};

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

searchSpaceGraphics=Graphics[{RGBColor[0,1,0,0.2],

Rectangle[{xMinBorderOfSearchSpace,functionValueRange[[1]]},

{xMaxBorderOfSearchSpace,functionValueRange[[2]]}]}];

Show[functionGraphics,searchSpaceGraphics]

But note: If the search space is inadequately chosen (i.e. the global minimum is

outside the interval)

xMinBorderOfSearchSpace=50.0;

xMaxBorderOfSearchSpace=60.0;

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]
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{0.9619,{x → 50.2272}}

or the search space is simply to large

xMinBorderOfSearchSpace=-100000.0;

xMaxBorderOfSearchSpace=100000.0;

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.805681,{x → 19.2638}}

the global minimum may not be found within the default maximum number of

iterations.

1.2.5 Constrained iterative optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

With the global optimization examples of the previous section the field of con-

strained optimization was already touched since the a priori defined search space

was a constraint of the search (but in fact it was not intended to constrain the opti-

mization procedure: Defining a search space was just a precondition for the global

optimization methods to work at all). In general optimization tasks are called un-

constrained if they are free from any additional restrictions. If the optimization is

subject to one or several constraints the field of constrained optimization is entered.

If the function under investigation is not only to be globally minimized but the x

value is restricted to lie in an defined interval

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

xMinConstraint=2.0;

xMaxConstraint=11.0;

constraint=xMinConstraint<x<xMaxConstraint;

constrainedGlobalMinimum=NMinimize[{function,constraint},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.28015,{x → 6.19386}}

the constrained global minimum (point in diagram below) may differ from the

unconstrained one (the constraint is marked as a background in diagram below):

constrainedMinimumPoint={x/.constrainedGlobalMinimum[[2]],

constrainedGlobalMinimum[[1]]};
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points2D={constrainedMinimumPoint};

argumentRange={-12.0,17.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Constrained global minimization"};

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

constraintGraphics=Graphics[{RGBColor[1,0,0,0.1],

Rectangle[{xMinConstraint,functionValueRange[[1]]},

{xMaxConstraint,functionValueRange[[2]]}]}];

Show[functionGraphics,constraintGraphics]

But not only may the unconstrained and constrained global optimum differ: The

constrained global optimum may in general not be an optimum of the unconstrained

optimization problem at all: This can be illustrated with the following example taken

from the Mathematica tutorials. The 3D surface

function=

-1.0/((x+1.0)ˆ2+(y+2.0)ˆ2+1)-2.0/((x-1.0)ˆ2+(y-1.0)ˆ2+1)+2.0;

pureFunction=Function[{argument1,argument2},

function/.{x -> argument1,y -> argument2}];

xRange={-3.0,3.0};

yRange={-3.0,3.0};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]
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contains two optima: A local and a global minimum. Depending on the start po-

sition of the iterative local minimum search method initiated via the FindMinimum

command

startPosition={-2.5,-1.5};

localMinimum=FindMinimum[function,{{x,startPosition[[1]]},

{y,startPosition[[2]]}}]

{0.855748,{x →−0.978937,y →−1.96841}}

the minimization process approximates the local minimum

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics,arrowGraphics]
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or (with another start point)

startPosition={-0.5,2.5};

localMinimum=FindMinimum[function,{{x,startPosition[[1]]},

{y,startPosition[[2]]}}]

{−0.071599,{x → 0.994861,y → 0.992292}}

arrives at the global minimum:

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics,arrowGraphics]
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If now the constraint is imposed that

x2 + y2 > 4.0

(the constraint removes a circular argument area around the origin (0,0) of the xy

plane) the constrained local minimization algorithm behind the FindMinimum com-

mand is activated (see comments on [FindMinimum/FindMaximum] for details).

The constrained local minimization process from the first start position

startPosition={-2.5,-1.5};

constraint=xˆ2+yˆ2>4.0;

localMinimum=FindMinimum[{function,constraint},

{{x,startPosition[[1]]},{y,startPosition[[2]]}}]

{0.855748,{x →−0.978937,y →−1.96841}}

still results in the local minimum of the unconstrained surface

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

regionFunction=Function[{argument1,argument2},

constraint/.{x -> argument1,y -> argument2}];

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=Plot3dPointsWithFunction[points3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D,



36 1 Introduction

GraphicsOptionRegionFunction -> regionFunction];

Show[functionGraphics,arrowGraphics]

but the second start position

startPosition={-0.5,2.5};

localMinimum=FindMinimum[{function,constraint},

{{x,startPosition[[1]]},{y,startPosition[[2]]}}]

{0.456856,{x → 1.41609,y → 1.41234}}

leads to a new global minimum since the one of the unconstrained surface is

excluded by the constraint:

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=Plot3dPointsWithFunction[points3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D,

GraphicsOptionRegionFunction -> regionFunction];

Show[functionGraphics,arrowGraphics]
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An evolutionary-algorithm-based constrained global search in the displayed ar-

gument ranges via NMinimize directly approximates the constrained global mini-

mum

Off[NMinimize::cvmit]

localMinimum=NMinimize[{function,constraint},

{{x,xRange[[1]],xRange[[2]]},{y,yRange[[1]],yRange[[2]]}},

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.456829,{x → 1.41637,y → 1.41203}}

The Off[NMinimize::cvmit] command suppresses an internal message from NMinimize. Internal messages are

usually helpful to understand problems and they advise to interpret results with caution. In this particular case

the suppression eases readability.

with sufficient precision (compare above).

In general it holds that the more dimensional the non-linear curved hyper surface

is and the more constraints are imposed the more difficult it is to approximate a

local or even the global optimum with sufficient precision. The specific optimization

problems that are related to the road from curve fitting to machine learning will be

discussed in the later chapters where they apply.

1.3 Model functions

Since model functions play an important role throughout the book a basic catego-

rization is helpful. A good starting point is the most prominent model function: The

straight line.


