
Multiple Constant Multi-
plication Optimizations
for Field Programmable
Gate Arrays

Martin Kumm

Multiple Constant Multiplication
Optimizations for Field Programmable
Gate Arrays

Martin Kumm

Multiple Constant
Multiplication
Optimizations for
Field Programmable
Gate Arrays
With a preface by Prof. Dr.-Ing. Peter Zipf

Martin Kumm
Kassel, Germany

ISBN 978-3-658-13322-1	 ISBN 978-3-658-13323-8 (eBook)
DOI 10.1007/978-3-658-13323-8

Library of Congress Control Number: 2016935387

Springer Vieweg
© Springer Fachmedien Wiesbaden 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer Vieweg imprint is published by Springer Nature
The registered company is Springer Fachmedien Wiesbaden GmbH

Dissertation of Martin Kumm in the Department of Electrical Engineering and
Computer Science at the University of Kassel. Date of Disputation: October 30th, 2015

Preface

As silicon technology advances, field programmable gate arrays appear to
gain ground against the traditional ASIC project starts, reaching out to form
the mainstream implementation basis. Their predefined structures result in
an essential inefficiency, or performance gap at all relevant axes, i.e. clock
frequency, power and area. Thus, highly optimised system realisations be-
come more and more important to use this technology at its best. Microar-
chitectures and their adaptation to the FPGA hardware, combined with an
optimal matching of model structures and FPGA structures, are two points
of action where engineers can try to get optimally balanced solutions for their
designs, thus fighting the performance gap towards the ASIC reference.

While microarchitecture design based on the knowledge of FPGA struc-
tures is located in the domain of traditional hardware engineering, the map-
ping and matching is based on EDA algorithms and thus strongly related
to computer science. Algorithms and the related sophisticated tools are
permanently in short supply for leading edge optimisation needs.

Martin’s dissertation deals with the algorithmic optimisation of circuits
for the multiplication of a variable with constants in different flavours. As
this type of operations is elementary in all areas of digital signal processing
and also usually on the critical path, his approaches and results are of high
relevance not only by themselves but also as a direction for further research.
His direct contributions are the advancement of algorithmic treatment of
pipeline-based multiplier circuits using heuristics and exact optimisation al-
gorithms, the adaptation of several algorithms to the specific conditions of
field programmable gate arrays, specifically lookup-table based multipliers,
ternary adders and embedded multipliers with fixed word length, and the
transfer of his findings to a floating-point multiplier architecture for multiple
constants.

Along with all the accompanying details, this is a large range of topics
Martin presents here. It is an impressive and comprehensive achievement,
convincing by its depth of discussion as well as its contributions in each of
the areas.

VI Preface

Martin was one of my first PhD candidates. Thrown into the cultural con-
flict between computer science and electrical engineering he soon developed
a sense for the symbiosis of both disciplines. The approach and results are
symptomatical for this developing interdisciplinary area, where systems and
their optimisation algorithms are developed corporately.

I found Martin’s text exciting to read, as it is a comprehensive work within
the ongoing discussion of algorithmic hardware optimisation. His work is
supported by a long list of successful publications. It is surely a contribution
worth reading.

Kassel, 22. of April, 2016 Prof. Dr.-Ing. Peter Zipf

Abstract

Digital signal processing (DSP) plays a major role in nearly any modern
electronic system used in mobile communication, automotive control units,
biomedical applications and high energy physics, just to name a few. A
very frequent but resource intensive operation in DSP related systems is
the multiplication of a variable by several constants, commonly denoted as
multiple constant multiplication (MCM). It is needed, e. g., in digital filters
and discrete transforms. While high performance DSP systems were tradi-
tionally realized as application specific integrated circuits (ASICs), there is
an ongoing and increasing trend to use generic programmable logic ICs like
field programmable gate arrays (FPGAs). However, only little attention has
been paid on the optimization of MCM circuits for FPGAs.

In this thesis, FPGA-specific optimizations of MCM circuits for low re-
source usage but high performance are considered. Due to the large FPGA-
specific routing delays, one key for high performance is pipelining. The opti-
mization of pipelined MCM circuits is considered in the first part of the the-
sis. First, a method that optimally pipelines a given (not necessary optimal)
MCM circuit using integer linear programming (ILP) is proposed. Then, it
is shown that the direct optimization of a pipelined MCM circuit, formally
defined as the pipelined MCM (PMCM) problem, is beneficial. This is done
by presenting novel heuristic and optimal ILP-based methods to solve the
PMCM problem. Besides this, extensions to the MCM problem with adder
depth (AD) constraints and an extension for optimizing a related problem –
the pipelined multiplication of a constant matrix with a vector – are given.

While these methods are independent of the target device and reduce the
number of arithmetic and storage components, i. e., adders, subtracters and
pipeline registers, FPGA-specific optimizations are considered in the second
part of the thesis. These optimizations comprise the inclusion of look-up
table (LUT)-based constant multipliers, embedded multipliers and the use of
ternary (3-input) adders which can be efficiently mapped to modern FPGAs.
In addition, an efficient architecture to perform MCM operations in floating
point arithmetic is given.

Acknowledgements

First of all, I would like to thank my supervisor, Prof. Dr.-Ing. Peter Zipf,
who gave me the opportunity to do my PhD under his supervision. He
provided an excellent guidance and was always open-minded to new and ex-
ceptional ideas, leading to creative and fruitful discussions. I also thank my
colleagues at the digital technology group of the University of Kassel. In
special, Michael Kunz, who had many ideas how to prepare the course ma-
terial and Konrad Möller, who started as student with his project work and
master’s thesis and is now a highly-valued colleague. Our mathematicians,
Diana Fanghänel, Dörthe Janssen and Evelyn Lerche, were always open to
help with math related questions. The deep understanding in discrete opti-
mization and ILP (and more) of Diana Fanghänel helped a lot in obtaining
some of the results in this work. I am grateful to all the students that con-
tributed to parts of this thesis with their bachelor or master’s thesis, project
work or student job: Martin Hardieck, who did a great job in the C++ imple-
mentation of RPAG extensions for ternary adders and the constant matrix
multiplication (and the combination of both) during his project work, his
diploma thesis and his student job; Katharina Liebisch, for implementing
MCM floating point units for reference; Jens Willkomm, who realized the
ternary adder at primitive level for Xilinx FPGAs during his project work;
and Marco Kleinlein, who implemented flexible VHDL code generators based
on the Floating Point Core Generator (FloPoCo) library [1]. I would also
like to thank our external PhD candidates Eugen Bayer and Charles-Frederic
Müller for interesting discussions and collaborative work. I also appreciate
the financial support of the German research council which allowed me to
stay in a post-doc position in Kassel.

During the PhD, I started cooperations with Chip Hong Chang and Math-
ias Faust from the Nanyang Technological University, Singapore, Oscar
Gustafsson and Mario Garrido from the University of Linköping, Sweden,
and Uwe Meyer-Baese from the Florida State University, USA. Especially,
I am very grateful to Oscar Gustafsson to invite me as guest researcher
in his group. Exchanging ideas with people from the same field expanded
my horizon enormously. Thanks to the ERASMUS program, two visits in

X Acknowledgements

Linköping were possible and further visits are planned. Another big help
was the friendly support of other researchers. Levent Aksoy was always fast
in answering questions, providing filter benchmark data or even the source
code of their algorithms. My thanks also go to Florent de Dinechin and all
the contributors of the FloPoCo library [1] for providing their implementa-
tions as open-source [2]. Open-source in research simplifies the comparison
with other work which inspired me to publish the presented algorithms as
open-source, too.

Last but not least, I want to kindly thank my wife Nadine and my son
Jonathan. Their love and support gave me the energy to create this thesis.

Contents

Preface V

Abstract VII

Acknowledgements IX

Contents XI

List of Figures XIX

List of Tables XXIII

Abbreviations XXVII

Nomenclature XXX

Author’s Publications XXXI

1 Introduction 1

1.1 Motivation . 1

1.2 Goal and Contributions of the Thesis 2

1.3 Organization of the Thesis . 3

1.4 Applications of Multiple Constant Multiplication 5

2 Background 9

2.1 Single Constant Multiplication 9

2.1.1 Binary Multiplication 9

XII Contents

2.1.2 Multiplication using Signed Digit Representation . . . 10

2.1.3 Multiplication using Generic Adder Graphs 11

2.2 Multiple Constant Multiplication 12

2.3 Constant Matrix Multiplication 12

2.4 Definitions . 13

2.4.1 Adder Graph Representation of Constant Multiplication 14

2.4.2 Properties of the A-Operation 15

2.4.3 A-Sets . 17

2.4.4 The MCM Problem 17

2.4.5 MCM with Adder Depth Constraints 18

2.5 Field Programmable Gate Arrays 19

2.5.1 Basic Logic Elements of Xilinx FPGAs 21

2.5.2 Basic Logic Elements of Altera FPGAs 21

2.5.3 Mapping of Adder Graphs to FPGAs 22

2.5.4 Cost Models for Pipelined Adders and Registers . . . 26

2.6 Related Work . 28

2.6.1 Single Constant Multiplication 28

2.6.2 Multiple Constant Multiplication 29

2.6.3 Modified Optimization Goals in SCM and MCM Op-
timization . 33

2.6.4 Pipelined Multiple Constant Multiplication 33

I The Pipelined Multiple Constant Multiplication Prob-
lem 37

3 Optimal Pipelining of Precomputed Adder Graphs 39

3.1 Pipelining of Adder Graphs using Cut-Set Retiming 39

3.2 Minimized Pipeline Schedule using Integer Linear Programming 41

3.2.1 Basic ILP Formulation 42

Contents XIII

3.2.2 Extended ILP Formulation 43

3.3 Experimental Results . 44

3.3.1 Register Overhead . 45

3.3.2 Slice Comparison . 46

3.3.3 Device Utilization . 47

3.3.4 Silicon Area . 49

3.4 Conclusion . 51

4 The Reduced Pipelined Adder Graph Algorithm 53

4.1 Definition of the PMCM Problem 54

4.1.1 Cost Definition . 55

4.1.2 Relation of PMCM to MCM 56

4.2 The RPAG Algorithm . 56

4.2.1 The Basic RPAG Algorithm 57

4.2.2 Computation of Single Predecessors 58

4.2.3 Computation of Predecessor Pairs 59

4.2.4 Evaluation of Predecessors 62

4.2.5 The Overall RPAG Algorithm 63

4.2.6 Computational Complexity 68

4.3 Lower Bounds of Pipelined MCM 71

4.4 Implementation . 72

4.5 Experimental Results . 73

4.5.1 Registered Operations and CPU Runtime 73

4.5.2 Influence of the Search Width Limit to the Optimiza-
tion Quality . 74

4.5.3 Comparison of Cost Models 74

4.5.4 Comparison Between Gain Functions 77

4.5.5 Influence of the Pipeline Stages to the Optimization
Quality . 79

XIV Contents

4.5.6 Comparison with the Optimal Pipelining of Precom-
puted Adder Graphs 81

4.5.7 Comparison Between Aksoy’s Method and RPAG . . . 84

4.6 Conclusion . 84

5 Optimally Solving MCM Related Problems using ILP 87

5.1 Related Work . 87

5.2 ILP Formulations of the PMCM Problem 91

5.2.1 PMCM ILP Formulation 1 92

5.2.2 PMCM ILP Formulation 2 94

5.2.3 PMCM ILP Formulation 3 96

5.3 Extensions to Adder Depth Constraints and GPC Minimization 96

5.4 Further Extensions of the ILP Formulations 99

5.5 Analysis of Problem Sizes . 100

5.5.1 Evaluation of Set Sizes of As and T s 100

5.5.2 Relation to FIR Filters 100

5.6 Experimental Results . 101

5.6.1 FIR Filter Benchmark 102

5.6.2 Benchmark Filters from Image Processing 103

5.6.3 Optimization Results with High-Level Cost Model . . 104

5.6.4 Optimization Results with Low-Level Cost Model . . . 105

5.6.5 Synthesis Results . 105

5.6.6 Optimization Results for Minimal Adder Depth 107

5.7 Conclusion . 110

6 A Heuristic for the Constant Matrix Multiplication Problem 113

6.1 Related Work . 115

6.2 RPAG extension to CMM . 116

6.2.1 Adder Graph Extensions to CMM 116

Contents XV

6.2.2 Definition of the PCMM and CMMMAD/CMMBAD

Problems . 117

6.2.3 Computation of Predecessors 118

6.2.4 Evaluation of Predecessors 119

6.2.5 Overall Algorithm . 119

6.3 Experimental Results . 120

6.4 Conclusion . 124

II FPGA Specific MCM Optimizations 125

7 Combining Adder Graphs with LUT-based Constant Multipliers 127

7.1 Related Work . 127

7.2 LUT-based Constant Multiplication 128

7.3 LUT Minimization Techniques 129

7.4 ILP Formulation for the Combined PALG Optimization . . . 130

7.5 Experimental Results . 133

7.6 Conclusion . 135

8 Optimization of Hybrid Adder Graphs 139

8.1 Implementation Techniques for Large Multipliers 140

8.2 Hybrid PMCM Optimization with Embedded Multipliers . . 142

8.2.1 Depth of the Input PAG 146

8.2.2 Depth of the Output PAG 146

8.3 RPAG Modifications . 146

8.4 Experimental Results . 147

8.4.1 Trade-off Between Slices and DSP Resources 147

8.4.2 Reducing Embedded Multipliers in Large MCM Blocks 147

8.5 Conclusion . 149

XVI Contents

9 Floating Point Multiple Constant Multiplication 153

9.1 Constant Multiplication using Floating Point Arithmetic . . . 153

9.2 Floating Point MCM Architecture 154

9.2.1 Multiplier Block . 154

9.2.2 Exponent Computation 155

9.2.3 Post-Processing . 156

9.3 Experimental Results . 156

9.3.1 Floating Point SCM 157

9.3.2 Floating Point MCM 158

9.4 Conclusion . 161

10 Optimization of Adder Graphs with Ternary (3-Input) Adders 163

10.1 Ternary Adders on Modern FPGAs 163

10.1.1 Realization on Altera FPGAs 164

10.1.2 Realization on Xilinx FPGAs 165

10.1.3 Adder Comparison . 166

10.2 Pipelined MCM with Ternary Adders 167

10.2.1 A-Operation and Adder Depth 168

10.2.2 Optimization Heuristic RPAGT 168

10.2.3 Predecessor Topologies 169

10.3 Experimental Results . 172

10.4 Conclusion . 174

11 Conclusion and Future Work 177

11.1 Conclusion . 177

11.2 Future Work . 178

11.2.1 Use of Compressor Trees 178

11.2.2 Reconfigurable MCM 179

11.2.3 Optimal Ternary SCM circuits 179

Contents XVII

A Benchmark Coefficients 181

A.1 Two-Dimensional Filters . 181

A.2 Floating-Point Filters . 183

B Computation of the A∗ Set 187

Bibliography 189

List of Figures

1.1 Graphical representation of the relation of the main thesis
chapters 3-10 . 4

1.2 Structure of an FIR filter in (a) direct form and (b) transposed
form . 6

2.1 Different adder circuits to realize a multiplication with 93 . . 10

2.2 Different adder circuits to realize a multiplication with coef-
ficients 19 and 43 . 13

2.3 Example CMM operation with constant 19 + j43 14

2.4 Adder graph realizing the multiplication with the coefficients
{19, 43} . 16

2.5 Simplified architecture of a generic FPGA layout 20

2.6 Simplified BLE of Xilinx FPGA families 22

2.7 Simplified BLE (half ALM) of Altera Stratix III to Stratix IV
FPGAs . 23

2.8 BLE configurations for pipelined adder graphs on Xilinx Vir-
tex 4 FPGAs . 24

2.9 BLE configuration for an 8 bit register on Xilinx Virtex 6 FPGAs 25

2.10 Adder graphs realizing the multiplication with the coefficients
{19, 43} . 27

3.1 Adder graphs for the coefficient target set T =
{480, 512, 846, 1020}, (a) adder graph without pipelining, (b)
pipelined adder graph after cut-set retiming (c) optimized
adder graph . 40

3.2 Resource and speed comparison of adder graph based methods 49

XX List of Figures

4.1 Different multiplier block realizations for the coefficients
{44, 130, 172} . 54

4.2 Predecessor graph topologies for (a)-(c) a single predecessor
p, (d)-(e) a predecessor pair (p1, p2) 59

4.3 Decision tree of the overall RPAG algorithm for Todd =
{63, 173} and L = 1 . 68

4.4 Optimization results for different N and Bc with L = 0 . . . 75

4.5 Optimization results for different search width limits L and
Bc = 16bit . 76

4.6 Resulting low-level improvement when optimized with the
low-level cost model compared to the high-level cost model . 77

4.7 Comparison of different gain functions for the low-level cost
model . 78

4.8 Average improvement of registered operations when using one
extra stage (S = Dmax + 1) compared to S = Dmax and the
best of both result for L = 0 and L = 10 80

4.9 Histogram of number of instances (out of 100) which are bet-
ter when using one extra stage (S = Dmax + 1) compared to
S = Dmax . 81

4.10 Example PAGs where an increased pipeline depth is beneficial 82

4.11 Pipelined adder graph SCM example where an increased
pipeline depth is beneficial . 83

5.1 Example hypergraphs for target set T = {44, 70, 104} (a) sub-
set of the search space including the Steiner nodes 3, 7 and 9,
(b) one possible solution hypertree by selecting 7 as Steiner
node (c) an invalid solution containing loops 88

5.2 PAG solutions of two instances of the MIRZAEI10 benchmark 103

6.1 Different realizations of the example PCMM circuit 114

6.2 Adder graph representation of PCMM circuit in Figure 6.1(d) 117

6.3 Benchmark of random 8bit N×N matrices (a) absolute num-
ber of adders (b) improvement of RPAG-CMM over multiple
use of RPAG . 121

List of Figures XXI

7.1 4×12 bit signed multiplier using 4-input LUTs [3] 130

7.2 Pipelined LUT based multiplier 131

7.3 Example PAG/PALG of the highpass 5×5 instance with Bi =
10bit . 135

8.1 A single precision mantissa multiplier using DSP48E blocks
on a Xilinx Virtex 6 FPGA 141

8.2 An optimized double precision mantissa multiplier on a Xilinx
Virtex 6 FPGA [4] . 143

8.3 A pipelined hybrid adder graph consisting of input adder
graph, embedded multipliers (Si = 3) and output adder graph
(So = 2) . 145

8.4 Pareto front for filter N = 28 of benchmark set [5] 148

8.5 Hybrid adder/multiplier graph adder graph for the Nuq = 5
benchmark filter . 151

8.6 Adder graph for the Nuq = 5 benchmark filter with maximum
post adder usage . 152

9.1 Proposed architecture for the single precision floating point
MCM operation . 155

9.2 Detailed architecture of one round, normalize and exponent
selection block of Figure 9.1 157

9.3 Required adders for exponents 160

10.1 Pipelined adder graphs of a constant multiplier with coeffi-
cients T={7567,20406} using (a) two-input adders (b) ternary
adders . 164

10.2 Realization of ternary adders on (a) Altera Stratix II-V adap-
tive logic modules (ALMs) (b) Xilinx Virtex 5-7 slices 165

10.3 Comparison of clock frequencies of two-input and ternary
adders (top) and the frequency drop from two to three in-
puts (bottom) realized on Virtex 6 and Stratix IV FPGAs . . 167

10.4 Predecessor graph topologies for (a)-(f) one, (g)-(h) two and
(i) three predecessors . 170

XXII List of Figures

10.5 Relative improvement of registered operations of RPAGT over
RPAG . 173

List of Tables

3.1 Optimization results for Hcub and Hcub,BAD using the bench-
mark set of [5], without pipelining (no. of adders), CSR
pipelining with ASAP scheduling and the proposed optimal
pipelining (registered operations). 46

3.2 Synthesis results of benchmark filters from [6] on Xilinx
Virtex 4 for the proposed method (optimal pipelining using
Hcub,BAD) compared to other methods discussed. N is the
number of coefficients . 48

3.3 Device utilization using a mean metric for the Virtex 4 device
family . 50

4.1 Complexity of the MSD evaluation in topology (d) compared
to a full search . 71

4.2 Comparison between RPAG and the optimal pipelining of pre-
computed adder graphs obtained by Hcub,BAD based on bench-
mark filters from [5]. Abbreviations: Nuq: no. of unique co-
efficients, reg. add: registered adder/subtractor, pure regs:
registers, reg. ops: registered operations 83

4.3 Comparison of the proposed method for the low-level ASIC
model with HCUB-DC+ILP [7] based on benchmark filters
from [7]. 84

5.1 Number of elements in As and upper bound of triplets in T s

for pipeline stages s = 1 . . . 4 and bit width BT = 2 . . . 32 . . . 101

5.2 Parameters of the used benchmark filters 105

5.3 Optimization results for the high-level cost model in terms of
the number of registered operations for RPAG (v1) [8] using R
iterations, RPAG (v2) and the optimal pipelined adder graphs
(best marked bold) . 106

XXIV List of Tables

5.4 Runtime comparison of different ILP formulations of the
PMCM problem with high level cost function using different
solvers and a timeout (TO) of 8 h/28,800 sec 107

5.5 Optimization results for the low-level cost model in terms of
the number of BLEs for RPAG (v1) [8] using R iterations,
RPAG (v2) and the optimal pipelined adder graphs (best
marked bold) . 108

5.6 Comparison between synthesis results using the same bench-
mark instances as in Table 7.1 providing the actual BLEs as
well as the maximum clock frequency fmax (best marked bold)
on a Virtex 6 FPGA . 109

5.7 MCMMAD benchmark with filters from Aksoy [9] 110

6.1 Comparison of different CMM methods for benchmark matri-
ces from literature (best marked bold) 122

6.2 Synthesis results for the best reference design of Table 6.1 and
the proposed method for CMM min AD. and pipelined CMM 123

7.1 Optimization results in terms of the number of BLEs for the
previous methods RPAG [8] using R iterations and the opti-
mal pipelined adder graphs 134

7.2 Synthesis results using the same benchmark instances as in
Table 7.1 providing the actual BLEs as well as the maximum
clock frequency fmax (best marked bold) on a Virtex 6 FPGA 136

8.1 Constraints for adder depth ADs, minimum word size Bmin
s ,

and maximum word size Bmax
s of the segments shown in Fig-

ure 8.3 . 145

8.2 Synthesis results of benchmark set [5] 148

8.3 MCM benchmark with single precision mantissas 150

8.4 MCM benchmark with double precision mantissas 150

9.1 Benchmark of floating point single constant multiplication . . 158

9.2 Required adders for exponents 160

List of Tables XXV

9.3 Benchmark of floating point MCM using slices only (best
marked bold) . 160

9.4 Benchmark of floating point multiple constant multiplication
using logic and embedded DSP48 blocks 161

10.1 Adder depth comparison for two-input and ternary adder graphs169

10.2 Comparison of high-level operations between RPAG with two-
input adders and the ternary adder optimization RPAGT . . 173

10.3 Synthesis results of MCM blocks optimized by RPAG with
two-input adders and the ternary adder optimization RPAGT 174

A.1 Convolution matrices of the benchmark filters 181

A.2 Mantissas of the single precision benchmark filters 183

A.3 Mantissas of the double precision benchmark filters 184

