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Preface

BeiDou Navigation Satellite System (BDS) is China’s global navigation satellite
system which has been developed independently. BDS is similar in principle to
global positioning system (GPS) and compatible with other global satellite navi-
gation systems (GNSS) worldwide. The BDS will provide highly reliable and
precise positioning, navigation and timing (PNT) services as well as short-message
communication for all users under all-weather, all-time, and worldwide conditions.

China Satellite Navigation Conference (CSNC) is an open platform for academic
exchanges in the field of satellite navigation. It aims to encourage technological
innovation, accelerate GNSS engineering, and boost the development of the
satellite navigation industry in China and in the world.

The 7th China Satellite Navigation Conference (CSNC2016) is held during May
18–20, 2016, Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart
Perception, including technical seminars, academic exchanges, forums, exhibitions,
and lectures. The main topics are as follows:

S1 BDS/GNSS Application Technology
S2 Navigation and Location Based Services
S3 Satellite Navigation Signals
S4 Satellite Orbit and Clock Offset Determination
S5 BDS/GNSS Precise Positioning Technology
S6 Atomic Clock and Time-frequency Technology
S7 BDS/GNSS Augmentation Systems and Technology
S8 BDS/GNSS Test and Assessment Technology
S9 BDS/GNSS User Terminal Technology
S10 Multi-sensor Fusion Navigation
S11 PNT System and Emerging Navigation Technology
S12 Standardization, Intellectual Properties, Policies, and Regulations

The proceedings (Lecture Notes in Electrical Engineering) have 176 papers in
ten topics of the conference, which were selected through a strict peer-review
process from 440 papers presented at CSNC2016. In addition, another 193 papers
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were selected as the electronic proceedings of CSNC2016, which are also indexed
by “China Proceedings of Conferences Full-text Database (CPCD)” of CNKI and
Wan Fang Data.

We thank the contribution of each author and extend our gratitude to 237 ref-
erees and 48 session chairmen who are listed as members of editorial board. The
assistance of CNSC2016’s organizing committees and the Springer editorial office
is highly appreciated.
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Research on the Inversion Method of USO
Frequency Stability Joining GNSS
and Inter-satellite Distance Measurement

Xuan Liu, Dengfeng Wang, Xingwang Zhong and Yansong Meng

Abstract K-band ranging (KBR) system and GNSS receiver are the key payloads
of the gravity exploration satellite which employs LEO satellite tracking LEO
satellite technology. Ultra-stable crystal oscillator, providing precise inter-satellite
distance measurement with clock frequency reference, is the key component of the
KBR-GNSS system. Therefore, real-time and dynamic monitoring on-orbit
ultra-stable oscillator (USO)’s frequency stability are very necessary. First of all,
the analysis formula of DOWR with time-tag corrected is deduced based on the
study of the KBR-GNSS measuring principle. Second, the coupling relationship
between Allan variance formula and inter-satellite time difference is analyzed
deeply. Two methods of inversing USO Allan variance are proposed, of which one
is using inter-satellite time difference measurement and the other one is employing
inter-satellite distance measurement. Finally, referring to GRACE satellite payload
scheme, a set of KBR-GNSS system is developed, by using which, the effectiveness
of the two algorithms is validated and their advantages and disadvantages are
compared meanwhile. The research results of this paper have some references to the
design of inter-satellite ranging system of Chinese first generation earth gravity
exploration satellite.
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1 Introduction

The precise measurement of the earth’s gravity field shows great application value
in oceanography, hydrology, geophysical science, and military aspects. Leo satellite
tracking Leo satellite technology, referred to as SST-LL, is one of the most effective
means of detection of gravitational field [1]. GRACE (Gravity Recovery and
Climate Experiment) satellite jointly developed by The United States and Germany
was launched in 2002, in which SST-LL technology was used for the first time.
High precision K-band ranging (KBR) and GNSS receiver are the core payloads of
the GRACE, of which ultra-stable oscillator (USO) is the key equipment. USO is
the standard of time and frequency of KBR and GNSS receiver in which all of the
measuring time tags are referenced to USO’s output. During on-orbit operation
process, USO is influenced by various factors such as temperature, radiation, and
aging so that its frequency is not stable, thereby affecting measurement accuracy of
KBR and GNSS receiver [2]. Consequently, monitoring of on-orbit USO frequency
stability for measurement data processing and analysis are of great help.

China has launched the earth’s gravity field exploration program. Related
research institutions and scholars have made deep study in KBR, USO, and GNSS
receiver [3, 4]. Taking GRACE satellites as the background, based on the principles
of two one-way ranging (DOWR) and high precision time difference correction,
combining with the self-developed KBR-GNSS experimental systems, this paper
intensively studies the indirect calculation method of USO frequency stability.
Starting from the original definition of Allan variance, the relative Allan variance
mathematical model is firstly proposed by inter-satellites time difference value and
then further established using biased distance between satellites. Direct measure-
ment and indirect computing results of USO Allan variance are compared and
analyzed, which verifies the accuracy and feasibility of indirect calculation meth-
ods. Finally, some suggestions and considerations are put forward to Chinese
earth’s gravity field exploration satellites.

2 Principle of Measurement

2.1 Dual One-Way Ranging

As showed in Fig. 1, satellite i and satellite j transmit Ka band signal to each other,
respectively, and the difference of these signals is 670 kHz. The receiving terminals
uninterruptedly monitor the phase changes of 670 kHz signal using phase locked
loop to obtain one-way phase measurements u j

i and ui
j.

The theoretical basis of KBR is DOWR which can effectively suppress the
common error caused by medium and long term frequency instability of USO [4],
as showed in Fig. 2. At the specified nominal measuring time t, the one-way phase
measurement of satellite i can be expressed as [5]:

4 X. Liu et al.



u j
i tþDtið Þ ¼ ui tþDtið Þ � u j tþDtið ÞþE j

i i; j ¼ 1; 2; i 6¼ j ð1Þ

Formula (1) is the phase difference from the received signal and the local reference
signal, among which the phase of received signal in satellite i can be represented by
the one of transmitted signal in satellite j.

u j tþDtið Þ ¼ uj tþDti � s ji
� � ð2Þ

where s ji is the signal travel time from satellite j to i. So, formula (1) can be written
as:

u j
i tþDtið Þ ¼ ui tþDtið Þ � uj tþDti � s ji

� �þE j
i ð3Þ

Dti called time-tag error is the difference of actual and nominal sampling time,
which needs to be corrected by GNSS measurement. E j

i is the sum of measurement
errors including integer ambiguity, ionosphere error, and other phase measuring
errors.

Phase uiðtÞ can be decomposed into the reference phase �ui and phase errors
caused by the oscillator dui

Fig. 1 KBR signal flow graph

Fig. 2 Schematic of dual
one-way phase measurement
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uiðtÞ ¼ �uiðtÞþ duiðtÞ ð4Þ

So, formula (3) can be written as:

u j
i ðtþDtiÞ ¼ �uiðtþDtiÞþ duiðtþDtiÞ

� �ujðtþDti � s ji Þ � dujðtþDti � s ji ÞþE j
i

ð5Þ

Formula (5) can be arranged using Taylor polynomial method, in which phase
change _�uiðtÞ is represented by constant standard frequency fi. Then following four
expressions can be obtained:

�uiðtþDtiÞ � �uiðtÞþ _�uiðtÞDti � �uiðtÞþ fiDti

�uiðtþDtj � sijÞ � �uiðtÞþ fiDtj � fis
i
j

duiðtþDtiÞ � duiðtÞþ dfiðtÞDti
duiðtþDti � sijÞ � duiðtÞþ dfiðtÞDti � dfiðtÞsij

ð6Þ

In that way, the result of DOWR is [5]:

H � u j
i ðtþDtiÞþui

jðtþDtjÞ ð7Þ

Because the frequencies of microwave signal in two satellites are designed differ-
ently, f1 represents the microwave signal in satellite i while f2 represents that in
satellite j. If formula (6) is substituted into (5) and then formula (5) is substituted
into (7), it can be got that:

HðtÞ � ðfisij þ fjs
j
i Þþ ðdfisij þ dfjs

j
i Þ

þ ðfi � fjÞðDti � DtjÞþ ðdfi � dfjÞðDti � DtjÞþE
ð8Þ

Consequently, the biased distance measurement can be written as:

RðtÞ ¼ kHðtÞ; k ¼ c=ðfi þ fjÞ ð9Þ

2.2 Time-Tag Correction DOWR

As mentioned before that DOWR can effectively suppress the phase errors caused
by medium and long term frequency instability of USO, a key prerequisite of
ensuring noise suppression ratio is that measurement time consistency must reach a
certain precision when two one-way phase measurements are superimposed based
on Eq. (7). GRACE requires that this time consistency is better than 0.1 ns. In
practical projects, it can be ensured that the GNSS pseudorange measurements are

6 X. Liu et al.



tagged with KBR measuring time if the time-tag produced by local USO is used to
sample GNSS and KBR measurements at the same time. In this paper, GNSS and
KBR measuring time are denoted by tgnssi and ti, respectively.

Dt ¼ Dti � Dtj ¼ ðti � tgnssÞ � ðtj � tgnssÞ
¼ ðtgnssi � tgnssÞ � ðtgnssj � tgnssÞ ¼ tgnssi � tgnssj

ð10Þ

As showed in Fig. 2, Dt is used to correct KBR measuring time and two
one-way phase measurements from satellite i and satellite j can be resampled at
nearly the same time. In practice, it is chosen that measurement of satellite j is
resampled at ti. Where Dt, got through GNSS data post-processing, is used to
interpolate one-way phase measurement of satellite j, which is showed in the fol-
lowing expression

ui
jðtþDtjÞ ¼ ui

jðtþDti � DtÞ
¼ �ujðtþDti � DtÞþ dujðtþDti � DtÞ
� �ujðtþDti � Dt � sijÞ � dujðtþDti � Dt � sijÞþEi

j

ð11Þ

Until now, the equation of DOWR is rewritten after time-tag correction as:

HðtiÞ � ðfisij þ fjs
j
i Þþ ðdfisij þ dfjs

j
i Þ

þ ðfi � fjÞd Dtij j þ ðd _ui � d _ujÞd Dtj
�� ��þE

ð12Þ

where d Dtij j and d Dtj
�� �� are time difference measuring errors which are very small

and can be neglected [6] (Fig. 3).

Fig. 3 Principle of time-tag
correction
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2.3 Relative Frequency Error

Formula (12) subtracts formula (8), neglecting the small terms:

HðtiÞ �HðtÞ � ðfi � fjÞðDti � DtjÞþ ðdfi � dfjÞðDti � DtjÞ ð13Þ

Defining a new composite phase measurement as:

HpðtÞ ¼ HðtÞ � ðfi � fjÞðDti � DtjÞ ð14Þ

Formula (15) can be got if formula (14) subtracts formula (12):

HpðtÞ �HðtiÞ � ðdfi � dfjÞðDti � DtjÞ ð15Þ

As a result, relative frequency error is:

dfi � dfj � HpðtÞ �HðtiÞ
Dti � Dtj

ð16Þ

2.4 Relative Allan Variance

The so-called frequency stability is the degree of any frequency source producing
the same frequency in a period after continuous operation for a while, also
described as the degree of frequency random fluctuation. The frequency instability,
in time domain, is generally characterized by Allan variance. Any oscillator can
output a signal that can be described as the following formula:

AðtÞ ¼ ½Aþ eðtÞ� sin½2pf0tþuðtÞ� ð17Þ

A is the amplitude and f0 is the nominal frequency. eðtÞ and uðtÞ represent the
random amplitude and phase fluctuations with respect to the ideal case. Then, phase
deviation can be expressed as [7]:

xðtÞ ¼ uðtÞ=2pf0 ð18Þ

yðtÞ ¼ _uðtÞ=2pf0 ð19Þ

where _uðtÞ ¼ dfi � dfj, dfi is frequency error. Formula (18) signifies relative time
deviation and formula (19) signifies relative frequency deviation. As a result, Allan
variance is defined as:

8 X. Liu et al.



rðsÞ ¼ 1
2ðN � 1Þ

XN�1

i¼1

ðyiþ 1 � yiÞ2
" #1=2

ð20Þ

where yn ¼ xn � xn�1ð Þ=s represents the average frequency deviation of Nth
interval. So, Allan variance can be rewritten as:

rxðsÞ ¼ 1
2ðN � 1Þs2

XN�1

i¼1

ðxiþ 2 � 2xiþ 1 þ xiÞ2
" #1=2

ð21Þ

If x ¼ Dt, relative Allan variance can be got:

rDtðsÞ ¼ 1
2ðN � 1Þs2

XN�1

i¼1

ðDtiþ 2 � 2Dtiþ 1 þDtiÞ2
" #1=2

ð22Þ

A new relative frequency deviation expression can be got if substituting formula
(16)–(19):

�y ¼ dfi � dfj
ðfi þ fjÞ=2 ð23Þ

dfi and dfj represent the deviation with respect to the nominal frequency of USO in
satellite i and satellite j, respectively. ðfi þ fjÞ=2 signifies average nominal fre-
quency. On these basis, corrected Allan variance based on KBR measurement can
be expressed as:

r�yðsÞ ¼ 1
2ðN � 1Þ

XN�1

i¼1

ð�yiþ 1 � �yiÞ2
" #1=2

ð24Þ

In the end, for computing two USOs’ relative Allan variance, the Eq. (22) based on
inter-satellites time difference measurement and Eq. (24) based on GNSS and KBR
measurements are obtained. What needs to be pointed out is that Allan variance
getting from these equations represents the overall level of the two USOs’ fre-
quency stability. Given two USOs are running independently in two satellites, it can
be estimated that Allan variance of single USO is about half of the two USOs’
relative Allan variance.

Research on the Inversion Method of USO … 9



3 Test and Verification

3.1 Testing System

As shown in Fig. 4, two sets of KBR-GNSS experimental system referenced to
GRACE KBR were self-developed and a ground test system was build accordingly.
KBR-GNSS system consists of K band and L band antenna, RF transceiver that is
used for up-conversion and down-conversion reference signal, USO which pro-
duces local reference frequency and digital signal processing unit which handles
GNSS signal processing and KBR carrier phase extraction. All the tests were
carried out in a special anechoic chamber in order to restrain multipath signal, in
which free signal propagation distance was about 3.5 m. Only 32 GHz microwave
was used because the ground test did not involve the ionosphere calibration. Digital
signal processing unit obtains one-way phase measurements for KBR on one hand
and tracks GNSS navigation signal, generating pseudorange measurements. Then
packaged KBR and GNSS measurements are sent to special testing equipment.
After data preprocessing, precision time-tag acquisition and DOWR arrangement,
biased distance and time difference value between the satellites are, respectively,
got.

3.2 Testing Results

A lot of KBR and GNSS observations were got under the help of the testing system
with the almost constant temperature and pressure environment. Testing results
showed that the precision of the measuring time difference values of two KBR got
from GNSS data was up to 0.1 ns and KBR biased distance precision using
time-tag correction DOWR was better than 10 lm as shown in Fig. 5.

After dealing with the same set of test data using Eq. (22) with (24), respec-
tively, the average frequency stability of individual USO was estimated accord-
ingly. In order to reduce one-way KBR errors apart from error sources caused by

Fig. 4 Experimental system of SST-LL KBR-GNSS
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USO frequency instability as much as possible, several tests kept two KBR-GNSS
systems relatively static, the receiver carrier to noise ratio consistent and environ-
ment temperature basic constant, so that the multipath error, system noise and
ranging system error were kept within the reasonable scope, which was advanta-
geous to accurately assessing the validity of the indirect frequency stability cal-
culation method.

For the same set of test data, Fig. 6 shows the individual USO Allan variance
estimation curve using two calculation methods and measured curve by TSC5115A
cooperated with OSA8607D (10 MHz) for comparison. Allan variance based on
time-tag difference is got by Eq. (22), while Allan variance based on distance and
time-tag joint model is obtained by Eq. (24). Direct measurement curve is the

Fig. 5 KBR range error time
series

Fig. 6 Allan variance results
of indirect calculation and
direct measurement

Research on the Inversion Method of USO … 11



average of the two USO Allan variance using TSC5115A. Figure 6 shows that the
results of two indirect calculation methods are in good consistency and are con-
sistent with the direct measured results.

Figure 7 shows the Allan variance based on Eq. (24) using five different sets of
test data, in which the trend of five indirect calculation results are almost consistent
with slightly difference at the same time point and the average of indirect results is
higher than direct measurements at the same time point.

However, RF transceiver and USO are very sensitive to tiny changes in tem-
perature. Thus, the instability of temperature difference of two KBRs might
introduce offset in phase measurement. In addition, multipath signal and small
ground vibration also had influence on the phase measurement. All these factors
mentioned above were eventually transformed into phase measurement noise of the
short and medium term of KBR, and then influenced Allan variance calculation
results. That is why five indirect calculation results in Fig. 7 are not in full accord.

4 Conclusion

The formula of indirectly calculating relative frequency error of two USOs based on
KBR phase measurement was deduced, and then the equation of relative Allan
variance based on relative frequency error and relative time difference were
obtained, respectively. USO Allan variance was estimated indirectly using KBR
and GNSS data based on two methods and measured directly using standard
instrument. The results of these two ways were compared, showing that the results
were basically identical. If a single comparison was made to two kinds of calcu-
lation methods, it could be seen that the method based on time difference introduced
less errors than the one based on relative frequency error. However, the calculation

Fig. 7 Allan variance
computing results based on
the joint model Eq. (24)
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model of Allan variance presented in this paper can only reflect the overall dis-
tribution of two USOs’ relative frequency stability to a certain extent, but not the
exact frequency stability of a single USO. While, what needs to be known is that for
the data post-processing of KBR data, monitoring the distribution and change trend
of USO frequency stability in a certain period of time has already played a very
significant role in the effectiveness interpretation of payloads data. The research
results of this paper have some reference to the design of inter-satellite ranging
system of Chinese first generation earth gravity exploration satellite.
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Research of Satellite and Ground Time
Synchronization Based on a New
Navigation System

Yang Yang, Yufei Yang, Kun Zheng and Yongjun Jia

Abstract The new navigation time synchronization method is a breakthrough in
existing navigation systems time synchronization accuracy limit, and it is an
effective way to reduce system construction costs. By placing more accurate atomic
clock in GEO satellites, it can synchronize with ground systems and generate time
reference, the GEO satellites can give time to other navigation satellites, the new
system can achieve high-precision time synchronization. This paper designs the
navigation constellation of the new satellite navigation system, and configures the
satellite clocks, simulates all kinds of constellation time synchronization precision,
and educes the satellite clock configure scheme in the new navigation system.

Keywords Navigation system � Time synchronization � Satellite clock

1 Introduction

Satellite navigation systems have been widely used in military and civilian aspects
of various countries and have achieved great benefits. But still there are various
disadvantages in navigation system, as the number of existing satellite onboard
atomic clocks demands more and high costs [1, 2]. Therefore, the use of new atomic
clock design, to explore new satellite clock configuration is an effective way to
reduce system construction costs.

The new time synchronization method is essentially a kind of satellite-ground,
inter-satellite system operation control concept: it contains GEO satellites con-
stellation and high accurate atomic clock; its time reference is generated by the
GEO satellites and the system Control Segment Operational; it mainly relies on
the OCS to do the centralized satellite-ground and inter-satellite measurement
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processing; it depends on the inter-satellite link to update the ephemeris, and to
shorten the data age. So, non-GEO satellite of the navigation constellation can use
reasonable algorithm, high-precision satellite-ground and inter-satellite link, and the
configuration of the ultra-stable crystal oscillator, to achieve a high precision with
low construction cost.

2 The New Time Synchronization Plan

Under the new system time synchronization plan involved basic navigation con-
stellations and star clock design, the link design, and time synchronization plan.

This system needs GEO satellite to provide time service, so the constellation
must contain GEO satellites. For new time synchronization system, GEO satellites
use more accurate onboard atomic clock which builds a time reference together with
the OCS clock [3]. This paper takes two types of optical clocks and hydrogen
atomic clock as a time reference installed on the GEO satellite, and non-GEO
satellites use ordinary onboard atomic clock or ultra-stable crystal oscillator. The
new time synchronization system involves satellite-ground link and inter-satellite
link. Inter-satellite link contains timing link between GEO and non-GEO satellite
and time synchronization link between non-GEO satellites. The new time syn-
chronization method contains that: non-GEO satellites-ground link use satellite time
and frequency transfer method; inter-satellite link use inter-satellite two-way time
and frequency transfer method; GEO satellite-ground link use both satellite laser
ranging and two-way time and frequency transfer method; OCS and each time
synchronization stations use both satellite two-way time and frequency method and
satellite common-view method.

3 Time Synchronization Measurement Model

The satellite-ground microwave observation model can be expressed as [4]:

q0 ¼ qþ c � DtS � DtRð ÞþDqion þDqtro þDqrel þDqscc þDqant þDqml þ e ð1Þ

In this formula, q0 is microwave observation value, q is the true distance from the
ground station to the satellite; c is the light speed,DtS is satellite clock error, andDtR is
ground station clock error;Dqion is ionospheric delay error,Dqtro is tropospheric delay
error; Dqrel is relative delay error; Dqscc is satellite centroid compensation correction;
Dqant is antenna phase center error; Dqml is multipath effect; e is pseudo range
observation noise.

The satellite-ground laser observation model
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The observation model of the satellite-ground laser ranging can be expressed as:

q0 ¼ qþDqtro þDqrel þDqscc þDqec þDqant þDqml þ e ð2Þ

In this formula, q0 is laser observation value. q is the true distance from the laser
station to the satellite; Dqtro is tropospheric delay error; Dqrel is relative delay error;
Dqscc satellite centroid compensation correction; Dqec is station coordinate cor-
rection; Dqant is antenna phase center error; Dqml is multipath effect; e is laser
observation noise.

Two-way measurement equation

The two-way measurement equation can be obtained from the single direction
measurement equation of satellite-ground and inter-satellite.

�qij ¼ dþ c � dti � c � dtj þ nij
�qji ¼ dþ c � dtj � c � dti þ nji

�
ð3Þ

In this formula, �qij and nij are pseudorange (microwave, laser) and measurement
noise from point Si to Sj; �qji and nji are corrected pseudorange (microwave, laser)
and measurement noise from satellite Si to Sj; dti and dtj are clock error Si and Sj. c
is the light speed and d stands for distance between Si and Sj, as below:

d ¼ ½ðxi � xjÞ2 þðyi � yjÞ2 þðzi � zjÞ2�1=2:

4 Satellite Clock Modeling and Time
Synchronization Algorithm

The atomic clock used in the satellite navigation system contains system change and
random error. Atomic clock error may be expressed as the difference between the
instantaneous clock time and the standard time xðtÞ. Choose quadratic polynomial
model as clock error model

xðtÞ ¼ a0 þ a1ðt � t0Þþ 1
2
a2ðt � t0Þ2 þ exðtÞ ð4Þ

In this formula, a0 is the initial phase(time) deviation, a1 is the initial deviation
of the atomic clock frequency, and a2 is linear frequency drift rate; exðtÞ is the
random variation component of clock deviation caused by clock noise; t0 is the
reference time. The step of time synchronization process is as follows: observation
data pretreatment, parameters priori information determination, initial clock error
calculation, time estimation matrix building, residual edit, and iteration [5].

Research of Satellite and Ground Time Synchronization … 17



5 Simulation and Results Analysis

5.1 Atomic Clock and Clock Data Simulation

Allan variance is the most common expression of frequency stability, which depends
on the length of time stability, and is divided into short-term frequency and long-term
stability. Although the definition of short-term stability and long-term frequency
stability is same, they reflect different aspects of signal stability characteristics.
Measurement of short-term frequency stability in the time domain is very difficult, or
even impossible, but at the same time it is easier to measure in the frequency domain.
So, short-term frequency stability measurement can be converted into a time domain
phase noise, so as to get the short-term time domain stability indirectly. Phase noise
theory and statistical thin phase noise of time domain and frequency domain Allan
variance are equivalent. If got the conversion relationship between them, the amount
of each physical characterization can be then revealed. This paper use Allan variance
as the satellite clock error calculation model.

When calculating the simulation, noise as above is generated by the white noise,
and relevant noise generation process is as follows [6]:

yWP
i ¼ ryWPðsÞ � ðrandi � randi�1ÞyWF

i ¼ ryWFðsÞ �
ffiffiffi
3

p
� randi

yRWi ¼ yRWi�1 þ ryRWðsÞ � 3 � randi
yFFi ¼ ryFFðsÞ �

ffiffiffi
5

p
� ½i�2=3rand1 þði� 1Þ�2=3rand2 þði� 2Þ�2=3rand3 þ � � � þ randi�

In this formula, randi �Nð0; 1Þ, N is the number of sampling points.
Atomic clock error is calculated by the following formula:

xi ¼ xi�1 þ sðyWP
i þ yWF

i þ yFFi þ yRWi Þ i ¼ 1; 2; . . .N ð5Þ

5.2 Simulation of Ultra-Stable Oscillator Data

Crystal error is more complex, so there is no proper mathematical model yet. Since
there is no direct ultra-stable oscillator laboratory results, this paper uses Allan
variance provided by ACES. Inverse the main Allan variance noise component, and
put them together (Table 1).

Table 1 ACES ultra-stable crystal oscillator (USO) Allan variance with interval

Measurement interval (s) 1 2 4 10 20

Sigma 1.49e−13 1.26e−13 1.00e−13 8.82e−14 8.88e−14

Interval (s) 40 100 200 400 1000

Sigma 9.67e−14 1.23e−13 1.30e−13 1.20e−13 2.25 e−13
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With the condition of knowing Allan variance value of five typical time interval
s, h�2, h�1, h0, h1, h2 can be calculated; knowing more than five Allan variance
value, it can be calculated by least squares method, and then calculate any corre-
sponding Allan variance (Table 2).

Because the random walk, frequency flicker noise, frequency white noise, flicker
phase noise, and phase noise are independent random processes, after separated
apart, five noises can use its own characteristic to inverse error sequences.

You can utilize these five separate noises respective characteristics, separated
these noises and inversion error sequence, the formula shows in Eq. (5).

5.3 Simulation Conditions

In this paper, navigation constellation consists of MEO, GEO, and IGSO numbered
1–35, of which No. 1–27 is MEO satellites, No. 28–30 is IGSO satellite, and
No. 31–35 is GEO satellite. Inter-satellite link error is set to 0.1 m (1r).
Satellite-ground link error is analyzed in two ways: Microwave satellite-ground
microwave link error is 1.2 m (1r); Laser microwave link error is 0.1 m (1r).

There are five domestic time synchronization stations, whose minimum eleva-
tion observations are 5°. The simulation period is 7 days. Onboard satellite clock
error, initial onboard clock error rX0 , and covariance matrix PX0 of hydrogen maser,
rubidium and cesium clock, optical clocks, ultra-stable oscillator is as [7, 8].

The simulation program is in Table 3.

Table 2 Calculated Allan
variance of noise figure

h�2 h�1 h0 h1 h2
1.00e−13 8.82e−14 8.88e−14 9.67e−14 1.23e−13

Table 3 Simulation algorithm design

Scenario Station GEO Non-GEO Measurement

I Hydrogen Cesium Rubidium/Cesium Microwave satellite-ground
link + Ka inter-satellite links

II Optical Optical Rubidium + Cesium Microwave satellite-ground
link + Ka inter-satellite links

III Optical Optical Ultra-stable
oscillator

Microwave and laser joint
satellite-ground link + Ka
inter-satellite link

IV Optical Hydrogen Rubidium + Cesium Microwave and laser joint
satellite-ground link + Ka
inter-satellite link

V Optical Hydrogen Ultra-stable
oscillator

Microwave and laser joint
satellite-ground link + Ka
inter-satellite link
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5.4 Simulation Results Analysis

Figures 1 and 2 are traditional satellite time synchronization error statistics.
Without navigation constellation two-way filtering time synchronization, or entire
constellation drift time, which maximum drift is about 7 ns, the introduction of
inter-satellite links increased redundancy observations to help improve the time
synchronization accuracy, to keep constellation drift within 0.65 ns in simulation
conditions.

Fig. 1 Option I: constellation
time drift error

Fig. 2 Option I: constellation
drift and satellite time
synchronization error
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Figures 3 and 4 are atomic clock + atomic clock(rubidium, cesium). Due to the
GEO satellite uses a high-precision optical clocks, the simulation use laser and
microwave joint satellite-ground link to take place traditional satellite-ground link;
the clock of ground station is optical clock; GEO equipped with optical atomic
clock; GEO onboard clock does not participate in time synchronization between
non-GEO satellites, and only do time synchronization with ground stations to keep
time reference. The time reference in this paper is time reference in navigation
system with respect to UTC, not taking the establishment of optical clocks to
improve the accuracy of UTC time in consideration. Figure 3 shows that the
average constellation time (the constellation drift) and constellations time syn-
chronization accuracy with respect to the traditional model has greatly improved.

Fig. 3 Option II:
constellation drift and satellite
time synchronization error

Fig. 4 Option II:
constellation time drift error
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At a given simulation conditions, the constellation average time is below 0.06 ns,
time synchronization accuracy is below 0.14 ns, non-filtering time synchronization
under the same conditions as a whole constellation of synchronization drift reached
7 ns (Fig. 4).

Figures 5 and 6 are the time synchronization accuracy of new optical atomic
clock + ultra-stable oscillator clock. Ultra-stable oscillator has a good short-term
stability but a poor long stability. Without two-way time synchronization, the whole
constellation time shift is about 140 ns (Fig. 6), much larger than the drift of
rubidium and cesium clock (Fig. 4). However, when added microwave and laser
joint satellite-ground link, the average constellation time (the constellation drift)
accuracy is about 0.0488 ns (Fig. 5). Which is slightly better than optical II.

Fig. 5 Option III:
constellation drift and satellite
time synchronization error

Fig. 6 Option III:
constellation time drift error
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Figures 7 and 8 are the time synchronization accuracy of new hydrogen atomic
clock + atomic clock(rubidium, cesium). As can be seen from Fig. 7, the average
constellation two-way filtering time accuracy is 0.06 ns, time synchronization
accuracy is 0.13 ns, and the average two-way filtering time is considerable with
option II and III. The time synchronization accuracy of each satellite is lower than
option II and III (Fig. 8).

Figures 9 and 10 are the time synchronization accuracy of new hydrogen atomic
clock + ultra-stable oscillator clock. GEO is equipped with hydrogen atomic clock;
other satellite clock uses ultra-stable oscillator clock. It can be concluded that the
overall constellation time drift is about 0.05 ns, time synchronization accuracy is
0.128 ns (Fig. 9). Under the given simulation condition, the accuracy is slightly

Fig. 7 Option IV:
constellation drift and satellite
time synchronization error

Fig. 8 Option IV:
constellation time drift error

Research of Satellite and Ground Time Synchronization … 23



better than option IV (Fig. 10). The time synchronization accuracy is slightly better
than the option IV too.

5.5 In Conclusion

The present problem of onboard atomic clock frequency drift, accuracy will be
getting worse with time. In this paper, simulation results show that:

The new time synchronization method can greatly improve the time synchro-
nization accuracy.

Fig. 9 Option V:
constellation drift and satellite
time synchronization error

Fig. 10 Option V:
constellation time drift error
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In the new satellite and ground joint batch processing mode, the accuracy of
hydrogen atomic clock and atomic clock on the GEO satellite is at the same orders
of magnitude. This is because: when the satellite and ground joint estimation, all
observations is transform to the same epoch, and the overall network adjustment
make full use of observation information, in order to improve time synchronization
accuracy. When the satellite and ground joint estimation, time synchronization
accuracy depends on the satellite, the inter-satellite link precision, and algorithms.
When GEO is equipped with optical atomic clock, its stability is about
1:25� 10�12 s, the stability of hydrogenatomic clock is about 6:25� 10�11. In the
simulation, the satellite-ground link accuracy is about 0.1 m, and the time syn-
chronization error is about 3� 10�10 s, the noise of satellite-ground link drowned
GEO onboard clock performance, so with respect of satellite and ground joint entire
network time synchronization, the accuracy of optical atomic clock and hydrogen
atomic clock on the GEO satellite is at the same orders of magnitude.

Under the condition of new method, the ultra-stable oscillator can replace
rubidium, cesium clock as onboard atomic clock of non-GEO satellites.
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Performance Evaluation of the Beidou
Satellite Clock and Prediction Analysis
of Satellite Clock Bias

Xueqing Xu, Shanshi Zhou, Si Shi, Xiaogong Hu and Yonghong Zhou

Abstract Satellite clock bias (SCB) is provided by the in orbit atomic clock, which
is the key to satellite navigation system. First, the time reference of the satellite
navigation system is realized by the SCB, and the SCB prediction accuracy will
also affect the positioning accuracy of real-time navigation users. With the devel-
opment of our Beidou satellite navigation system (BDS), the performance
requirement of the satellite clock and accuracy requirement of the SCB prediction
are higher and higher. This paper will study on performance evaluation of BDS
atomic clock and the prediction analysis of SCB series exclusively. In order to show
the results objectively and effectively, we select two data processing centers of the
GeoForschungsZentrum Potsdam (GBM), and SHAO Analysis Center (SHA), to
obtain the same time BDS clock bias sequence as the base data, for a comparative
analysis. First, the performance of the atomic clock is evaluated by statistics of the
Allen variance. Meanwhile, we establish the model for each SCB sequence
according to the characteristic of the atomic clock, by using a combined method of
least squares and autoregressive model (LS+AR), to predict and assess the SCB
with root mean square error (RMS). Results show that the performance of BDS in
orbit atomic clock is stable, with the day stability in the order of 10−14; And the
atomic clock performance is related to the SCB prediction accuracy, that is shown
as better performance with higher prediction accuracy; Mean while the LS+AR
model predict SCB series based on the performance of different atomic clocks,
which can improve the SCB prediction accuracy effectively.
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Keywords Atomic clock performance � Allen variance � SCB prediction � Least
squares � Autoregressive model

1 Introduction

BeiDou Navigation Satellite System (BDS) is a global satellite positioning and
communication system developed by China, which contains three departments of
the space part, the ground part, and the customer part, and can provide the users
with high precision and reliable positioning, navigation and timing services globally
and all-weather, and has a short message communication ability. Now the BDS can
provide regional navigation, positioning, and timing services. The space constel-
lation of BDS consists of 14 satellites, and each satellite is equipped with four high
performance rubidium atomic clocks, one of them is as a measurement of time, and
the rest are standby as the spare. The error sources which influence the accuracy of
satellite orbit determination are mainly derived from the orbit and satellite clock.
The performance of atomic clock has a direct impact on the accuracy of satellite
clock bias (SCB) observations and predictions, which will affect the accuracy of
satellite orbit determination [4, 12]. The performance of in orbit atomic clock
maybe changed with the variation of space environment, in order to effectively
control the characteristic of atomic clock (stability), it is important to evaluate the
performance of the in orbit satellite clock.

The SCB reliable prediction is also important for satellite navigation, especially
for orbit determination of the autonomous navigation satellite. During the space
running period, if satellite gets into the arcs that cannot be observed by ground
stations, then the atomic clock cannot be compared to the ground time reference.
The synchronization between satellite clock and the system time should be main-
tained by satellite clock itself, which is the prediction of SCB. While the prediction
accuracy of SCB is affected by the physical characteristics of atomic clock, which is
the performance of in orbit satellite clock mentioned above, but also related with the
prediction method [7, 9]. Now the mostly used forecasting models about the SCB
are: (1) the linear model (LM) [3, 13], (2) the quadratic polynomial model
(QPM) [5, 6]. These prediction methods are simple and suitable for prediction of
the regular terms in SCB series, which is the part that can be expressed by quadratic
polynomial or periodic function, while ignoring the prediction of the irregular part
that cannot be directly expressed by the fitting model, and the SCB prediction
accuracy will be restricted.

Considering the points above, this paper selects the two data processing centers
of GeoForschungsZentrum Potsdam (GBM), and the Shanghai Observatory Data
Analysis Center (SHA), and gets the same time BDS clock sequence as the base
data. First, the performance of the atomic clock is evaluated by statistics of the
Allen variance. On the other hand, we investigate a combined method of least
squares and auto regression model (abbreviated as LS+AR), to establish the model
for each SCB sequence according to the characteristic of the atomic clock,
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and predict the SCB sequences with prediction accuracy assessment by root mean
square error (RMS), which draw lessons from our mature experience in the Earth
Orientation Parameters (EOP) forecasting [10, 11].

2 Models

In this work, we first analyze the different SCB data series of two processing centers,
with the Allen variance to evaluate the frequency stability of the Beidou satellite
atomic clock. Construct a fitting model that mainly contains quadratic term and
periodic terms, to separate the regular and irregular terms in SCB sequence, then the
fitting model is used for prediction of SCB regular terms, and an AR (p) model is
selected as the prediction model for SCB irregular terms. The principles of Allen
variance for performance evaluation, fitting models, and AR (p) model are briefly
described as follows.

2.1 Performance Evaluation

The stability of atomic clock frequency is a key factor of the real-time positioning
performance, and Allen variance is generally used to evaluate the frequency sta-
bility. Allen variance, which is also known as the double sampling variance, and at
first was used to analyze the phase and frequency instability of the oscillator, and
then was defined as the common frequency stability analysis method by IEEE
standard [8]. Here we select the Allen variance to evaluate the frequency stability of
atomic clock, the standard Allen variance is defined as:

r2yðsÞ ¼
1

2ðM0 � 1Þ
XM0�1

k¼1

ð�ykþ 1 � �ykÞ2; ð1Þ

where

�yk ¼ xðtk þ sÞ � xðtkÞ
s

: ð2Þ

where xðtkÞðtk ¼ 1; 2; . . .;NÞ is SCB series, �ykðk ¼ 1; 2; . . .;NÞ is the average
fractional frequency over a specified interval of interest s, s is the sample interval.
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2.2 Prediction Model for Regular Terms

Because of the different characteristic of the atomic clock, we construct different
fitting models to separate the regular and irregular parts in SCB sequence. For the
fitting model, we first identify the main periods of SCB sequence by the spectral
analysis method, and then establish the model mainly contains the constant term,
linear term, quadratic term, and periodic terms, where the main periods in the SCB
sequence are 1 week, 24, 12, and 6 h [8]. The fitting model is expressed as,

Yt ¼ a0 þ a1tþ a2t
2 þ

X4
k¼1

bk sinð2pt=Pk þ/kÞþ et ð3Þ

where, a0 is the constant term, a1 is the linear coefficient, a2 is the quadratic
coefficient, t is time, Pk , bk and /k are period signals, amplitude, and phase of
periodic signals in satellite clock errors sequence, and et is the noise.

After the regular and irregular parts in SCB sequence are isolated by fitting the
clock error sequences, the fitting model is then used as the prediction model of the
SCB irregular terms. According to the principle of least squares, the predictions of
the SCB regular terms can be extrapolated by the fitted model coefficients above.

2.3 Prediction Model for Irregular Terms

The SCB regular terms can be extrapolated by the fitting model smoothly, while the
irregular parts in the SCB series are difficult to predict by a simple fitting model,
which should be derived by other methods, here we select the classical autore-
gressive model (AR model). For a stationary random sequence ztðt ¼ 1; 2; . . .;NÞ,
the p order of AR model (AR(p)) is expressed as follows,

zt ¼
Xp
i¼1

uizt�i þ at: ð4Þ

where, a is zero-mean white noise, p is order of the model, u1;u2; . . .;up are
autoregressive coefficients.

We adopt the final prediction error criterion (FPE) to identify the order p of AR
model for each forecasting step, which corresponds to the smallest FPE [1]. The
coefficients can be obtained for solving the Yule-Walker equations by means of the
Burg recursion [2] method. Based on the above methods, the AR (p) model can
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be updated for each forecasting step, and the new AR (p) model is more reasonable
and accurate.

FPEðpÞ ¼ PpðNþ pþ 1Þ=ðN � p� 1Þ; ð5Þ

Pp ¼ 1=ðN � pÞ
XN

t¼pþ 1

zt �
Xp
j¼1

ujzt�j

 !2

: ð6Þ

where, N is the number of the data sequence ztðt ¼ 1; 2; . . .;NÞ, Pp is the rest mean
square error.

3 Calculation Example

At present, there are 14 working satellites in the BDS network, forming a regional
navigation and positioning system. This network includes five geostationary
satellites (GEO, C01–C05), four middle orbit altitude satellites (MEO, C06–C09),
and five periodic tilted earth synchronous orbit satellites (IGSO, C10–C14). Among
them, the C13 satellite does not work temporarily, which is unable to obtain the
SCB data, and is not included in this article.

This work employs the SCB sequence from the two data analysis center GBM
and SHA. First the Allen variance was carried out, to comparatively analyze the
frequency stability of BDS atomic clock in different time scales; and then used a
combined LS+AR method for SCB short term forecasting, the prediction accuracy
verification is obtained by comparing the model predicted values with clock bias
data, where the prediction spans are mainly selected as 2, 6, and 12 h.

3.1 Prediction Error Estimates

For the estimation of SCB prediction accuracy, we select the root mean squared
error (RMS) as the indicator.

RMSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

pij � oij
� �2vuut ð7Þ

where, o is the SCB observations, p is the SCB predictions, i is the prediction
interval, n is the number of total predictions.
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3.2 Result Analysis

Allen variance of the SCB sequences is first calculated to evaluate stability of the
BDS atomic clocks on different scales, and the results were counted in Table 1. In
order to intuitively show the stability of the BDS satellite clock presented by two
different processing centers, the representative C01 satellite with continuous and
complete SCB data is selected as an example, whose Allan variance results on
different time scales are plotted in Fig. 1.

For the SCB sequences of two processing centers, 200 predictions are made by
means of LS+AR method, with prediction interval of 2, 6, and 12 h, and the mean
square error (RMS) is calculated and listed in Table 2, the unit is nanoseconds (ns).
In order to show the trend of the forecast error with time increasing, the C01
satellite is also selected as an example, whose 12 h SCB prediction errors in future
of the two processing centers are plotted in Fig. 2.

Table 1 Statistics about the Satellite clock stability of processing center GBM and SHA

Sat/Allen variance GBM SHA

100,000 s 1,000,000 s 100,000 s 100,0000 s

C01 1.354e−13 1.317e−14 6.865e−14 1.323e−14

C02 2.863e−13 4.546e−14 2.124e−13 3.098e−14

C03 1.175e−13 3.352e−14 1.105e−13 2.125e−14

C04 1.052e−13 2.708e−14 7.388e−14 2.913e−14

C05 1.104e−13 3.248e−14 8.102e−14 1.743e−14

C06 1.981e−13 4.314e−14 2.321e−13 3.805e−14

C07 9.015e−14 2.682e−14 7.955e−14 2.213e−14

C08 1.969e−13 3.921e−14 2.098e−13 4.336e−14

C09 1.207e−13 3.457e−14 9.478e−14 3.304e−14

C10 1.940e−13 4.603e−14 2.013e−13 4.046e−14

C11 1.545e−13 3.143e−14 1.285e−13 3.502e−14

C12 1.031e−13 3.047e−14 8.145e−14 3.206e−14

C14 9.389e−14 2.985e−14 9.069e−14 3.085e−14

Fig. 1 Satellite clock
stability comparison of
different time scales of GBM
and SHA C01
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Some conclusions can be obtained from the above charts and figures:

(1) we can get some information from Table 1 and Fig. 1, with comparative
analysis about the SCB Allan variance of two data processing center, that the
current BDS in orbit satellite atomic clock frequency stability is consistent,
which is 10−13 to 10−14 at one hundred thousand second, and 10−14 at 1 day.

(2) the SCB predictions of two data processing centers are calculated by using the
combined least squares and regression model (LS+AR), the prediction error
estimation results in Table 2 and Fig. 2, show that the prediction accuracy
performance of satellite C02, C08, C06, and C10 is inferior slightly, mainly
due to the quality of the satellite clock itself, while the others present a high
prediction accuracy, with 2 h of lower than 1 ns, 6 h of about 2 ns, and 12 h
of about 5 ns.

(3) combined the results in Table 1 with Table 2, we find that the satellite (C02,
C06, C08, and C10) with poor performance of SCB prediction accuracy,

Table 2 Statistics about the Satellite clock prediction error of processing center GBM and SHA

Sat/RMS GBM SHA

2 h/ns 6 h/ns 12 h/ns 2 h/ns 6 h/ns 12 h/ns

C01 0.447 1.194 2.582 0.383 0.976 2.109

C02 1.315 3.975 8.977 1.454 4.724 9.287

C03 0.473 2.003 4.407 0.538 2.334 4.696

C04 0.872 2.740 5.897 0.651 2.603 5.198

C05 0.509 1.813 3.415 0.524 1.798 3.271

C06 0.809 3.041 6.524 1.108 3.201 6.754

C07 0.516 1.605 3.245 0.665 1.974 4.031

C08 1.024 3.254 7.479 1.113 4.025 8.492

C09 0.912 1.831 3.858 0.592 1.404 3.517

C10 0.893 3.126 7.273 1.152 3.478 7.972

C11 0.539 1.569 5.102 0.471 1.762 5.119

C12 0.563 1.724 5.756 0.547 1.895 5.937

C14 0.889 3.062 5.698 0.745 2.759 5.477

Fig. 2 Satellite clock 12 h
prediction error comparison
of GBM and SHA C01
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whose frequency stability of atomic clock is relatively poor, which shows that
the stability of the satellite atomic clock will affect the prediction accuracy of
the SCB, it further shows that the LS+AR method is effective and necessary by
modeling and forecasting the SCB series for each satellite.

4 Conclusion

In this study, the BDS SCB data were obtained from two data processing centers of
GBM and SHA. The Allen variance is first listed for comparison analysis on the
frequency stability of different satellite atomic clocks. Then we perform the mod-
eling of the SCB sequence for each satellite, by means of LS+AR method, to
separate the SCB regular and irregular terms, and their predictions is carried out
respectively. Then the prediction accuracy is obtained by comparing the model
predicted values with original data.

Here are some conclusions: first, the frequency stability of the BDS in orbit
satellite atomic clock shows consistent performance, with 10−13 to 10−14 at one
hundred thousand second, and 10−14 at 1 day. Second, the mostly BDS SCB series
present a high prediction accuracy, with 2 h of lower than 1 ns, 6 h of about 2 ns,
and 12 h of about 5 ns. At the same time, the stability of the satellite atomic clock
will affect the prediction accuracy of the SCB, which is shown as better stability
performance with higher prediction accuracy relatively. This study uses the LS+AR
model to establish the model of the SCB sequence for each satellite, and forecast
the SCB regular and irregular terms, respectively, which avoids the problem that
error accumulation increases sharply with the increase of the forecast span, in the
simple quadratic prediction model,and improve the SCB prediction accuracy
remarkably.
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Relative Navigation for LEO Spacecraft
Using Beidou-2 Regional Navigation
System

Leizheng Shu and Wenbin Wang

Abstract LEO spacecraft relative navigation method based on Beidou measurement
is researched. A series of tri-frequency combinations have been investigated with the
purpose to improve the success rate of double-difference carrier phase ambiguity
fixing and relative navigation accuracy. The process algorithms for two kinds of
approaches, the kinematic relative navigation approach, and dynamic relative navi-
gation approach, are investigated. The ambiguity fixing performance and relative
navigation accuracy are validated using the simulated Beidou-2 regional navigation
system scenario. The results showed that the single frequency and wide-lane com-
bination ambiguity fixed rate drops rapidly with increasing baseline length, but S0
ultra-wide-lane combination ambiguity can be 100 % accurately resolved under three
different baseline lengths. Concern the relative navigation accuracy, single frequency
carrier phase especially B1 carrier phase relative positioning accuracy is highest for
short baseline. With the increase of baseline length, the advantage of Beidou
multi-frequency ionospheric-free combination gradually revealed: when the baseline
length increased to 220 km, the relative positioning accuracy of ionospheric-free
combination can increase by 75 % at most.
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1 Introduction

GNSS-based spacecraft relative navigation is one of the most important technolo-
gies for on-orbit service and formation flying missions. At present, most of the
in-orbit LEO spacecraft relative navigation depends on the GPS system. 1998,
Japan’s space agency (NASDA) demonstrated the GPS-based relative navigation
technology for the first time in the ETS-VII mission [1]. German DLR and NASA
launched the GRACE (Gravity Recovery and Climate Experiment) mission in
2002, which turns out to be the representation of the relative navigation research,
see [2]. Kores et el. [3] adopted the dual-frequency GPS P code pseudorange and
carrier phase observations in the reduced dynamic EKF filter to achieve the mm and
mu m/s level of accuracy for relative position and velocity, respectively. In recent
years, the successful in-orbit implementation of GPS-based relative navigation
technology includes: Orbital Express [4] in 2007, PRISMA [5], and
TanDEM-X/TerraSAR-X [6] in 2010. In October 2012, China’s SJ-9 (Shi Jian-9
Formation Flight Mission) technology demonstration satellites were launched to
perform the high precision GPS baseline measurement test [7].

China has launched the plan to expand its Beidou navigation system from the
regional operation to global navigation system [8]. To research spacecraft relative
navigation technology based on Beidou system is of great significance to improve
the accuracy of orbit relative navigation, to enhance the safety of China’s space
mission autonomy and to extend the application of Beidou in space. Two kinds of
Beidou-based LEO spacecraft relative navigation approaches, the kinematic relative
navigation approach and dynamic relative navigation approach, are investigated in
this article. A series of tri-frequency combinations have been investigated with the
purpose to improve the success rate of double-difference carrier phase ambiguity
fixing and relative navigation accuracy. The ambiguity fixing performance and
relative navigation accuracy are validated using the simulated scenario.

2 Beidou Satellite System and Observation

2.1 Beidou Satellite

The Chinese Beidou navigation system is being gradually perfected in construction.
A constellation composed of five geostationary Earth orbit (GEO) satellites, five
inclined geosynchronous orbit (IGSO) satellites, and four Medium Earth orbit
(MEO) satellites has been deployed by 2012 for providing regional navigation
service.

By the end of 2020, China will complete the Beidou navigation satellite con-
stellation, which consists offive GEO, three IGSO, and 27MEO satellites. The MEO
satellites will offer complete global coverage, similar to the GPS and GLONASS.
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The IGSO and GEO satellites will improve the visibility and availability for users in
China and neighboring regions. The GEO satellites are operating in orbit at an
altitude of 35,786 km and positioned at 58.75°E, 80°E, 110.5°E, 140°E, and 160°E,
respectively. The MEO satellites are operating in orbit at an altitude of 21,528 km
and an inclination of 55° to the equatorial plane. The IGSO satellites are operating in
orbit at an altitude of 35,786 km and an inclination of 55° to the equatorial plane [8].

2.2 Beidou Tri-frequency Observation

Beidou system provides three frequency signal, namely, B1, B2, and B3. Taking
consideration of the following double-differenced carrier phase measurement
equation:

/i½m� ¼ qþ kiNi � f1
fi

� �2

I1 ð1Þ

where /i is the double-differenced phase measurement in meters; q is the
double-differenced geometrical term which indicates the geometrical distance
between receiver and Beidou satellite; ki is the wavelength in meters; Ni is the
integer ambiguity; I1 is the ionospheric delay on B1 in meters; and i is the frequency
index.

For any integer coefficients i1, i2, and i3, the linear combination which preserves
the integer nature of the ambiguities is denoted as:

u½cy� ¼ i1u1½cy� þ i2u2½cy� þ i3u3½cy� ð2Þ

By substituting Eq. (1) into Eq. (2) with consideration of the relation: /i [cy] = /i

[m]/ki, one can show that this combination expressed in cycles:

u½cy� ¼ q

,
1

i1
k1
þ i2

k2
þ i3

k3

þði1N1 þ i2N2 þ i3N3Þ

� ði1k1 þ i2k2 þ i3k3
k21

ÞI1
ð3Þ

The resulting integer ambiguity N = N(i1, i2, i3), and the frequency f = f(i1, i2, i3) of
this combination correspond to:

Nði1; i2; i3Þ ¼ i1N1 þ i2N2 þ i3N3 ð4Þ

f ði1; i2; i3Þ ¼ i1f1 þ i2f2 þ i3f3 ¼ f0ði1k1 þ i2k2 þ i3k3Þ ð5Þ
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According to Cocard’s definition, see [9], k = i1k1 + i2k2 + i3k3 is called the lane
number, which uniquely defines the wavelength of every combination, regardless of
any other properties of that combination. For Beidou system, k1=763, k2=620,
k3=590, corresponding to the frequency of B1, B3, and B2, respectively. The
combination wavelength can be written as:

kði1; i2; i3Þ ¼ c=kf0 ð6Þ

where base frequency f0 = 2.046 MHz. We define the wide-lane combination as the
resulting wavelength larger than the largest of the three base wavelengths, among
which the ultra-wide-lane combinations are those with resulting wavelength larger
than 2.93 m; the narrow-lane combinations are those with the resulting wavelength
smaller than the smallest base wavelength.

If we assume that the noise on all three frequencies expressed in cycles is the
same for all the phase measurements, a noise amplification factor n, with respect to
cycles, corresponding to

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i21 þ i22 þ i23

q
ð7Þ

Taking the first-order ionospheric delay to be inversely proportional to the square of
the frequency, we can derive the ionospheric delay amplification factor with respect
to B1, q (in units of cycle), and j (in units of meter) as:

q ¼ 1
k1

ði1k1 þ i2k2 þ i3k3Þ ð8Þ

jði1; i2; i3Þ ¼ i1k1 þ i2k2 þ i3k3
k21

 !
� kði1; i2; i3Þ ð9Þ

Table 1 summarizes potentially interesting combinations and their relevant features.
We regrouped all the possible combinations based on the sum s of i1, i2, and i3.

An investigation of Table 1 leads to the following conclusions:

1. S0 region collects wide-lane and ultra-wide-lane combinations, which corre-
sponds to large wavelength with a low ionospheric sensitivity.

2. S1a includes the combinations with the coefficient sum of 1 and small lane
number. In this region, the wavelength is larger than 2.93 m, but the ionospheric
amplification factor is about 2.3 with respect to cycles. If one considers the
amplification factor j with respect to meters, one obtains huge values since the
wavelengths are large in this region.

3. S1b includes the combinations with the coefficient sum of 1 and large lane
number. In this region, the wavelengths are about 10–12 cm, but they are
insensitive to the ionosphere.
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3 LEO Spacecraft Relative Navigation

Generally there are two kinds of method to implement the carrier differenced
Beidou-based relative navigation: kinematic approach and (reduced) dynamic
approach.

3.1 Recursive Least-Squares Kinematic Approach

The kinematic approach does not involve any satellite force models at all, and
epoch-by-epoch relative positions are computed in purely kinematic mode by
processing differential Beidou carrier phase measurements as the main observables.

The kinematic approach mainly implements least squares (LSQ) estimator to
solve the ambiguity and the relative position parameters. Least square method can
solve the single epoch ambiguity float solution and its covariance matrix, and then
employ the LAMBDA method (see [10]) to search for integer solutions. But
experiment results show that the single epoch ambiguity fixing success rate is not
high, especially when observation noise is high and baseline length is large.

It should be noted that the ambiguities vector is constant in the absence of cycle
slips or satellites setting and rising, thus it is possible to obtain a much improved
float solution by carrying information from one epoch to the consecutive one. To
implement this, a recursive LSQ estimator is developed to process the ambiguity
estimate sequentially one epoch at a time. Figure 1 illustrates the algorithm flow

Table 1 Feature statistics of Beidou tri-frequency combination

Region k (i1, i2, i3) k(m) n q j

S0 23 (1, −5, 4) 6.3707 6.4807 0.0197 0.6535

30 (0, 1, −1) 4.8842 1.4142 −0.0626 −1.5921

43 (1, −4, 3) 2.7646 5.0990 −0.0429 −0.6176

143 (1, −1, 0) 1.0247 1.4142 −0.2306 −1.2304

173 (1, 0, −1) 0.8470 1.4142 −0.2932 −1.2931

S1a 2 (−6, 15, −8) 73.2631 18.0278 2.1139 806.4319

11 (−3, −2, 6) 13.3206 7 2.2980 159.3939

18 (−4, 4, 1) 8.1403 5.7446 2.2158 93.9224

41 (−3, −1, 5) 3.5738 5.9161 2.2355 41.6009

48 (−3, −1, 5) 3.0526 6.4031 2.1532 34.2257

S1b 1252 (4, −1, −2) 0.1170 4.5826 0.1829 0.1114

1282 (4, 0, −3) 0.1143 5 0.1203 0.0716

1312 (4, 1, −4) 0.1117 5.7446 0.0578 0.0336

1425 (5, −1, −3) 0.1028 5.9161 −0.1103 −0.0590

1455 (5, 0, −4) 0.1007 6.4031 −0.1729 −0.0907
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chart of the recursive LSQ procedure: a posteriori ambiguity float solution at the
previous epoch is exploited as a pseudo-measurement and passed forward to the
functional model of the current epoch for improving the float estimates.

3.2 Reduced Dynamic Approach

The basic principle of reduced dynamic approach is: the spacecraft relative dynamic
model is first used to calculate a reference relative orbit, and then the high precision
Beidou observation is employed to correct the reference relative orbit, results in an
optimal estimation of the relative state [11].

Figure 2 shows a conceptual flow chart of the filtering scheme. The Beidou
relative navigation filter is implemented in four steps: the time update, the tracked

Fig. 1 Algorithm flow chart of the recursive LSQ procedure
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satellites variation handling, the measurement update, and the integer solution.
Reduced dynamic filter also estimates other parameters at the same time, such as
ionospheric delay error, receiver clock error, and empirical acceleration parameter,
to improve the fitting degree between the dynamic reference orbit and Beidou
observed data.

Therefore the ambiguity float solution solved from the reduced dynamics
approach is convergence faster, and the navigation results are smoother at the same
time.

4 Simulation and Results

4.1 Simulation Scenario Settings

Simulated scenario is built to test the LEO spacecraft relative navigation perfor-
mance of Beidou-2 regional navigation system. The Beidou constellation, consists
of five GEO, five IGSO, and four MEO satellites, is set up according to the existing
14 satellites’ orbit parameters. Figure 3 illustrates the sub-satellite points of the
simulated constellation.

Formation spacecraft circles on the GRACE-type orbit, with the orbital incli-
nation of 89° and radius of 6847.75 km. Three groups of simulation are carried out,
with baseline length between formation satellites set to 10, 100, and 100 km,
respectively. The rest simulation settings can be found in Table 2.

The Beidou satellites visible duration for the first formation spacecraft is given in
Fig. 4. It can be seen that frequent tracked satellite variation occurred during 5 h
simulation. Due to the less number of Beidou-2 regional navigation system, and the
concentration distribution over the Asia-Pacific region, so only when the two
spacecraft formation through the Asia-Pacific region can they synchronously
observe more than five Beidou satellites. We only investigate the relative navigation
performance during this region.

Fig. 2 Algorithm flow chart of the reduced dynamic procedure
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4.2 Ambiguity Resolution Performance

The ambiguity resolution is investigated for S0ultra-wide-lane combination (1,−5, 4),
(0, 1, −1), and (1, −4, 3), S0 most used wide-lane combination (1, −1, 0),
S1a ultra-wide-lane combination (−4, 4, 1) and B1 (1, 0, 0). Tables 3, 4, and 5
summarize the ambiguity success rate for three different methods: recursive LSQ
kinematic method, reduced dynamic method, and the famous tri-frequency carrier
phase ambiguity resolution method-TCAR.

Fig. 3 Sub-satellite points of Beidou-2 regional navigation system

Table 2 The simulation scenario settings

Class Parameter settings

Beidou
constellation

5GEO + 5IGSO + 4MEO

Formation
spacecraft

GRACE-type orbit (i � 89°, r = 6847.75 km) baseline length = 10, 100
and 220 km

Simulation
duration

5 h

Simulation step
size

1 s

Ionospheric
model

CIM(China Ionospheric Model) the ionospheric delay for B1/B2/B3 is
inversely proportional to the square of the corresponding frequency

Ambiguity Fixing integer

Measurement
noise

the code noise for B1/B2/B3 is set to 1 times the corresponding carrier
wavelength; the phase noise for B1/B2/B3 is set to 0.025 times the
corresponding carrier wavelength
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An analysis of Tables 3, 4 and 5 leads to the following conclusions:

1. S0 region ultra-wide-lane ambiguity can be accurately fixed under three different
baseline length.

2. S1a ultra-wide-lane combination (−4, 4, 1) ambiguity can be 100 % fixed only
under reduced dynamic method. The recursive LSQ kinematic method gets

Fig. 4 The Beidou satellites visible duration

Table 3 Ambiguity success rate for recursive LSQ kinematic method

Baseline length (1, −5, 4) (0, 1, −1) (1, −4, 3) (1, −1, 0) (−4, 4, 1) (1, 0, 0)

10 km 100 % 100 % 100 % 100 % 100 % 100 %

100 km 100 % 100 % 100 % 100 % 99.4 % 99.4 %

220 km 100 % 100 % 100 % 100 % 60.97 % 60.88 %

Table 4 Ambiguity success rate for reduced dynamic method

Baseline length (1, −5, 4) (0, 1, −1) (1, −4, 3) (1, −1, 0) (−4, 4, 1) (1, 0, 0)

10 km 100 % 100 % 100 % 100 % 100 % 100 %

100 km 100 % 100 % 100 % 100 % 100 % 100 %

220 km 100 % 100 % 100 % 100 % 100 % 96.21 %

Table 5 Ambiguity success rate for TCAR method

Baseline length (1, −5, 4) (0, 1, −1) (1, −4, 3) (1, −1, 0) (−4, 4, 1) (1, 0, 0)

10 km 100 % 100 % 100 % 100 % 100 % 24.06 %

100 km 100 % 100 % 100 % 97.23 % 89.84 % 12.20 %

220 km 100 % 100 % 100 % 97.01 % 38.89 % 7.14 %
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worse success rate while the TCAR gets the worst. This is because even though
the wavelength is large for this combination, the ionospheric amplification factor
is magnificent. The reduced dynamic method can ensure the ambiguity con-
vergence accurately because we use dynamics parameters to absorb those sys-
temic error.

3. The B1 ambiguity fixing is challenging under long baseline. Even using the
orbital dynamics information, the reduced dynamic method can only obtain B1
ambiguity success rate to 96.21 % under the baseline length 220 km.

4.3 Relative Positioning Precision

Figure 5 demonstrates the deviation of relative positioning using only B1 phase for
the first 1500 s. Table 6 lists the corresponding ENU deviation statistics for 5 h.

Combined with Fig. 5 and Table 6, we can see that Beidou B1 relative posi-
tioning error increases with the increase of baseline length; Consider the ENU
deviation, the East accuracy is always better than the North and Up direction. This

Fig. 5 The deviation of relative positioning using only B1 carrier phase (the first 1500 s)

Table 6 ENU deviation statistics for relative positioning using only B1 carrier phase (5 h)

Baseline length (km) Mean (mm) Std (mm)

East North Up East North Up

10 −0.89 2.02 −1.30 5.05 3.86 6.47

100 1.88 32.14 17.69 5.99 31.52 35.01

220 5.68 109.69 18.58 74.19 113.93 131.21
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can be explained from the Beidou observation geometry: when the formation flies
across the Asia-Pacific region, the deployed GEO satellite increases the constraints
on East–West direction.

Figure 6 summarizes the relative positioning deviations using different combi-
nations observation. For each baseline length, the first three groups utilize the B1,
B3, and B2 single frequency, group 4–6 are three ionospheric-free combinations,
group 7–11 are narrow-lane combinations with repressive ionospheric chosen from
S1b region. The results show that the relative positioning precision is higher using
Beidou single frequency carrier phase, especially B1, under the condition of short
baseline. With the increase of baseline length, the advantage of Beidou
tri-frequency ionosphere-free/repressive combination gradually increases. When the
baseline length increased to 220 km, the relative positioning accuracy of
ionospheric-free combination can increase by 75 % at most.

5 Summary

A series of tri-frequency combinations have been investigated with the purpose to
improve the success rate of double-difference carrier phase ambiguity fixing and
relative navigation accuracy. The ambiguity fixing performance and relative navi-
gation accuracy for Beidou-based LEO formation spacecraft are validated using the
simulated scenario. The results reveal a variety of optional observation combina-
tions which can be offered by Beidou system under different navigation algorithms
and for different baseline length. Future work includes research in Beidou-based
high dynamic attitude determination and positioning technology, as well as relative
navigation algorithm based on multiple navigation system.

Acknowledgments This study is funded by the ‘Breeding Project’ of Innovation Academy,
Chinese Academy of Sciences.

Fig. 6 The deviation of relative positioning using combine measurement (5 h)
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Analysis on Energy System Safety in GEO
Satellite Complex Eclipse

Jinfei Chen, Xingyu Wang, Tao Wang and Ting Wang

Abstract The energy system is one of the key systems of satellite. Once the energy
system fails, it can easily lead to failure of other systems. Therefore, the energy
system safety is crucial to the satellite in orbit. For GEO satellites, the eclipse is a
common astronomical phenomenon. When the satellite is in eclipse, due to the Earth
or the Moon blocking the Sun, the energy of solar array will decline, the battery will
discharge, and the operation mode of energy system will change. Especially,
“complex eclipse”, which is generated by the continuous alternate block of the Earth
and the Moon, will bring the worse influence of satellite energy supply, easily
leading to failure of satellite. Therefore, to analyze the impact of complex eclipse to
the energy system, safety is quite necessary. First, this paper describes the principles
of complex eclipse, GEO satellite energy system and the influence to the energy
system caused by the complex eclipse, furthermore determines the relationship
between eclipse and the operation mode of energy system, analyzes the energy
system safety in GEO satellite complex eclipse, establishes the reasonable disposal
strategy based on the result, and applies it. The conclusions show that, the eclipse
does affect the energy system of GEO satellite; the method given by this paper is to
ensure the energy system safety in GEO satellite complex eclipse with practical
value.
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1 Introduction

Energy System is one of the core critical systems of satellite, which is mainly
constituted by a number of hardware components such as the power produce, power
storage, power control, voltage transformation, supply distribution, etc. A large
number of fault cases statistical results showed that: the failure of GEO satellites in
orbit occurred, the energy system failures account for a large proportion. Especially
in the eclipse, due to the effect of the Earth or the Moon obscured the sun for solar
array, there is not sufficient power to provide, the battery must discharge to
replenish the energy satellite required. When the satellite desired energy con-
sumption exceeds the stored battery power, it will lead to serious consequences that
the whole satellite lacks of power, which fails easily. It is quite essential to make an
accurate estimate of energy consumption required in eclipse for satellite, to take the
necessary avoidance strategy against dangerous situations that may occur [1].
Aiming to a bad case that eclipse shadow caused by the combined effect of the
Earth and the Moon, this paper proposed a method of GEO satellite energy system
analysis, which can not only predict eclipses occlusion, but also estimate the eclipse
of satellite energy consumption. At present, the method has been applied in the
actual management of GEO satellite.

2 Fundamental

2.1 Principle and Calculation Model of Eclipse

Eclipse is a kind of astronomical phenomena which is occurred when the Moon or
the Earth blocks sunshine to the satellite. Eclipse includes two cases which depend
on the blocker is the Earth or the Moon. The Earth eclipse generates because the
Earth blocks the sunshine, it took place in spring and autumn every year fixedly, the
time span is usually 23 days around the vernal equinox or the autumnal equinox, so
the Earth eclipse lasts about 92 days each year. The principle of the Moon eclipse is
similar to the Earth eclipse, it generates because the Moon blocks the sunshine.
Compared with the Earth eclipse, there is no law of the Moon eclipse. That is
because the Moon eclipse is the result of Earth–-Sun revolution, Moon–Earth
revolution, and the Earth rotation combined effect. Generally speaking, the Moon
eclipse often occurs around the first day of lunar month [2].

One single eclipse process generally contains three stages “penumbra—umbra—
penumbra”, uses method based on space visual field to calculate eclipses com-
monly, which sets the spatial position of the satellite as a reference point of the
visual field, by calculating the relative visual angle of the Sun, the Earth, and the
Moon to the reference point, to achieve the calculation of eclipse time, eclipse
phase [3].
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Take the Moon as the blocker in the discussion of the eclipse’s principle, in the
J2000 coordinate system as shown in Fig. 1, the position vector of the satellite is
ra ¼ Xa Ya Za½ �T , the position vector of the Sun is rs ¼ Xs Ys Zs½ �T , the
position vector of the Moon is rm ¼ Xm Ym Zm½ �T . Therefore

as!¼ rs � ra ¼
Xs � Xa

Ys � Ya
Zs � Za

2
4

3
5

am�! ¼ rm � ra ¼
Xm � Xa

Ym � Ya
Zm � Za

2
4

3
5

8>>>>>><
>>>>>>:

ð1Þ

The visual radius of the Sun is Rs, the visual radius of the Moon is Rm. The visual
half field angle of satellite to the Sun is bs, the visual half field angle of satellite to
the Moon is bm. Therefore

bs ¼ arcsin Rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xs�Xað Þ2 þ Ys�Yað Þ2 þ Zs�Zað Þ2

p
� �

bm ¼ arcsin Rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm�Xað Þ2 þ Ym�Yað Þ2 þ Zm�Zað Þ2

p
� �

8>><
>>: ð2Þ

defines the space angle between vector as! and vector am�! which is h, therefore

h ¼ arccos
as!� am�!
as!�� �� � am�!�� ��

 !
ð3Þ

So that summarized the judgment basis of the Moon eclipse:

1. When h� bs þ bm, there is no eclipse;
2. When bs � bmj j � h\bs þ bm, there is penumbra;
3. When h\ bs � bmj j, there is umbra.

Fig. 1 Principle of eclipse
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2.2 Introduction of GEO Satellite Energy System

Currently, the vast majority GEO satellites in orbit are designed using the solar
array and the batteries as the energy supply.

Figure 2 shows that, GEO satellite energy system consists of solar array, battery,
shunt regulator, and charge controller. According to its design, the solar array
provides energy to the satellite payload, charges the battery at the same time in
illumination. The battery provides energy to the satellite payload in eclipse.

As the input source, the array is exposed to the cosmic vacuum environment, its
output could be effected by the incident light intensity, ambient temperature, load
power, etc., [4] so that it would lead to a certain amplitude fluctuation. In order to
adapt to and regulate the illumination, the shunt regulator is designed to handle the
excessive power of solar array. In the illumination, when the solar array output
power is greater than satellite payload power consumption, the excessive power is
used to replenish the battery; the shunt regulator here is regulating the battery
charging current. In the eclipse, the output of solar array decreases because of the
block, the shunt current also decreases. When the shunt current drops to zero, which
represents the solar array’s energy output which is not sufficient to support the
satellite, the battery starts to provide energy to the satellite under the control of
charge controller.

2.3 The Impact of Eclipse to the Energy System

It is easy to summarize from the above analysis that, there will be two cases of
satellite energy supply in eclipse as following: one is the eclipse does not lead shunt
current to decrease to zero, in which case the satellite solar array will continue to be
used as energy supply, battery does not discharge; the other is the eclipse which

Fig. 2 Structure of GEO
satellite energy system
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does lead shunt current to decrease to zero, in which case the satellite will start to
use battery as an energy supplement reinforcement, the battery discharges.

Apparently, there is a certain relationship between blocked area and the energy
supply mode switch. Therefore, a reasonable solution is to start form the blocked
area in eclipse, establish the relationship between blocked area and the energy
supply mode switch, so that to forecast the mode switch of energy supply [5, 6].

The model of Moon eclipse shown in Fig. 3 is the example to discuss. The block
areaW is surrounded by the arc _

APB
and arc _

AQB
, the area is divided into two parts by

the string AB: one is W1, surrounded by arc _
APB

and string AB; the other is W2,

surrounded by arc _
AQB

, and string AB. Make the area of sector APBS as WAPBS, the

area of triangle ABS is WABS, the central angle is a.
Segment MS is a short arc of circle, which passes through the center of Sun and

Moon, takes the satellite as center. As h is a little angle, it can be approximated as
AB � _

MS
¼ h, the length of arc and string is equal.

According to the law of cosines, in triangle DABS

cos
a
2
¼ b2s þ h2 � b2m

2bsh
ð4Þ

in triangle DATS

cos
a
2
¼ TS

bs
ð5Þ

according to the simultaneous equation

TS ¼ b2s þ h2 � b2m
2h

ð6Þ

Fig. 3 Model of the Moon
eclipse
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so

WAPBS ¼ 1
2 ab

2
s ¼ arccos TS

bs

� �
b2s

WABS ¼ 1
2AB� TS ¼ TS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2S � TS2

q
W1 ¼ arccos TS

bs

� �
b2s � TS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s � TS2

q
8>>><
>>>:

ð7Þ

similarly

W2 ¼ arccos
h� TS
bm

� �
b2m � h� TSð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s � TS2

q
ð8Þ

so that the block area is

W ¼ W1 þW2

¼ arccos
TS
bs

� �
b2s � TS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s � TS2

q

þ arccos
h� TS
bm

� �
b2m � h� TSð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s � TS2

q

¼ arccos
TS
bs

� �
b2s þ arccos

h� TS
bm

� �
b2m � h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s � TS2

q
ð9Þ

brings formula (6) in

W ¼ arccos
b2s þ h2 � b2m

2hbs

� �
b2s þ arccos

b2m þ h2 � b2s
2hbm

� �
b2m

� h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s �

b2s þ h2 � b2m
2h

� �2
s ð10Þ

When the satellite in illumination, the energy is provided by the solar array, the
battery does not discharged. Suppose the load current of satellite is I1, the shunt
current is I2, the total current which is outputted by solar array is I ¼ I1 þ I2. When
the satellite is in eclipse, the total current decreases to I 0, which is

I 0 ¼ I 1� W

pb2s

 !
ð11Þ
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Make e ¼ W
pb2s

, the relationship between blocked area and the energy supply mode

switch is established:

1. When I 0 � I1, which is 1þ I2
I1

� �
1� eð Þ� 1, the battery does not discharge, the

mode of energy system does not switch;

2. When I 0\I1, which is 1þ I2
I1

� �
1� eð Þ\1, the battery does discharge, the mode

of energy system does switch.

3 Analysis of GEO Satellite Energy in Complex Eclipse

Before the autumn eclipse of a GEO satellite comes in 2015, use the above principle
to analysis the energy system as following:

3.1 Eclipse Forecasts

Use the method based on space visual field to forecast autumn eclipse of the GEO
satellite in 2015, the result shows that: the eclipse starts in Aug. 30th, ends in Oct.
16th, including three eclipse blocks caused by the Moon. Parts of the results are
shown in Table 1.

3.2 Energy Analysis in Eclipse

To facilitate discussion, this paper only discussed in detail the status tail of north
energy system in satellites, south part is similar.

Table 1 Parts of the result of
eclipse forecast in 2015
autumn

Blocker Start time End time

The Earth 2015-08-30 02:37:12 2015-08-30 02:44:16

The Earth 2015-09-13 02:03:23 2015-09-13 03:08:45

The Moon 2015-09-13 05:21:11 2015-09-13 06:03:10
The Moon 2015-09-13 14:03:23 2015-09-13 14:15:22
The Earth 2015-10-13 02:10:01 2015-10-13 02:45:02

The Moon 2015-10-13 17:31:17 2015-10-13 21:17:10
The Earth 2015-10-14 02:12:48 2015-10-14 02:41:51

The Earth 2015-10-16 02:24:27 2015-10-16 02:29:38
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3.2.1 Sep. 13th 05:21:11

1. Forecast the blocked area
Using the orbit of Aug. 28th 2015, set a calculation point every two seconds,
calculate the blocked area W, sketch e ¼ W

pb2s
. The abscissa represents time, the

ordinate represents the percentage of blocked area.
2. Establish an initial state of energy system

As introduced in Sect. 2.1, the eclipse caused by the Earth is regular and
repeatable. Using data mining algorithms, extract the telemetry parameters in
every Spring and Autumn eclipse from 2013 to 2015, summarize the key
parameter values of energy system to establish initial state of energy system in
this eclipse.

3. Determine the discharging state of battery
Since an initial state of energy system has been established, it is certain that
I2

I1 þ I2
� 27:8%. So, that when e ¼ W

pb2s
[ I2

I1 þ I2
� 27:8%, the battery will dis-

charge. As shown in Fig. 4, the shadow area is discharge capacity of battery.
Calculate the area with integration, the discharge capacity of north battery is
2.325 A·h.

4. Forecast the battery’s status
This eclipse of the Moon starts about 2 h later since the last eclipse ends, it is a
typical “complex eclipse”. Since the battery would discharge, it is necessary to
determine the battery’s status before eclipse occurs. According to the managing
files of this GEO satellite: if “North battery pressure 1” or “North battery
pressure 2” is less than 4.9, it will be certain that the battery is not full.
According to the value in Table 2, before the eclipse occurs, the capacity of
battery has been charged approximately 85.4 %.

5. Conclusions of energy system
Before the eclipse occurs, the battery is not fully charged, the capacity of battery
is approximately 85.4 %. During the eclipse, the battery will discharge about
2.325 A·h. According to the managing files of this GEO satellite: the capacity of
fully charged battery is 30 A·h, the warning percent of discharging is 73 %.

Fig. 4 Curve: the forecast proportion of block and discharge capacity in 05:21:11, 09-13-2015
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In this eclipse, the battery will discharge about 9.1 %, which is far less than the
warning percent, so the conclusion is energy system is safe, no need to take
action.

3.2.2 Sep. 13th 14:03:23

1. Forecast the blocked area
2. Establish an initial state of energy system (Table 3)
3. Determine the discharging state of battery

Since an initial state of energy system has been established, it is certain that
I2

I1 þ I2
� 37:6%. So that when e[ 37:6%, the battery will discharge. As shown

in Fig. 5, the largest percent of block is less than 0.8 %, which is far less than
the switch value, so that the battery will not discharge at all.

4. Conclusions of energy system
Since the battery will not discharge at all, the conclusion is energy system is
safe, no need to take action.

Table 3 Initial state forecast
of north energy system

Parameter Value

North main bus voltage 42.016

North main bus load current 21.105

North shunt current 12.693

Fig. 5 Curve: the forecast proportion of block in 14:03:23, 09-13-2015

Table 2 Initial state forecast of north energy system and battery

Parameter Value Parameter Value

North main bus voltage 41.814 North battery voltage 38.784

North main bus load current 19.4025 North battery pressure 1(P1) 4.183

North shunt current 7.4852 North battery pressure 2(P2) 4.208
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3.2.3 Oct. 13th 17:31:17

1. Forecast the blocked area
2. Establish an initial state of energy system
3. Determine the discharging state of battery

Since an initial state of energy system has been established, it is certain that
I2

I1 þ I2
� 40:6%. So that when e[ 40:6%, the battery will discharge. As shown

in Fig. 6, the shadow area is discharge capacity of battery. Calculate the area
with integration, the discharge capacity of north battery is 8.921 A·h.

4. Forecast the battery’s status
This eclipse of the Moon starts about 15 h later since the last eclipse ends, it is
also a typical “complex eclipse”. As shown in Table 4, before the eclipse
occurs, the battery has been fully charged.

5. Conclusions of energy system
Before the eclipse occurs, the battery is fully charged. During the eclipse, the
battery will discharge about 8.921 A·h. In this eclipse, the battery will discharge
about 29.7 %, which is less than the warning percent, so the conclusion is
energy system is safe, no need to take action.

Fig. 6 Curve: the forecast proportion of block and discharge capacity in 17:31:17, 10-13-2015

Table 4 Initial state forecast of north energy system and battery

Parameter Value Parameter Value

North main bus voltage 42.016 North battery voltage 38.986

North main bus load current 20.040 North battery pressure 1(P1) 4.980

North shunt current 13.669 North battery pressure 2(P2) 5.028
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