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Preface

As silicon technology advances, field programmable gate arrays appear to
gain ground against the traditional ASIC project starts, reaching out to form
the mainstream implementation basis. Their predefined structures result in
an essential inefficiency, or performance gap at all relevant axes, i.e. clock
frequency, power and area. Thus, highly optimised system realisations be-
come more and more important to use this technology at its best. Microar-
chitectures and their adaptation to the FPGA hardware, combined with an
optimal matching of model structures and FPGA structures, are two points
of action where engineers can try to get optimally balanced solutions for their
designs, thus fighting the performance gap towards the ASIC reference.

While microarchitecture design based on the knowledge of FPGA struc-
tures is located in the domain of traditional hardware engineering, the map-
ping and matching is based on EDA algorithms and thus strongly related
to computer science. Algorithms and the related sophisticated tools are
permanently in short supply for leading edge optimisation needs.

Martin’s dissertation deals with the algorithmic optimisation of circuits
for the multiplication of a variable with constants in different flavours. As
this type of operations is elementary in all areas of digital signal processing
and also usually on the critical path, his approaches and results are of high
relevance not only by themselves but also as a direction for further research.
His direct contributions are the advancement of algorithmic treatment of
pipeline-based multiplier circuits using heuristics and exact optimisation al-
gorithms, the adaptation of several algorithms to the specific conditions of
field programmable gate arrays, specifically lookup-table based multipliers,
ternary adders and embedded multipliers with fixed word length, and the
transfer of his findings to a floating-point multiplier architecture for multiple
constants.

Along with all the accompanying details, this is a large range of topics
Martin presents here. It is an impressive and comprehensive achievement,
convincing by its depth of discussion as well as its contributions in each of
the areas.



VI Preface

Martin was one of my first PhD candidates. Thrown into the cultural con-
flict between computer science and electrical engineering he soon developed
a sense for the symbiosis of both disciplines. The approach and results are
symptomatical for this developing interdisciplinary area, where systems and
their optimisation algorithms are developed corporately.

I found Martin’s text exciting to read, as it is a comprehensive work within
the ongoing discussion of algorithmic hardware optimisation. His work is
supported by a long list of successful publications. It is surely a contribution
worth reading.

Kassel, 22. of April, 2016 Prof. Dr.-Ing. Peter Zipf



Abstract

Digital signal processing (DSP) plays a major role in nearly any modern
electronic system used in mobile communication, automotive control units,
biomedical applications and high energy physics, just to name a few. A
very frequent but resource intensive operation in DSP related systems is
the multiplication of a variable by several constants, commonly denoted as
multiple constant multiplication (MCM). It is needed, e. g., in digital filters
and discrete transforms. While high performance DSP systems were tradi-
tionally realized as application specific integrated circuits (ASICs), there is
an ongoing and increasing trend to use generic programmable logic ICs like
field programmable gate arrays (FPGAs). However, only little attention has
been paid on the optimization of MCM circuits for FPGAs.

In this thesis, FPGA-specific optimizations of MCM circuits for low re-
source usage but high performance are considered. Due to the large FPGA-
specific routing delays, one key for high performance is pipelining. The opti-
mization of pipelined MCM circuits is considered in the first part of the the-
sis. First, a method that optimally pipelines a given (not necessary optimal)
MCM circuit using integer linear programming (ILP) is proposed. Then, it
is shown that the direct optimization of a pipelined MCM circuit, formally
defined as the pipelined MCM (PMCM) problem, is beneficial. This is done
by presenting novel heuristic and optimal ILP-based methods to solve the
PMCM problem. Besides this, extensions to the MCM problem with adder
depth (AD) constraints and an extension for optimizing a related problem –
the pipelined multiplication of a constant matrix with a vector – are given.

While these methods are independent of the target device and reduce the
number of arithmetic and storage components, i. e., adders, subtracters and
pipeline registers, FPGA-specific optimizations are considered in the second
part of the thesis. These optimizations comprise the inclusion of look-up
table (LUT)-based constant multipliers, embedded multipliers and the use of
ternary (3-input) adders which can be efficiently mapped to modern FPGAs.
In addition, an efficient architecture to perform MCM operations in floating
point arithmetic is given.
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