
Applied Mathematical Sciences

Wolfgang Hackbusch

Iterative
Solution of Large
Sparse Systems
of Equations
 Second Edition

Applied Mathematical Sciences

Volume 95

Editors

S.S. Antman, Institute for Physical Science and Technology, University of Maryland,
College Park, MD, USA

Leslie Greengard, Courant Institute of Mathematical Sciences, New York University,
New York, NY, USA

P.J. Holmes, Department of Mechanical and Aerospace Engineering, Princeton University,
Princeton, NJ, USA

Advisors

J. Bell, Lawrence Berkeley National Lab, Center for Computational Sciences and
Engineering, Berkeley, CA, USA
P. Constantin, Department of Mathematics, Princeton University, Princeton, NJ, USA
R. Durrett, Department of Mathematics, Duke University, Durham North, NC, USA
J. Keller, Department of Mathematics, Stanford University, Stanford, CA, USA
R. Kohn, Courant Institute of Mathematical Sciences, New York University,
New York, USA
R. Pego, Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA, USA
L. Ryzhik, Department of Mathematics, Stanford University, Stanford, CA, USA
A. Singer, Department of Mathematics, Princeton University, Princeton, NJ, USA
A. Stevens, Department of Applied Mathematics, University of Münster, Münster, Germany
A. Stuart, Mathematics Institute, University of Warwick, Coventry, UK
S. Wright, Computer Sciences Department, University of Wisconsin, Madison, WI, USA

Founding Editors

Fritz John, Joseph P. LaSalle and Lawrence Sirovich

More information about this series at http://www.springer.com/series/34

Wolfgang Hackbusch

Iterative Solution of Large
Sparse Systems of Equations
Second Edition

123

Wolfgang Hackbusch
Max Planck Institute for Mathematics
in the Sciences

Leipzig
Germany

ISSN 0066-5452 ISSN 2196-968X (electronic)
Applied Mathematical Sciences
ISBN 978-3-319-28481-1 ISBN 978-3-319-28483-5 (eBook)
DOI 10.1007/978-3-319-28483-5

Library of Congress Control Number: 2016940360

Mathematics Subject Classification (2010): 65F10, 65N22, 65N55

© Springer International Publishing Switzerland 1994, 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The numerical treatment of partial differential equations splits into two different
parts. The first part are the discretisation methods and their analysis. This led to
the author’s monograph Theory and Numerical Treatment of Elliptic Differential
Equations also published by Springer. The second part is the treatment of the equa-
tions obtained by the discretisation process. The arising system of linear (or even
nonlinear) equations is of large size, only bounded by the available storage of the
computers. Nowadays, systems of several millions of equations and variables must
be solved. Another characteristic of the arising systems is the sparsity of the sys-
tem matrix; i.e., only O(n) entries of the n× n matrix are different from zero. The
classical Gauss elimination requires up to O(n3) operations. Because of the large
size of n, algorithms of this complexity are hopeless. Even methods requiring a
cost of O(n2) take a too long run time. Instead, one needs solution algorithms of
complexity O(n) or O(n log∗ n).

This book grew out of a series of lectures given by the author at the Christian
Albrecht University of Kiel to students of mathematics. The first German edition
was published in 1991 by Teubner, Stuttgart. The second German edition in 1993
mainly corresponds to the first English edition at Springer in 1994. Since that time
new methods have developed. Therefore the present second edition differs signifi-
cantly from the first one.

Although special attention is devoted to the modern effective algorithms (multi-
grid iterations, domain decomposition methods, and the hierarchical LU iteration),
the theory of classical iterative methods should not be neglected. One reason is that
these iterations indirectly re-appear in modern methods.

This volume requires basic mathematical knowledge in analysis and linear alge-
bra. The necessary facts from linear algebra and matrix theory are summarised in
the Appendices A–C of this book in order to provide as complete a presentation as
possible and present a formulation and notation needed here. Similarly, the basics
of finite element discretisation are summarised in Appendix E.

Part I covers the introduction and the classical linear iterations. Part II describes
the semi-iterative methods including the popular conjugate gradient method. The
subjects of these two parts should be understood as two orthogonal methods: a linear

v

vi Preface

iteration is accelerated by a semi-iterative approach. Part III contains more recent
linear iterations.

The new Chapter 5 in Part I is devoted to the algebra in the set of linear iterations.
These operations are important for the generation of new iterations. Part III con-
tains two new chapters. Chapter 13 describes the H-LU iteration which is based on
the technique of hierarchical matrices introduced in Appendix D. In many cases,
this iteration is a very efficient and robust method of black-box type. Finally, in
Chapter 14, tensor-based iterative methods are briefly mentioned.

The discussion of the various methods is illustrated by many numerical examples,
mostly for the Poisson model problem. Since these calculations are taken from
the first edition, the problem sizes are small compared with modern computers.
However, these sizes are completely sufficient to demonstrate the asymptotic
behaviour.

The author also wishes to express his gratitude to the publisher Springer for their
friendly cooperation.

Leipzig and Molfsee, October 2015 Wolfgang Hackbusch

Contents

Part I Linear Iterations

1 Introduction . 3
1.1 Historical Remarks Concerning Iterative Methods 3
1.2 Model Problem: Poisson Equation . 4
1.3 Notation . 7

1.3.1 Index Sets, Vectors, and Matrices . 7
1.3.2 Star Notation . 9

1.4 A Single System Versus a Family of Systems 10
1.5 Amount of Work for the Direct Solution of a Linear System 10
1.6 Examples of Iterative Methods . 12
1.7 Sparse Matrices Versus Fully Populated Matrices 15

2 Iterative Methods . 17
2.1 Consistency and Convergence . 17

2.1.1 Notation . 17
2.1.2 Fixed Points . 18
2.1.3 Consistency . 19
2.1.4 Convergence . 19
2.1.5 Convergence and Consistency . 20
2.1.6 Defect Correction as an Example of an Inconsistent Iteration 20

2.2 Linear Iterative Methods . 21
2.2.1 Notation, First Normal Form . 21
2.2.2 Consistency and Second Normal Form 22
2.2.3 Third Normal Form . 23
2.2.4 Representation of the Iterates xm . 23
2.2.5 Convergence . 24
2.2.6 Convergence Speed . 26
2.2.7 Remarks Concerning the Matrices M , N , and W 28
2.2.8 Three-Term Recursions, Two- and Multi-Step Iterations 29

2.3 Efficacy of Iterative Methods . 30

vii

viii Contents

2.3.1 Amount of Computational Work . 30
2.3.2 Efficacy . 31
2.3.3 Order of Linear Convergence . 32

2.4 Test of Iterative Methods . 32
2.4.1 Consistency Test . 32
2.4.2 Convergence Test . 33
2.4.3 Test by the Model Problem . 34
2.4.4 Stopping Criterion . 34

3 Classical Linear Iterations in the Positive Definite Case 35
3.1 Eigenvalue Analysis of the Model Problem . 35
3.2 Traditional Linear Iterations . 37

3.2.1 Richardson Iteration . 37
3.2.2 Jacobi Iteration . 38
3.2.3 Gauss–Seidel Iteration . 39
3.2.4 SOR Iteration . 41

3.3 Block Versions . 42
3.3.1 Block Structure . 42
3.3.2 Block-Jacobi Iteration . 43
3.3.3 Block-Gauss–Seidel Iteration . 44
3.3.4 Block-SOR Iteration . 45

3.4 Computational Work of the Iterations . 45
3.4.1 Case of General Sparse Matrices . 45
3.4.2 Amount of Work in the Model Case . 46

3.5 Convergence Analysis . 47
3.5.1 Richardson Iteration . 47
3.5.2 Convergence Criterion for Positive Definite Iterations 54
3.5.3 Jacobi Iteration . 55
3.5.4 Gauss–Seidel and SOR Iterations . 56
3.5.5 Convergence of the Block Variants . 62

3.6 Convergence Rates in the Case of the Model Problem 62
3.6.1 Richardson and Jacobi Iteration . 62
3.6.2 Block-Jacobi Iteration . 63
3.6.3 Numerical Examples for the Jacobi Variants 65
3.6.4 SOR and Block-SOR Iteration with Numerical Examples . . . 66

4 Analysis of Classical Iterations Under Special Structural Conditions . 69
4.1 2-Cyclic Matrices . 69
4.2 Preparatory Lemmata . 72
4.3 Analysis of the Richardson Iteration . 74
4.4 Analysis of the Jacobi Iteration . 76
4.5 Analysis of the Gauss–Seidel Iteration . 77
4.6 Analysis of the SOR Iteration . 78

4.6.1 Consistently Ordered Matrices . 78
4.6.2 Theorem of Young . 81

Contents ix

4.6.3 Order Improvement by SOR . 84
4.6.4 Practical Handling of the SOR Method 85
4.6.5 p-Cyclic Matrices . 85

4.7 Application to the Model Problem . 86
4.7.1 Analysis in the Model Case . 86
4.7.2 Gauss–Seidel Iteration: Numerical Examples 87
4.7.3 SOR Iteration: Numerical Examples . 88

5 Algebra of Linear Iterations . 89
5.1 Adjoint, Symmetric, and Positive Definite Iterations 90

5.1.1 Adjoint Iteration . 90
5.1.2 Symmetric Iterations . 92
5.1.3 Positive Definite Iterations . 93
5.1.4 Positive Spectrum of NA . 95

5.2 Damping of Linear Iterations . 95
5.2.1 Definition . 95
5.2.2 Damped Jacobi Iteration . 96
5.2.3 Accelerated SOR . 97

5.3 Addition of Linear Iterations . 97
5.4 Product Iterations . 99

5.4.1 Definition and Properties . 99
5.4.2 Constructing Symmetric Iterations . 101
5.4.3 Symmetric Gauss–Seidel and SSOR . 103

5.5 Combination with Secondary Iterations . 103
5.5.1 First Example for Secondary Iterations 104
5.5.2 Second Example for Secondary Iterations 105
5.5.3 Convergence Analysis in the General Case 106
5.5.4 Analysis in the Positive Definite Case 108
5.5.5 Estimate of the Amount of Work . 110
5.5.6 Numerical Examples . 111

5.6 Transformations . 112
5.6.1 Left Transformation . 112
5.6.2 Right Transformation . 115
5.6.3 Kaczmarz Iteration . 116
5.6.4 Cimmoni Iteration . 118
5.6.5 Two-Sided Transformation . 119
5.6.6 Similarity Transformation . 122

6 Analysis of Positive Definite Iterations . 123
6.1 Different Cases of Positivity . 123
6.2 Convergence Analysis . 125

6.2.1 Case 1: Positive Spectrum . 125
6.2.2 Case 2: Positive Definite NA . 126
6.2.3 Case 3: Positive Definite Iteration . 127
6.2.4 Case 4: Positive Definite W+WH or N+NH 128

x Contents

6.2.5 Case 5: Symmetrised Iteration Φ sym . 129
6.2.6 Case 6: Perturbed Positive Definite Case 131

6.3 Symmetric Gauss–Seidel Iteration and SSOR 132
6.3.1 The Case A > 0 . 132
6.3.2 SSOR in the 2-Cyclic Case . 134
6.3.3 Modified SOR . 135
6.3.4 Unsymmetric SOR Method . 136
6.3.5 Numerical Results for the SSOR Iteration 136

7 Generation of Iterations . 137
7.1 Product Iterations . 137
7.2 Additive Splitting Technique . 139

7.2.1 Definition and Examples . 139
7.2.2 Regular Splittings . 141
7.2.3 Applications . 144
7.2.4 P-Regular Splitting . 147

7.3 Incomplete Triangular Decompositions . 148
7.3.1 Introduction and ILU Iteration . 148
7.3.2 Incomplete Decomposition with Respect to a Star Pattern . . 151
7.3.3 Application to General Five-Point Formulae 152
7.3.4 Modified ILU Decompositions . 154
7.3.5 Existence and Stability of the ILU Decomposition 154
7.3.6 Properties of the ILU Decomposition . 159
7.3.7 ILU Decompositions Corresponding to Other Patterns 161
7.3.8 Approximative ILU Decompositions . 162
7.3.9 Blockwise ILU Decomposition . 163
7.3.10 Numerical Examples . 163
7.3.11 Remarks . 164

7.4 Preconditioning . 165
7.4.1 Idea of Preconditioning . 165
7.4.2 Examples . 166
7.4.3 Preconditioning in the Wider Sense . 167
7.4.4 Rules for Condition Numbers and Spectral Equivalence 167
7.4.5 Equivalent Bilinear Forms . 170

7.5 Time-Stepping Methods . 171
7.6 Nested Iteration . 172

Part II Semi-Iterations and Krylov Methods

8 Semi-Iterative Methods . 175
8.1 First Formulation . 175

8.1.1 Notation . 175
8.1.2 Consistency and Asymptotic Convergence Rate 176
8.1.3 Error Representation . 177
8.1.4 Krylov Space . 179

Contents xi

8.2 Second Formulation of a Semi-Iterative Method 181
8.2.1 General Representation . 181
8.2.2 Three-Term Recursion . 183

8.3 Optimal Polynomials . 184
8.3.1 Minimisation Problem . 184
8.3.2 Discussion of the Second Minimisation Problem 185
8.3.3 Chebyshev Polynomials . 187
8.3.4 Chebyshev Method (Solution of the Third Minimisation

Problem) . 187
8.3.5 Order Improvement by the Chebyshev Method 192
8.3.6 Optimisation Over Other Sets . 193
8.3.7 Cyclic Iteration . 194
8.3.8 Two- and Multi-Step Iterations . 195
8.3.9 Amount of Work of the Semi-Iterative Method 195

8.4 Application to Iterations Discussed Above . 196
8.4.1 Preliminaries . 196
8.4.2 Semi-Iterative Richardson Method . 197
8.4.3 Semi-Iterative Jacobi and Block-Jacobi Method 198
8.4.4 Semi-Iterative SSOR and Block-SSOR Iteration 198

8.5 Method of Alternating Directions (ADI) . 201
8.5.1 Application to the Model Problem . 201
8.5.2 General Representation . 203
8.5.3 ADI in the Commutative Case . 205
8.5.4 ADI Method and Semi-Iterative Methods 208
8.5.5 Amount of Work and Numerical Examples 209

9 Gradient Method . 211
9.1 Reformulation as Minimisation Problem . 211

9.1.1 Minimisation Problem . 211
9.1.2 Search Directions . 212
9.1.3 Other Quadratic Functionals . 213
9.1.4 Complex Case . 214

9.2 Gradient Method . 215
9.2.1 Construction . 215
9.2.2 Properties of the Gradient Method . 216
9.2.3 Numerical Examples . 218
9.2.4 Gradient Method Based on Other Basic Iterations 219
9.2.5 Numerical Examples . 223

9.3 Method of the Conjugate Directions . 224
9.3.1 Optimality with Respect to a Direction 224
9.3.2 Conjugate Directions . 225

9.4 Minimal Residual Iteration . 228

xii Contents

10 Conjugate Gradient Methods and Generalisations 229
10.1 Preparatory Considerations . 229

10.1.1 Characterisation by Orthogonality . 229
10.1.2 Solvability . 231
10.1.3 Galerkin and Petrov–Galerkin Methods 231
10.1.4 Minimisation . 232
10.1.5 Error Statements . 232

10.2 Conjugate Gradient Method . 234
10.2.1 First Formulation . 234
10.2.2 CG Method (Applied to Richardson’s Iteration) 237
10.2.3 Convergence Analysis . 238
10.2.4 CG Method Applied to Positive Definite Iterations 241
10.2.5 Numerical Examples . 244
10.2.6 Amount of Work of the CG Method . 245
10.2.7 Suitability for Secondary Iterations . 246
10.2.8 Three-Term Recursion for pm . 247

10.3 Method of Conjugate Residuals (CR) . 250
10.3.1 Algorithm . 250
10.3.2 Application to Hermitian Matrices . 251
10.3.3 Stabilised Method of Conjugate Residuals 252
10.3.4 Convergence Results for Indefinite Matrices 253
10.3.5 Numerical Examples . 255

10.4 Method of Orthogonal Directions . 256
10.5 Solution of Nonsymmetric Systems . 258

10.5.1 Generalised Minimal Residual Method (GMRES) 258
10.5.2 Full Orthogonalisation Method (FOM) 261
10.5.3 Biconjugate Gradient Method and Variants 262
10.5.4 Further Remarks . 262

Part III Special Iterations

11 Multigrid Iterations . 265
11.1 Introduction . 266

11.1.1 Smoothing . 266
11.1.2 Hierarchy of Systems of Equations . 268
11.1.3 Prolongation . 269
11.1.4 Restriction . 271
11.1.5 Coarse-Grid Correction . 272

11.2 Two-Grid Method . 274
11.2.1 Algorithm . 274
11.2.2 Modifications . 274
11.2.3 Iteration Matrix . 274
11.2.4 Numerical Examples . 275

11.3 Analysis for a One-Dimensional Example . 276
11.3.1 Fourier Analysis . 276

Contents xiii

11.3.2 Transformed Quantities . 278
11.3.3 Convergence Results . 279

11.4 Multigrid Iteration . 281
11.4.1 Algorithm . 281
11.4.2 Numerical Examples . 282
11.4.3 Computational Work . 284
11.4.4 Iteration Matrix . 286

11.5 Nested Iteration . 287
11.5.1 Discretisation Error and Relative Discretisation Error 287
11.5.2 Algorithm . 288
11.5.3 Error Analysis . 288
11.5.4 Application to Optimal Iterations . 290
11.5.5 Amount of Computational Work . 291
11.5.6 Numerical Examples . 291
11.5.7 Comments . 292

11.6 Convergence Analysis . 293
11.6.1 Summary . 293
11.6.2 Smoothing Property . 293
11.6.3 Approximation Property . 298
11.6.4 Convergence of the Two-Grid Iteration 301
11.6.5 Convergence of the Multigrid Iteration 301
11.6.6 Case of Weaker Regularity . 303

11.7 Symmetric Multigrid Methods . 304
11.7.1 Symmetric and Positive Definite Multigrid Algorithms 304
11.7.2 Two-Grid Convergence for ν1 > 0 , ν2 > 0 306
11.7.3 Smoothing Property in the Symmetric Case 307
11.7.4 Strengthened Two-Grid Convergence Estimates 308
11.7.5 V-Cycle Convergence . 310
11.7.6 Unsymmetric Multigrid Convergence for all ν > 0 311

11.8 Combination of Multigrid Methods with Semi-Iterations 313
11.8.1 Semi-Iterative Smoothers . 313
11.8.2 Damped Coarse-Grid Corrections . 315
11.8.3 Multigrid as Basic Iteration of the CG Method 315

11.9 Further Comments . 316
11.9.1 Multigrid Method of the Second Kind 316
11.9.2 Robust Methods . 317
11.9.3 History of the Multigrid Method . 317
11.9.4 Frequency Filtering Decompositions . 318
11.9.5 Nonlinear Systems . 320

12 Domain Decomposition and Subspace Methods 325
12.1 Introduction . 325
12.2 Overlapping Subdomains . 327

12.2.1 Introductory Example . 327
12.2.2 Many Subdomains . 329

xiv Contents

12.3 Nonoverlapping Subdomains . 329
12.3.1 Dirichlet–Neumann Method . 329
12.3.2 Lagrange Multiplier Based Methods . 330

12.4 Schur Complement Method . 332
12.4.1 Nonoverlapping Domain Decomposition with Interior

Boundary . 332
12.4.2 Direct Solution . 332
12.4.3 Preconditioners of the Schur Complement 334
12.4.4 Multigrid-like Domain Decomposition Methods 335

12.5 Subspace Iteration . 336
12.5.1 General Construction . 336
12.5.2 The Prolongations . 337
12.5.3 Multiplicative and Additive Schwarz Iterations 338
12.5.4 Interpretation as Gauss–Seidel and Jacobi Iteration 339
12.5.5 Classical Schwarz Iteration . 340
12.5.6 Approximate Solution of the Subproblems 340
12.5.7 Strengthened Estimate A ≤ ΓW . 342

12.6 Properties of the Additive Schwarz Iteration . 344
12.6.1 Parallelism . 344
12.6.2 Condition Estimates . 344
12.6.3 Convergence Statements . 347

12.7 Analysis of the Multiplicative Schwarz Iteration 349
12.7.1 Convergence Statements . 349
12.7.2 Proofs of the Convergence Theorems . 352

12.8 Examples . 357
12.8.1 Schwarz Method With Proper Domain Decomposition 357
12.8.2 Additive Schwarz Iteration with Coarse-Grid Correction . . . 358
12.8.3 Formulation in the Case of Galerkin Discretisation 358

12.9 Multigrid Iterations as Subspace Decomposition Method 359
12.9.1 Braess’ Analysis without Regularity . 360
12.9.2 V-Cycle Interpreted as Multiplicative Schwarz Iteration . . . 362
12.9.3 Proof of V-Cycle Convergence . 364
12.9.4 Hierarchical Basis Method . 366
12.9.5 Multilevel Schwarz Iteration . 369
12.9.6 Further Approaches . 369

13 H-LU Iteration . 371
13.1 Approximate LU Decomposition . 371

13.1.1 Triangular Matrices . 372
13.1.2 Solution of LUx = b . 372
13.1.3 Matrix-Valued Solutions of LX = Z and XU = Z 373
13.1.4 Generation of the LU Decomposition 375
13.1.5 Cost of the H-LU Decomposition . 376

13.2 H-LU Decomposition for Sparse Matrices . 376
13.2.1 Finite Element Matrices . 376

Contents xv

13.2.2 Separability of the Matrix . 377
13.2.3 Construction of the Cluster Tree . 378
13.2.4 Application to Inversion . 380
13.2.5 Admissibility Condition . 381
13.2.6 LU Decomposition . 381

13.3 UL Decomposition of the Inverse Matrix . 381
13.4 H-LU Iteration . 382

13.4.1 General Construction . 382
13.4.2 Algebraic LU Decomposition . 384

13.5 Further Applications of Hierarchical Matrices 384

14 Tensor-based Methods . 385
14.1 Tensors . 385

14.1.1 Introductory Example: Lyapunov Equation 385
14.1.2 Nature of the Underlying Problems . 386
14.1.3 Definition of Tensor Spaces . 387
14.1.4 Case of Grid Functions . 388
14.1.5 Kronecker Products of Matrices . 389
14.1.6 Functions on Cartesian Products . 389

14.2 Sparse Tensor Representation . 390
14.2.1 r-Term Format (Canonical Format) . 390
14.2.2 A Particular Example . 391
14.2.3 Subspace Format (Tucker Format) . 394
14.2.4 Hierarchical Tensor Format . 395

14.3 Linear Systems . 396
14.3.1 Poisson Model Problem . 396
14.3.2 A Parametrised Problem . 396
14.3.3 Solution of Linear Systems . 398
14.3.4 CG-Type Methods . 398
14.3.5 Multigrid Approach . 398
14.3.6 Convergence . 399
14.3.7 Parabolic Problems . 399

14.4 Variational Approach . 400

A Facts from Linear Algebra . 401
A.1 Notation for Vectors and Matrices . 401
A.2 Systems of Linear Equations . 402
A.3 Eigenvalues and Eigenvectors . 403
A.4 Block Vectors and Block Matrices . 407
A.5 Orthogonality . 409

A.5.1 Elementary Definitions . 409
A.5.2 Orthogonal and Unitary Matrices . 410
A.5.3 Sums of Subspaces and Orthogonal Complements 410

A.6 Normal Forms . 411
A.6.1 Schur Normal Form . 411

xvi Contents

A.6.2 Jordan Normal Form . 412
A.6.3 Diagonalisability . 414
A.6.4 Singular Value Decomposition . 416

B Facts from Normed Spaces . 417
B.1 Norms . 417

B.1.1 Vector Norms . 417
B.1.2 Equivalence of All Norms . 418
B.1.3 Corresponding Matrix Norms . 419
B.1.4 Condition and Spectral Condition Number 421

B.2 Hilbert Norm . 422
B.2.1 Elementary Properties . 422
B.2.2 Spectral Norm . 422

B.3 Correlation Between Norms and Spectral Radius 424
B.3.1 Spectral Norm and Spectral Radius . 424
B.3.2 Matrix Norms Approximating the Spectral Radius 425
B.3.3 Geometrical Sum of Matrices . 426
B.3.4 Numerical Radius of a Matrix . 427

C Facts from Matrix Theory . 431
C.1 Positive Definite Matrices . 431

C.1.1 Definition and Notation . 431
C.1.2 Rules and Criteria for Positive Definite Matrices 432
C.1.3 Remarks Concerning Positive Definite Matrices 433

C.2 Graph of a Matrix and Irreducible Matrices . 435
C.3 Positive Matrices . 438

C.3.1 Definition and Notation . 438
C.3.2 Perron–Frobenius Theory of Positive Matrices 440
C.3.3 Diagonal Dominance . 443

C.4 M-Matrices . 445
C.4.1 Definition . 445
C.4.2 M-Matrices and the Jacobi Iteration . 446
C.4.3 M-Matrices and Diagonal Dominance 447
C.4.4 Further Criteria . 449

C.5 H-Matrices . 452
C.6 Schur Complement . 452

D Hierarchical Matrices . 453
D.1 Introduction . 453

D.1.1 Fully Populated Matrices . 453
D.1.2 Rank-r Matrices . 455
D.1.3 Model Format . 456

D.2 Construction . 459
D.2.1 Cluster Trees . 459
D.2.2 Block Cluster Tree . 462

Contents xvii

D.2.3 Partition . 462
D.2.4 Admissible Blocks . 463
D.2.5 Use of Bounding Boxes for Xτ . 464
D.2.6 Set of Hierarchical Matrices . 465
D.2.7 H2-Matrices . 465
D.2.8 Storage . 465
D.2.9 Accuracy . 467

D.3 Matrix Operations . 469
D.3.1 Matrix-Vector Multiplication . 469
D.3.2 Truncations . 470
D.3.3 Addition . 470
D.3.4 Agglomeration . 471
D.3.5 Matrix-Matrix Multiplication . 471
D.3.6 Inversion and LU Decomposition . 472

E Galerkin Discretisation of Elliptic PDEs . 473
E.1 Variational Formulation of Boundary Value Problems 473
E.2 Galerkin Discretisation . 475
E.3 Subdomain Problems and Finite Element Matrix 477
E.4 Relations Between the Continuous and Discrete Problems 478
E.5 Error Estimates . 480
E.6 Relations Between Two Discrete Problems . 482

References . 483

Index . 501

List of Symbols and Abbreviations

Symbols

1 vector (1, 1, ..., 1)T

AT, AH transposed and Hermitian transposed matrix; cf. §A.1
A−T, A−H inverse of AT, AH; cf. §A.1
W⊥ orthogonal complement of a W ; cf. §A.5
U ⊕ V direct sum of subspaces; cf. §A.5.3
M |b restriction of the matrix to the block b; cf. Notation D.6
M |b extension of the matrix to the block b; cf. §D.3.4
Δ Laplace operator; cf. (1.1a)
〈·, ·〉 (Euclidean) scalar product; cf. (1.1a–c)
〈·, ·〉A energy scalar product; cf. (C.5b)
‖·‖ , ||| · ||| norm (of vectors or matrices)
‖·‖A energy norm; cf. (C.5a)
‖·‖2 Euclidean norm, cf. (B.2); spectral norm, cf. (B.21a)
‖·‖∞ maximum norm, cf. (B.2); row sum norm, cf. (B.8)
‖·‖Y←X norm of a mapping (matrix) from X into Y ; cf. (B.11)
||| · |||T transformed vector or matrix norm; cf. (B.10a,b)
|·| absolute value, in §C.3 applied to matrices and vectors; cf. page 438
<,≤, >,≥ in connection with matrices, the order relation from §C.1.2; only in

§§C.3–C.4 (and §7.3.5) it denotes the order relation of (C.9a,b)
∪̇ disjoint union
⊂ A ⊂ B: A is a subset of B, not necessarily a proper subset
� A � B: A is a proper subset of B
⊗ tensor product; cf. §14.1
� Hadamard product; cf. Lemma 5.60c
⊕r addition of hierarchical matrices with truncation to rank r ; cf. p. 457
�r multiplication of H-matrices with truncation to rank r ; cf. §D.3.4
◦ product Φ ◦ Ψ of iterations or transformation of iterations; cf. §5
#S cardinality of a set S

xix

xx List of Symbols and Abbreviations

Greek Letters

α, β, γ indices of the index set; cf. §1.3
γ in §11: number of secondary multi-grid steps for the coarse-grid

equation; cf. (11.33d2)
γ, Γ lower and upper eigenvalue bounds of W−1A; cf. (9.18a)
δij Kronecker symbol: δij = 1 for i = j, δij = 0 otherwise
Δ Laplace operator; cf. (1.1a)
ζ often contraction number; cf. §2.2.6, (11.30b), (11.48)
η characteristic factor involved in the admissibility condition (D.10)
η(ν) zero sequence for smoothing property; cf. (11.58b)
η0(ν) special function, defined in Lemma 11.23
ϑ,Θ damping factor; cf. §3.2.1 and §5.2
κ(A) spectral condition number (B.13)
λ,Λ eigenvalue bounds of A; cf. Theorem 9.10, Theorem 3.30
λmax(A) maximal eigenvalue of a matrix A if σ(A) ⊂ R
λmin(A) minimal eigenvalue of a matrix A if σ(A) ⊂ R
ν, ν1, ν2 in §11: number of the smoothing steps; cf. (11.21) and (11.22a)
ρ(A) spectral radius of a matrix A; cf. Definition A.17
ρm+k,m convergence factors; cf. (2.23a,b)
σ(A) spectrum of the matrix A; cf. §A.3
τ, σ symbols representing clusters; cf. §D.2.1
Φ(x, b, A) function describing an iteration; cf. (2.3)
Υ [Φ] semi-iterative method with Φ as basic iteration
ΥCheb
a,b Chebyshev method; cf. Notation 8.29
ΥCG, ΥCR, ΥOD, ΥGMRES conjugate gradient methods and variants; cf. §10.2
Υgrad gradient method; cf. §9.2.1 and §9.2.4
ω relaxation parameter; cf. (1.22) and §3.2.4
Ω underlying domain of a boundary value problem; cf. (1.1a), §E.1
Ωh grid; cf. (1.3)

Latin Letters

a(·, ·) bilinear or sesquilinear form; cf. Definition (E.1)
a, b bounds for σ(M); cf. (8.26a)
A,A� matrix of the linear system; cf. (1.5), (11.6a)
Aκλ, Aij block of A; cf. (A.8b,c)
Aαβ , aαβ , Aij , aij entries of the matrix A
b, b� right-hand side of the linear system; cf. (1.5), (11.6a)
blockdiag{. . .} block-diagonal matrix; cf. page 408
blockdiagB{A} block-diagonal part of A with respect to the block structure B;

cf. (4.2′)
blocktridiag{. . .} block-tridiagonal matrix; cf. (A.9)

List of Symbols and Abbreviations xxi

C complex numbers
cond, cond2 condition of a matrix; cf. (B.12)
dm defect Axm − b; cf. (2.17)
D,D′, . . . (block-) diagonal matrix
D(Φ) domain of the iteration Φ; cf. Definition 2.2a
degX(v) degree of a vector v; cf. Definition 8.10
degree(·) degree of a polynomial
depth(T) depth of the tree T ; cf. (D.7)
det determinant
diag{. . .} diagonal matrix or diagonal part; cf. (A.1)
diam(τ) diameter of a cluster; cf. (D.9a)
dist(τ, σ) distance between clusters; cf. (D.9b)
em error xm − x of the m-th iterate; cf. (2.15)
eα unit vector
E strictly lower triangular matrix; cf. (1.16)
Eff(Φ) effective amount of work; cf. (2.31a)
F strictly upper triangular matrix; cf. (1.16)
F matrices in full format; cf. Definition D.2a
G(A) graph of a matrix A; cf. Definition C.12
h, h� grid size; cf. (1.2)
H2 see §D.2.7
Hp model format; cf. §D.1.3
i, j, k indices of the ordered index set I = {1, . . . , n}
I identity matrix
I index set (not necessarily ordered)
Iκ subset of block indices; cf. (A.7)
Init(Φ,A) cost for initialising the iteration Φ applied to the system Ax = b
It(Φ) cf. (2.30a)
K the field R or C
KI space of the vectors corresponding to the index set I
KI×I space of the matrices corresponding to the index set I
K integral operator; cf. §D.2.9
Km(X, v) Krylov space; cf. Definition 8.7
ker kernel of a mapping or matrix
� level number in the discretisation hierarchy; cf. (3.15a)
L,L′, L̂ lower (block-)triangular matrix
L set of consistent linear iterations; cf. (2.11)
Lpos set of positive definite iterations; cf. Definition 5.8
Lsemi set of positive semidefinite iterations; cf. Definition 5.11
Lsym set of symmetric iterations; cf. Definition 5.3
L> set of directly positive definite iterations; cf. Definition 5.14
L(T) set of leaves of the tree T ; cf. §D.2.1
level(τ) level-number of a cluster; cf. §D.2.1
log natural logarithm
log2 dual logarithm, logarithm with respect to the basis 2

xxii List of Symbols and Abbreviations

log∗(·) some power of log(·); cf. Footnote 9 on page 15
m iteration number; cf. em, xm

M,Mxyz iteration matrix (of the iteration ‘xyz’); cf. §2.2.1
M [A] iteration matrix for the system Ax = b; cf. Definition 2.9
n, n� dimension of the linear system; cf. §2.3, (11.6b)
nmin minimal size of clusters; cf. §D.2.1
N number of the grid points per row or column; cf. (1.2)
N,Nxyz matrix of the 2nd normal form (of the iteration ‘xyz’); cf. (2.10)
N [A] matrix N for the system Ax = b; cf. Definition 2.9
N natural numbers {1, 2, 3, . . .}
N0 N ∪ {0} = {0, 1, 2, . . .}
Nxyz number of arithmetic operations required for ‘xyz’; cf. pages 455ff
O(·) Landau symbol: f(α) = O(g(α)) if |f(α)| ≤ C |g(α)| for the

underlying limit process α → 0 or α → ∞. The notation f(η) =
1 − O(ητ) is more special and means that f(η) ≤ 1 − Cητ with
fixed C > 0 for η → 0.

p prolongation; cf. §11.1.3, (12.7)
P partition of a hierarchical matrix; cf. §D.2.3
P+, P− subsets of the partition P ; cf. §D.2.6
Pm space of polynomials; cf. Definition 8.2
Q often unitary matrix
Qmin(·) bounding box; cf. §D.2.1.2
r restriction; cf. §11.1.4, (12.14a)
r representation rank of matrices in Rr; cf. (D.2)
r(A) numerical radius of the matrix A; cf. §B.3.4
R real numbers
range(·) range (image space) of a mapping
Rr rank-r matrices or tensors; cf. Definition D.2b and page 390
root(T) root of the tree T ; cf. §D.2.1
S� iteration matrix of the smoother S�; cf. Lemma 11.11
S� smoothing iteration; cf. §11.1.1 and §11.2.1
span{. . .} linear space spanned by {. . .}
supp(·) support of a function; Footnote 6 on page 463
T�, Tr left- and right-sided transformation; cf. (5.32), (5.39)
T (I) cluster tree corresponding to the index set I; cf. §D.2.1
T (�)(I) subset of T (I); cf. (D.7)
T (I × J) block cluster tree corresponding to the index set I; cf. §D.2.1
Tr, T R

r , T H
r , T R

r,pairw truncation operator; cf. §D.3.2
tridiag{...} tridiagonal matrix; cf. (A.2)
uij components of the grid function u; cf. (1.6b)
U, U ′, Û upper (block-)triangular matrix
W, WΦ matrix of the third normal form (of the iteration Φ); cf. (2.12)
W [A] matrix W for the system Ax = b ; cf. Definition 2.9
Work(Φ,A) amount of work of the iteration Φ applied to Ax = b; cf. (2.29)
x vector; often solution of the equation Ax = b

List of Symbols and Abbreviations xxiii

x∗ solution of the equation Ax = b if the symbol x is used as a variable
x�, x

∗
� vectors x, x∗ at the level �; cf. (11.6a)

x0 starting value of the iteration
xm m-th iterate
xα, xi block of x corresponding to the index α or i; cf. (A.8a)
xα, xi components of a vector x
x, y spatial variables (x, y) ∈ Ω; cf. (1.1a)
Xτ support of the cluster τ ; cf. §D.2.1.2 and (D.8)
Z set of integers

Abbreviations and Algorithms

ALS alternating least squares method cf. §14.4
AMG algebraic multigrid method
AMLI algebraic multilevel iteration; cf. page 335
AOR accelerated overrelaxation
ART algebraic reconstruction technique
BCG, BiCG biconjugate gradient method; cf. §10.5.3
BEM boundary element method
Bi-CGSTAB biconjugate gradient stabalised method; cf. §10.5.3
BPX additive multigrid iteration; cf. §12.9.6
CG method of congujate gradients; cf. §10.2
CGS conjugate gradient squared method; cf. §10.5.3
CR method of congujate residuals; cf. §10.3
DDM domain decomposition method
FEM finite element method
FFT fast Fourier transform
FOM full orthogonalisation method; cf. §10.5.2
GMRES generalised minimal residual method; cf. §10.5.1
H-matrix hierarchical matrix
H-LU hierarchical LU decomposition
HOSVD higher order singular value decomposition; cf. §14.2.3
MAOR modified accelerated overrelaxation
MINRES minimal residual method
MSOR modified successive overrelaxation
OD method of orthogonal directions; cf. §10.4
ORTHODIR, ORTHOMIN, ORTHORES cf. §10.5.4
SAOR symmetric accelerated overrelaxation
SIRT simultaneous iterative reconstruction technique; cf. page 94
SOR successive overrelaxation; cf. §3.2.4
SVD singular value decomposition; cf. §A.6.4
SYMMLQ symmetric LQ method; cf. page 257
USSOR unsymmetric successive overrelaxation

Part I

Linear Iterations

The core of iterative methods for linear systems are linear iterations. Different
from direct methods, an infinite sequence of iterates is produced. Since, in practice,
only a finite number of iteration steps is performed, the unavoidable iteration error
depends crucially on the speed of convergence.

Chapter 1 starts with historical remarks. It introduces the Poisson model prob-
lem which will be a test example for the iterative methods described later on. Vector
and matrix notations are provided in §1.3. In the case of discretisations of partial
differential equations, it is important to consider the family of systems obtained for
different discretisation parameters (§1.4). A crucial question is whether the conver-
gence speed deteriorates with increasing matrix size. To get a first idea of an iterative
method, the Gauss–Seidel and SOR methods are presented in §1.6 with numeri-
cal results for the model problem. These examples involve sparse matrices (§1.7).
Except for Chapter D, we shall always assume that the underlying matrices are
sparse. This assumption ensures that the cost of one iteration step is proportional to
the matrix size; however, sparsity is not needed for convergence analysis.

Chapter 2 introduces general iterative methods. The concepts of consistency and
convergence are described in §2.1. The class of linear iterations is specified in §2.2.
For its description three normal forms are introduced. A first important result is the
convergence theorem in §2.2.5. The quality of a linear iteration depends on both
cost and convergence speed. The resulting efficacy is discussed in §2.3. Section 2.4
demonstrates how to test iterative methods numerically.

The convergence of a linear iteration depends on the properties of the under-
lying matrix. Chapter 3 investigates classical iterations (Richardson, Jacobi, Gauss–
Seidel, SOR) applied to positive definite matrices. The corresponding analysis of
general linear iterations is presented in Chapter 6.

Chapter 4 considers classical iterations assuming other structural matrix proper-
ties. In particular, §4.6 contains Young’s theorem on SOR for consistently ordered
matrices. It describes the improvement of the convergence order in explicit form.

The set of linear iterations forms an algebra containing various operations as
described in Chapter 5. Section 5.1 introduces the definition of an adjoint itera-
tion. This enables the construction of symmetric or even positive definite iterations.
Damping of linear iterations is discussed in §5.2. Addition of linear iterations is the
subject of §5.3, while the product of linear iterations is investigated in §5.4. Another
combination of iterative methods is the secondary iteration (§5.5). The left, right,
or two-sided transformations are studied in §5.6. Kaczmarz’ iteration (§5.6.3) and
Cimmoni’s iteration (§5.6.4) can be obtained by suitable transformations.

Chapter 6 collects the convergence results for positive definite iterations
(including possible perturbations of the positive definite matrix). In particular,
the symmetric Gauss–Seidel method and symmetric SOR are studied (§6.3).

Chapter 7 is concerned with the generation of linear iterations. A classical
technique is additive splitting of the underlying matrix (§7.2). Incomplete LU de-
composition (ILU, §7.3) is another possibility to generate an iteration by matrix
data only. Preconditioning in §7.4 is a particular case of a transformation aiming at
improving the convergence.

Modern linear iterations will be treated in Part III.

Chapter 1

Introduction

I recommend this [iterative] method to you for imitation. You
will hardly ever again eliminate directly, at least not when you
have more than 2 unknowns. The indirect procedure can be done
while half asleep, or while thinking about other things.

(C.F. Gauss in a letter to Gerling [148], Dec. 1823).

Abstract After some historical comments in Section 1.1, we introduce a model
problem (Section 1.2) serving as a first test example of the various iterative
methods. Deliberately, a simply structured problem is chosen since this allows us to
determine all required quantities explicitly. The role of the ordering of the unknowns
is explained. Often no ordering is needed. Section 1.3 introduces notation for
vectors and matrices. Furthermore, the description of difference schemes by
stencils is explained. Besides the behaviour of an iterative method for a single
system, its behaviour with respect to a whole family of systems is often more inter-
esting (Section 1.4). In Section 1.5, the cost of the direct solution by the Gauss
elimination is determined. This cost can be compared with the cost of the iterative
methods introduced later. In Section 1.6, the Gauss–Seidel and SOR iteration are
presented as first examples of linear iterations. Finally, in Section 1.7, sparsity of
the underlying matrix discussed.

1.1 Historical Remarks Concerning Iterative Methods

Iterative methods are almost 200 years old. The first iterative method for systems
of linear equations is due to Carl Friedrich Gauß (simplified spelling: Gauss). His
method of least squares led him to a system of equations that was too large for
the use of direct Gauss elimination.1 Today the iterative method described in Gauss
[147]2 would be called the blockwise Gauss–Seidel method. The value that Gauss
attributed to his iterative method can be seen in the excerpt from his letter [148]3 at
the top of the page.

1 The Gauss elimination is known since ancient times; the Chinese text Jiu Zhang Suanshu: Nine
Chapters on the Mathematical Art is written about 200 BC.
2 A translation of the neo-Latin title is ‘Supplement to the theory on the combination of observa-
tions subject to minimal errors’.
3 See also the English translation by Forsythe [137].

3© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_1

4 1 Introduction

Carl Gustav Jacobi [227]4 described a very similar method in 1845. In 1874
Phillip Ludwig Seidel, a student of Jacobi, wrote about ‘a method, to solve the
equations arising from the least squares method as well as general linear equations
by successive approximation’ [337].

Since the time that electronic computers became available for solving systems
of equations, the number of equations has increased by many orders of magnitude
and the methods mentioned above have proved to be too slow. After more than
100 years of stagnation in this field, Southwell [346, 347, 348, 349] experimented
with variants of the Gauss–Seidel method5 and, in 1950, David M. Young, Jr. [411]
succeeded in a breakthrough. His modification of the Gauss–Seidel method leads to
an important acceleration of the convergence. This so-called SOR iteration will be
described in §1.6 as an example of an iterative method. Since then, numerous other
methods have been developed. The modern ones will be described in Part III.

Concerning a historical view to the development of iterative techniques, we
recommend, e.g., the articles by Stiefel [353] (1952), Forsythe [138] (1953),
Axelsson [10, §7.1] (1976), and Young [413] (1989).

1.2 Model Problem: Poisson Equation

Fig. 1.1 Grid Ωh with inner grid
points (o) and boundary points (×).

During the time of Gauss, Jacobi and Seidel, the
equations of the least squares method have led to
a larger number of equations (e.g., obtained from
geodesic measurements). Today, in particular the
discretisations of partial differential equations give
rise to systems of a large number of equations.

Since the discretisation error is smaller the larger
the dimension of the system is, one is interested in
systems of millions of unknowns6. In the following
we shall often refer to a model problem representing
the simplest nontrivial example of a boundary value
problem. It is the Poisson equation with Dirichlet
boundary values:

−Δu(x, y) = f(x, y) for (x, y) ∈ Ω, (1.1a)
u(x, y) = ϕ(x, y) on Γ = ∂Ω. (1.1b)

4 The English translation of the title is ‘On a new solution method of linear equations arising from
the least squares method’.
5 Southwell used the term relaxation, since he considered the system of equations as a mechan-
ical arrangement. The solution of the system characterises the equilibrium. Otherwise, forces act
between nodes. One partial step of the Gauss–Seidel method leads to the local equilibrium in one
node, i.e., this node is relaxed.
6 The concrete size is time dependent, since it increases with the available computer capacity.

1.2 Model Problem: Poisson Equation 5

Here Δ = ∂2

∂x2 + ∂2

∂y2 abbreviates the two-dimensional7 Laplace operator. As the
underlying domain Ω, we choose the unit square

Ω = (0, 1) × (0, 1). (1.1c)

In (1.1a,b), the source term f and the boundary values ϕ are given, while the
function u is unknown.

To discretise the differential equation (1.1a–c), the domain Ω is covered with a
grid of step size h (cf. Figure 1.1). Each grid point (x, y) has the representation
x = ih, y = jh (0 < i, j < N), where

h = 1/N. (1.2)

More precisely, the grid is the set of inner grid points:

Ωh := {(x, y) = (ih, jh) : 1 ≤ i, j ≤ N − 1}. (1.3)

We abbreviate the desired values u(x, y)=u(ih, jh) with uij . An approximation
of the differential equation (1.1a) is given by the five-point formula

h−2 [4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1] = fij (1.4a)

with fij := f(ih, jh) for 1 ≤ i, j ≤ N − 1. The left-hand side in (1.4a) co-
incides with −Δu(ih, jh) up to a consistency error O(h2) when a sufficiently
smooth solution u of (1.1a,b) is inserted (cf. Hackbusch [193, §4.5]). For grid values
on the boundary, i.e., for i = 0, i = N , j = 0, or j = N , the values uij are known
from the boundary data (1.1b):

uij := ϕ(ih, jh) for i = 0, i = N, j = 0, or j = N. (1.4b)

The number of the unknowns uij is n := (N − 1)2 and corresponds of the
number of the inner grid points. In order to form the system of equations, we have
to eliminate the boundary values (1.4b), which possibly may appear in (1.4a). For
instance, if N ≥ 3, the equation corresponding to the index (i, j) = (1, 1) reads as

h−2[4u11 − u12 − u21] = g11 with g11 := f(h, h) + h−2[ϕ(0, h) + ϕ(h, 0)].

To write the equations in the common matrix formulation

Ax = b (1.5)

with an n × n matrix A and n-dimensional vectors x and b with n = (N − 1)2,
one is forced to represent the doubly indexed unknowns uij by a singly indexed
vector x. This implies that the (inner) grid points must be enumerated in some way.

7 The one-dimensional Laplace equation −u′′ = f leads to a too simple system which is not
suited as a test example. The two-dimensional problem has already the typical properties. The
three-dimensional counterpart would not be better.

6 1 Introduction

21 22 23 24

16 17 18 19 20

1514131211

6 7 8 9 10

54321

25

321

4 5

6 7 8

9 10

11 12 13

14 15

16 17 18

2019

21 22 23

2524

Fig. 1.2 Left: lexicographical ordering of the grid points. Right: chequer-board ordering.

Figure 1.2 (left) shows the lexicographical ordering. The exact definition of the
matrix A and of the right-hand side b can be seen from the following definition of
the matrix A and of the vector b by the lexicographical ordering for the Poisson
model problem with step size h = 1/N :

A := 0; {all entries of A are initialised by zero} (1.6a)
k := 0; {1 ≤ k ≤ n is the index with respect to the lexicographical ordering}
for j := 1 to N − 1 do for i := 1 to N − 1 do

begin k := k + 1; akk := 4 · h2; bk := f(ih, jh);
if i > 1 then ak−1,k := −h2 else bk := bk + h2 · ϕ(0, jh);
if i < N − 1 then ak+1,k := −h2 else bk := bk + h2 · ϕ(1, jh);
if j > 1 then ak,k−(N−1) := −h2 else bk := bk + h2 · ϕ(ih, 0);
if j < N − 1 then ak,k+(N−1) := −h2 else bk := bk + h2 · ϕ(ih, 1)

end;

Vice versa, the solution x of Ax = b has to be interpreted as

xk = uij = u(ih, jh) for
k = i+ (j − 1)(N − 1)

(1 ≤ i, j ≤ N − 1). (1.6b)

When x is interpreted as a grid function, we use the notation uij or u(x, y) with
x = ih, y = jh.

Remark 1.1. The reformulation of the two-dimensionally ordered unknowns into
a one-dimensionally ordered vector is rather unnatural. The reason should not be
sought in the two-dimensional nature of the problem, but rather in the questionable
idea of enumerating the vector components by indices 1 to n. We shall see that the
matrix A will never be required in the full presentation (1.6a).

If, nevertheless, one wants to represent the matrix A as (aij)1≤i,j<N , A should
be written as a block matrix. The vector x decomposes naturally into N−1 blocks

7

xj :=

⎡⎢⎣ xk+1

...
xk+N−1

⎤⎥⎦ =

⎡⎢⎣ u1,j
...

uN−1,j

⎤⎥⎦ with k := (j − 1)(N − 1)
for j = 1, . . . , N − 1,

(1.7)

corresponding to the j-th row in the grid Ωh. Accordingly, A takes the form of a
block-tridiagonal matrix built from (N − 1) × (N − 1) blocks T , which again are
tridiagonal (N − 1) × (N − 1) matrices:

A = h−2

⎡⎢⎢⎢⎢⎢⎣
T −I

−I T −I
.

−I T −I
−I T

⎤⎥⎥⎥⎥⎥⎦ , T =

⎡⎢⎢⎢⎢⎢⎣
4 −1

−1 4 −1
.

−1 4 −1
−1 4

⎤⎥⎥⎥⎥⎥⎦ . (1.8)

I is the (N − 1)×(N − 1) identity matrix. Unmarked matrix entries or blocks are
zeros or zero blocks, respectively. The representation (1.8) proves the next remark.

Remark 1.2. For the lexicographical ordering of the unknowns, the matrix A has a
block-tridiagonal structure.

The lexicographical ordering is by no means the only ordering one can think of.
Another frequently used approach is the chequer-board ordering (cf. Fig.1.2, right).

In that case, the components uij with an even sum i + j (‘black squares’) are
enumerated first and thereafter those with an odd sum i + j (‘red squares’) are
numbered lexicographically. In the course of the next chapters further orderings
will be mentioned. A broad collection of orderings of practical interest is given by
Duff–Meurant [117].

Exercise 1.3. In the case of the chequer-board ordering, A decomposes into two
blocks corresponding to the ‘red’ and ‘black’ indices. Prove that A has the block
structure (1.9) with a rectangular submatrix B and identity matrices Ir, Ib whose
block sizes are given by the numbers of the red and black grid points:

A =

[
Dr B
BT Db

]
, Dr = 4h−2Ir, Db = 4h−2Ib . (1.9)

1.3 Notation

1.3.1 Index Sets, Vectors, and Matrices

According to Remark 1.1, the indices of the vectors are considered as unordered
(unless we refer explicitly to a particular ordering). The (always finite) index set is
denoted by I . The elements of I are often denoted by Greek letters, e.g., α ∈ I .

1.2 Model Problem: Poisson Equation

8 1 Introduction

In the case of the model problem, the indices α ∈ I are either the pairs α = (i, j)
of the integers 1 ≤ i, j ≤ N − 1 or the grid points (x, y) = (ih, jh). We denote
the cardinality of I, i.e., the number elements of I, by #I .

In general, we use the field C of complex numbers. This includes the standard
case of the real field R. For real matrices, the Hermitian transposed matrix AH may
be replaced by AT. The neutral notation K stands for R or C:

K ∈ {R,C}. (1.10)

A vector b ∈ KI is a mapping b : I → K into the field K. The value of b
at α ∈ I is denoted as vector component bα. In programs, the notation b[α] is
often used. If the index is a pair, e.g., α = (i, j) , we write bi,j = b[i, j]. A vector,
composed of its components bα, is written in the form

b = (bα)α∈I .

If the index set is ordered, we identify the indices with 1, 2, . . . , n := #I . While
the indicesα, β, γ, . . . are used for nonordered indices, we use Latin letters i, j, k, . . .
in the ordered case.

In general, subscripts indicate the components of a vector. Sometimes, a subscript
enumerates vectors; e.g., the first column vector of a matrixAmay be written as a1.
In order to avoid confusion with vector components, indexed vectors will be written
in boldface as in the previous example. If not defined differently, eα abbreviates the
α-unit vector with the components (eα)β = δαβ . Here,

δαβ =
{
1 for α = β
0 for α �= β

}
(α, β ∈ I) (1.11)

is the Kronecker symbol.
Square matrices are mappings of the set I × I of index pairs into K. The set

of these matrices is denoted by KI×I . Matrices are always symbolised by upper-
case letters. The matrix entry of A corresponding to the index pair (α, β) ∈ I × I is
written as aαβ or aα,β , and occasionally as Aαβ . Alternatively, the notation
A[α, β] = a[α, β] is used. In particular, (A + B)αβ , (A−1)αβ , etc. is written for
the components of matrix expressions. The matrix composed of the entries aαβ is
denoted by

A = (aαβ)α,β∈I .

The symbol
I = (δαβ)α,β∈I

abbreviates the identity matrix, since it cannot be confused with the index set I .
In the case of rectangular (sub)matrices, the indices α and β belong to different

sets I and J : A = (aαβ)α∈I,β∈J is an I × J matrix. The set of these matrices is
denoted by KI×J .

For an ordered index set I , e.g., I = {1, . . . , n}, we use the standard index
notation aij or Aij .

1.3 Notation 9

1.3.2 Star Notation

In §1.2 the index set I = Ωh is used. In the following, Ωh can be more general
than in (1.3). It may be an arbitrary subset of the two-dimensional infinite grid
{(x, y) = (ih, jh) : i, j ∈ Z}. The vector x ∈ KI can be interpreted as a grid
function, i.e., of a mapping defined at the grid points. Since the letter x represents
the vector as well as the first component in the point (x, y) ∈ Ωh, we write u instead
of x ∈ KI in accordance with the equations (1.1a,b):

xα = u(x, y) for α = (x, y) ∈ I = Ωh. (1.12)

If it seems to be more favourable, the argument (x, y) = (ih, jh) is replaced with
the indices ‘ij’:

u(ih, jh) = uij for (ih, jh) ∈ Ωh .

The first index component x or i corresponds to the grid row (oriented from left
to right), the second component y or j to the grid column (from the bottom to the
top).

Mappings (matrices) defined in KI with I = Ωh can conveniently be described
by using the star or stencil notation. The nine-point formula⎡⎣a−1,1 a0,1 a1,1

a−1,0 a0,0 a1,0
a−1,−1 a0,−1 a1,−1

⎤⎦ (1.13a)

represents a matrix containing the nine coefficients apq (−1 ≤ p, q ≤ 1) of (1.13a)
in each row. The component of Ax associated with the index (ih, jh) ∈ Ωh is

1∑
p,q=−1

apq ui+p,j+q or
1∑

p,q=−1

aijpq ui+p,j+q , (1.13b)

where u = x according to (1.12). In the left part of (1.13b), the matrix entries are
independent of the grid point (as, e.g., for the Poisson model problem), whereas, in
the right part, they depend on (ih, jh) ∈ Ωh. a00 = aij00 is the diagonal element
A(ij),(ij) corresponding to the index ‘ij’. For example, the element a1,0 in (1.13a)
at the right position in the middle row is the matrix entry A(i,j),(i+1,j) by which the
right neighbour ui+1,j—corresponding to the grid point ((i+ 1)h, jh) ∈ Ωh—has
to be multiplied in (1.13b).

Although (ih, jh) ∈ Ωh, the index (i + p, j + q) appearing in (1.13b)—more
precisely the grid point ((i + p)h, (j + q)h)—may not belong to Ωh. In this case,
the term aijpqui+p,j+q in (1.13b) has to be ignored. The same effect is obtained by
the formal definition ui+p,j+q := 0.

The five-point formula of the Poisson model problem is

h−2

⎡⎣ −1
−1 4 −1

−1

⎤⎦ . (1.14)

Unmarked entries apq (as at the positions p, q = ±1 in (1.14)) are defined by zero.

10 1 Introduction

1.4 A Single System Versus a Family of Systems

Usually, a discretisation matrix A is embedded into a family {Ah}h∈H . Here H
is an infinite set with accumulation point 0 ∈ H . For instance, the Poisson model
problem is defined for all N ∈ N\{1} and the corresponding step sizes h := 1

N →0.
Statements about the convergence speed may be of the form 1 − O(hκ) (i.e.,
≤ 1 − Chκ for some fixed C). Such expressions only make sense if there is a
limit process h → 0.

Given a family {Aη}η∈F of matrices, one is interested in the behaviour of the
convergence rates (or of the computational cost for obtaining a certain accuracy)
with respect to a limit process η → 0 (or η → ∞). If the iteration method leads to
convergence estimates which are uniform with respect to η, we say that the iteration
method is robust with respect to η ∈ F . A standard parameter is the discretisation
size h → 0, but it is not the only one. For instance, increasing anisotropy can be
described byAη := B+ηC for η → 0, whereB andC are discretisations of ∂2/∂x2

and ∂2/∂y2, respectively. Increasing convection is modelled by Aη := ηB + C

(η → 0), where C is a discretisations of a differential operator of first order.

1.5 Amount of Work for the Direct Solution of a Linear System

Methods are called direct if they terminate after finitely many operations with an
exact solution (up to floating-point errors). The best known direct method is the
Gauss elimination. In the case of the model problem in §1.2, one may perform this
method without pivoting (cf. §C.4.4).

Concerning the valuation of the amount of computational work, we do not
distinguish between additions, subtractions, multiplications, or divisions. Each
is counted as one (arithmetic) operation. Traditionally, arithmetic operations for
indices, data transfer, and similar activities are not counted (cf. Björck [48, §1.1.4]).

Remark 1.4. In the general case, the Gauss elimination solving a system Ax=b of
n equations requires 2n3/3 + O(n2) operations. The storage amounts to n2 + n .

Proof. During the i-th elimination step, the i-th row contains n − i nonzero
elements, whose multiples have to be subtracted from n−i−1 matrix rows. Summa-
tion of these 2(n−i)2+O(n) operations over 1 ≤ i ≤ n yields the statement. ��

In the model case, n = (N − 1)2 = h−2 + O(h−1) implies the following.

Conclusion 1.5. A naive application of the Gauss elimination to the model problem
in §1.2 leads to 2N6/3 + O(N5) = 2h−6/3 + O(h−5) operations and requires
storage of N4 + O(N3) = h−4 + O(h−3).

1.5 Amount of Work for the Direct Solution of a Linear System 11

Halving the grid size h, yields the 64-fold computational work. Assuming one
second for the solution of grid size h, the same computation for the quartered grid
size h/4 consumes more than one hour!

However, the amount of work is less if the system matrix A ∈ Rn×n is a band
matrix. Here we assume the ordered index set I = {1, . . . , n}.

Definition 1.6. A is a band matrix of band width w ∈ N0 if aij = 0 holds for all
|i− j| > w.

A band matrix has at maximum 2w nonvanishing off-diagonals besides the main
diagonal. Concerning the properties of band matrices, we refer to Berg [44].

Remark 1.7. The matrix A arising from the model problem with lexicographical
ordering according to (1.7) is a band matrix of band width w = N − 1.

The major part of the amount of work given in Remark 1.4 consists of unneces-
sary multiplications and additions by zeros. During the i-th elimination step the i-th
row contains w + 1 nonzero elements. It is sufficient to eliminate the next w rows.
This leads to 2w2 operations. In total, one obtains the next result.

Remark 1.8. The amount of work for the Gauss elimination without pivoting for
solving a system with an n× n matrix of band width w amounts to

2nw2 + O(nw + w3).

The storage requirement reduces to 2n(w + 1) when only the 2w + 1 diagonals of
A and the right-hand side b are stored.

Conclusion 1.9. In the case of the model problem in §1.2, w is equal to N − 1.
Therefore, the banded Gauss elimination requires 2N4 +O(N3) = h−4 +O(h−3)
operations and storage of 2N3 + O(N2).

In the latter version, 2w + 1 diagonals of A are used, although the matrix A
in (1.8) has only five diagonals: the main diagonal, two side-diagonals at distance
1, and two further ones at distance N − 1. Unfortunately, one cannot exploit this
property for the Gauss elimination.

Remark 1.10. The zeros in the second to (N −2)-th side-diagonals of the matrix A
in (1.8) are completely filled during the elimination process by nonzeros (with the
exception of the first block).

This occurrence is called fill-in and indicates a principal disadvantage of Gauss
elimination when applied to sparse matrices. Here, we call an n× n matrix sparse,
if the number of nonzero entries is by far smaller than n2. Otherwise, the matrix
is called a fully populated or dense matrix. Because of the equivalence of Gauss
elimination to the triangular or LU decomposition (cf. Quarteroni–Sacco–Saleri
[314, §3], Björck [48, §1.2]), the same difficulties holds for the LU decomposition.

12 1 Introduction

Conclusion 1.11. The decomposition A = LU into a lower triangular matrix L
and an upper triangular matrix U for the sparse matrix A in (1.8) yields factors L
and U , which are full band matrices of width w = N − 1. The same holds for
Cholesky decomposition.

There are special direct methods solving the system described in §1.2 with
an amount of work between O(n) = O(N2) and O(n log n) = O(N2 logN).
Examples are the Buneman algorithm and the method of total reduction, both
described in Meis–Marcowitz [281, 282] (see also Bank [25], Bjørstad [49],
Buneman [87], Buzbee et al. [90], Duff–Erisman–Reid [116], Golub [154],
Hockney [223], and Schröder–Trottenberg [333]).

1.6 Examples of Iterative Methods

For the iterative solution of a system, one starts with an arbitrary starting vector x0

and computes a sequence of iterates xm for m = 1, 2, . . . :

x0 �−→ x1 �−→ x2 �−→ . . . �−→ xm �−→ xm+1 �−→ . . .

In the following, xm+1 is only dependent on xm, so that the mapping xm �→ xm+1

determines the iteration method. The choice of the starting value x0 is not part of
the iteration method.

The already mentioned Gauss–Seidel iteration for solving the system Ax = b
reads as follows:

for i := 1 to n do xm+1
i :=

⎛⎝bi −
i−1∑
j=1

aijx
m+1
j −

n∑
j=i+1

aijx
m
j

⎞⎠ /aii. (1.15)

Remark 1.12. (a) The Gauss–Seidel iteration (1.15) can be performed whenever all
diagonal entries satisfy aii �= 0.
(b) During the execution of the iteration, the variable xmi may be overwritten by
the new value xm+1

i .
(c) Different orderings (e.g., lexicographical or chequer-board ordering) yield
different results.

Each matrix A can uniquely be decomposed into the sum

A = D − E − F,

⎧⎨⎩
D diagonal matrix,
E strictly lower triangular matrix,
F strictly upper triangular matrix.

⎫⎬⎭ (1.16)

Here, E is called a lower triangular matrix if Eij = 0 for j > i, and a strictly lower
triangular matrix, if Eij = 0 for j ≥ i. The (strictly) upper triangular matrix is
defined analogously. The system of equations Ax = b is equivalent to

1.6 Examples of Iterative Methods 13

(D − E)x = b+ Fx. (1.17)

Replacing x by xm on the right-hand side and by xm+1 on the left-hand side,
we obtain the iterative description (1.18a) or (1.18b):

(D − E)xm+1 = b+ Fxm, i.e., (1.18a)

xm+1 = (D − E)−1(b+ Fxm). (1.18b)

Exercise 1.13. Prove that (1.18a,b) and (1.15) are equivalent, i.e., (1.18a) and
(1.18b) are the vector representations of the Gauss–Seidel iteration, while (1.15)
is the componentwise representation.

For a sparse matrix, one has to avoid definingA, b by (1.6a) and applying (1.15).
For the model problem (1.4a,b), we should use the original data fij = f [i, j] in
(1.4a) and the boundary data ϕ(ih, jh) = uij = u[i, j], which are stored at the
boundary points of the array u. According to (1.6b), we use the variables u and f
instead of x and b. The lexicographical Gauss–Seidel method for the model problem
then takes the following form:

procedure GaussSeidel(u, f); (1.19)
begin for j := 1 to N − 1 do for i := 1 to N − 1 do

u[i, j] := (h2 · f [i, j] + u[i− 1, j] + u[i+ 1, j] + u[i, j − 1] + u[i, j + 1])/4
end; {lexicographical ordering}

In the double loop of (1.19), the matrix A is explicitly represented by its nonzero
entries. The indexing is based on the ‘natural’ double indices. The lexicographical
ordering of the grid points is a consequence of the arrangement of the loops. For the
chequer-board ordering, the loop in (1.19) can be changed as follows:

w := 2; {red squares} for j := 1 to N − 1 do (1.20)
begin w := 3 − w; for i := w step 2 to N − 1 do

u[i, j] := (h2 · f [i, j] + u[i−1, j] + u[i+1, j] + u[i, j−1] + u[i, j+1])/4
end;
w := 1; {black squares} for j := 1 to N − 1 do . . . {same loop as in lines 2–4}

Since one may immediately store h2 ·f [i, j] instead of f [i, j], the next remark
follows.

Remark 1.14. In the case of the model problem, the Gauss–Seidel method (inde-
pendently of the ordering) requires 5n operations (4n additions and n divisions)
per iteration.

Remark 1.15. In the case of fij = −4 and ϕ(x, y) = x2 + y2, the corresponding
solution is uh(x, y) = x2 + y2, i.e., uij = (i2 + j2)h2. The simplest starting values
are u0ij = 0. In the following, the system (1.18a) with these data will be called the
Poisson model problem. In the course of the next chapters, various iterative methods
will be tested using this example.

14 1 Introduction

Table 1.1 shows the error

εm := max
{ ∣∣umij − (i2 + j2)h2

∣∣ : 1 ≤ i, j ≤ N − 1
}

lexicographical ordering chequer-board ordering
m um16,16 εm εm−1/εm um16,16 εm εm−1/εm
0 0.0 1.877 - 0.0 1.877 -
1 -0.002 1.760 0.93756 -0.001 1.759 0.93704
2 -0.004 1.646 0.93563 -0.003 1.589 0.90323
9 -0.018 1.276 - -0.017 1.202 -
10 -0.019 1.246 0.97637 -0.019 1.165 0.96903
99 +0.1102 0.404 - +0.1353 0.380 -
100 +0.1135 0.400 0.98989 +0.1385 0.376 0.98994
199 +0.3479 0.152 - +0.3585 0.142 -
200 +0.3494 0.151 0.99041 +0.3598 0.140 0.99041
299 +0.4421 0.058 - +0.4461 0.054 -
300 +0.4426 0.057 0.99039 +0.4466 0.053 0.99039

Table 1.1 Results of the Gauss–Seidel iteration for N = 32.

of the m-th iterate for
h = 1

32 and the value
um16,16 at the midpoint
(16h, 16h) = (12 ,

1
2) of

Ω. The values um16,16
should converge to

u

(
1

2
,
1

2

)
= 0.5.

The listed values in-
dicate the convergence
of the Gauss–Seidel
method, but its slow-
ness is disappointing.
After 100 iterations
the first decimal of um16,16 is still completely wrong! The third column contains
the so-called reduction factor : the ratio εm−1/εm of the successive errors. This
factor indicates how fast the error decreases per iteration. A comparison of the
data in Table 1.1 demonstrates that the ordering influences the results, but not the
convergence speed.

The Gauss–Seidel iteration (1.15) is equivalent to the representation

for i := 1 to n do xm+1
i :=xmi −

⎡⎣i−1∑
j=1

aijx
m+1
j +

n∑
j=i

aijx
m
j − bi

⎤⎦/aii, (1.21)

m um16,16 εm
εm−1

εm
m um16,16 εm

εm−1

εm

0 0.0 1.877 -
1 -0.016 1.777 0.9468 39 0.4805 0.050 -
2 -0.027 1.680 0.9451 40 0.4838 0.043 0.8566
9 -0.065 1.046 - 49 0.4964 0.0055 -
10 -0.068 0.962 0.9197 50 0.4970 0.0049 0.8830
19 0.1111 0.399 - 99 0.4999996 9.0510-7 -
20 0.1486 0.365 0.9155 100 0.4999997 7.2310-7 0.7977
29 0.4198 0.166 - 129 0.5-1.510-9 3.5710-9 -
30 0.4445 0.150 0.9062 130 0.5-1.210-9 2.8110-9 0.7881

Table 1.2 SOR (lexicographical ordering, N = 32, ω = 1.821465).

showing that the
new iterate xm+1

i

is obtained from
xmi by subtracting
a correction. In
contrast to (1.15),
the second sum in
(1.21) starts at j =
i. A seemingly in-
significant modifi-
cation is the mul-
tiplication of this
correction by a factor ω. The obtained method is called the successive over-
relaxation method and abbreviated with SOR. In the general case, it takes the form

15

for i := 1 to n do xm+1
i := xmi − ω

aii

⎡⎣i−1∑
j=1

aijx
m+1
j +

n∑
j=i

aijx
m
j − bi

⎤⎦. (1.22)

In the model case, the only change in (1.19) or (1.20) is the replacement of the
assignment u[i, j] := (. . .)/4 by

u[i, j] :=u[i, j]−ω
4

[
4u[i, j]−u[i−1, j]−u[i+1, j]−u[i, j−1]−u[i, j+1]−h2·f[i, j]

]
.

In §4.6 we shall prove that ω = 2/(1 + sin(πh)) (i.e., ω = 1.821. . . for N = 32)
is a suitable value. Table 1.2 shows the errors εm of the first 150 iterations for the
same example as above. Convergence is evidently much faster than for the Gauss–
Seidel method. Analysis of the above mentioned methods and constructing even
faster iterations are the foci of the next chapters.

1.7 Sparse Matrices Versus Fully Populated Matrices

The matrix of the Poisson model problem is an example of a sparse matrix. Discreti-
sation by finite differences and finite elements (cf. §E.2) generates sparse matrices
with the property that the number of nonzero entries per row is bounded,8 i.e., the
number

s(I) := max
α∈I

#{β ∈ I : aαβ �= 0} (1.23)

is bounded independently of the matrix size n = #I . This property is important
for the storage cost which is O(n). Operations as matrix-vector multiplication and
most of the operations involved by one step of an iteration method also have a
computational cost of O(n).

Formally, the iterative schemes also work for fully populated matrices. In this
case, the storage cost is n2 and basic operations as matrix-vector multiplication cost
O(n2) arithmetic operations. For large-scale matrices, the quadratic order O(n2) is
too large. Fortunately, there are other techniques which allow reducing O(n2) to9

O(n log∗ n) or even O(n). Appendix D will describe such a method.
There is a further reason why in the following we focus to sparse matrices. Fully

populated matrices typically arise from discretising nonlocal operators (integral
operators), e.g., by the boundary element method (cf. Sauter–Schwab [331]). The
corresponding linear systems have other properties than, e.g., the Poisson model
problem, and require other types of iterative methods (see the Picard iteration and
the multigrid iteration of the second kind in §11.9.1).

Assume that A is a sparse matrix satisfying (1.23). In the regular case of a differ-
ence scheme, the data of A are organised by a nine-point star (1.13a) or a five-point
formula (1.14). If the coefficients are constant as in the left-hand side of (1.13a) or

8 For the finite element method, this is a consequence of the shape regularity of the triangulation.
9 The asterix in log∗ n indicates an unspecified power.

1.6 Examples of Iterative Methods

16 1 Introduction

in (1.14), the data size is negligible. Procedure (1.19) shows how easily these data
can be used.

However, the standard case are more general sparse matrices arising from finite
element discretisations. In this case, the sparse matrix format is used for organising
the matrix data. For each i ∈ I, there is a subset

Iα := {β ∈ I : aαβ �= 0}

whose size is bounded by s(I) (cf. (1.23)). The entries aαβ �= 0 (α fixed) form
the vector aα ∈ KIα . Then the matrix data are described by the set

{(Iα,aα) : α ∈ I},

which can be implemented by a list. For instance, the SOR iteration (1.22) reads as

for α ∈ I do u[α] := u[α] − ω

aα[α]

⎡⎣∑
β∈Iα

aα[β] · u[β] − h2 · f [α]

⎤⎦,
where the loop follows the ordering of I .

Chapter 2

Iterative Methods

Abstract In this chapter we consider general properties of iterative methods.
Such properties are consistency, ensuring the connection between the iterative
method and the given system of equations, as well as convergence, guaranteeing
the success of the iteration. The most important result of this chapter is the charac-
terisation of the convergence of linear iterations by the spectral radius of the iteration
matrix (cf. §2.1.4). Since we only consider iterative methods for systems with
regular matrices, iterative methods for singular systems or those with rectangular
matrices will not be studied.1 The quality of a linear iteration depends on both the
cost and the convergence speed. The resulting efficacy is discussed in Section 2.3.
Finally, Section 2.4 explains how to test iterative methods numerically.

2.1 Consistency and Convergence

2.1.1 Notation

We want to solve the system of linear equations

Ax = b (A ∈ KI×I and b ∈ KI given) (2.1)

(cf. (1.10)). To guarantee solvability for all b ∈ KI , we generally assume:

A is regular. (2.2)

An iterative method producing iterates x1, x2, . . . from the starting value x0

can be characterised by a prescription xm+1 := Φ(xm). Φ depends on the data A
and b in (2.1). These parameters are explicitly expressed by the notation

1 Concerning this topic, we refer, e.g., to Björck [47], Marek [275], Kosmol–Zhou [241], Berman–
Plemmons [46], and Remark 5.17.

17© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_2

18 2 Iterative Methods

xm+1 := Φ(xm, b, A) (m ≥ 0, b in (2.1)). (2.3)

Since in most of the cases the matrix A is fixed, we usually write

xm+1 := Φ(xm, b)

instead of Φ(xm, b, A). By Φ(·, ·, A) we express the fact that we consider the
iteration (2.3) exclusively for the matrix A.

Definition 2.1. An iterative method is a (in general nonlinear) mapping

Φ : KI × KI × KI×I → KI .

By xm = xm(x0, b, A) we denote the iterates of the sequence generated by the
prescription (2.3) with a starting value x0 = y ∈ KI :

x0(y, b, A) := y ,

xm+1(y, b, A) := Φ(xm(y, b, A), b, A) for m ≥ 0.
(2.4)

If A is fixed, we write xm(y, b) instead of xm(y, b, A). If all parameters y, b, A
are fixed, we write xm.

If Φ is called an iteration method, we expect that the method is applicable to a
whole class of matrices A. Here ‘applicable’ means that Φ is well defined (includ-
ing the case that the sequence xm diverges).

Definition 2.2. (a) D(Φ) := {A : Φ(·, ·, A) well defined} is the domain of Φ.
(b) An iteration is called algebraic if the definition of Φ(·, ·, A) can be based
exclusively on the data of A ∈ D(Φ).

In the case of the Gauss–Seidel iteration ΦGS in (1.15), the domain is defined by
D(ΦGS) = {A ∈ KI×I : aii �= 0 for all i ∈ I, I finite}. Another extreme case is
D(Φ) = {A }, i.e., the iteration can only be applied to one particular matrix A .

2.1.2 Fixed Points

Definition 2.3. x∗=x∗(b, A) is called a fixed point of the iteration Φ corresponding
to b ∈ KI and A ∈ D(Φ) (or shortly: a fixed point of Φ(·, b, A)) if

x∗ = Φ(x∗, b, A).

If the sequence {xm} of the iterates generated by (2.3) converges, we may form
the limit in (2.3) and obtain the next lemma.

Lemma 2.4. Let the iteration Φ be continuous with respect to the first argument. If

x∗ := lim
m→∞x

m(y, b, A) (cf. (2.4))

exists, x∗ is a fixed point of Φ(·, b, A).

2.1 Consistency and Convergence 19

2.1.3 Consistency

Lemma 2.4 states that possible results of the iteration method have to be sought
in the set of fixed points. Therefore, a minimum condition is that the solution of
system (2.1) with the right-hand side b ∈ KI be a fixed point with respect to b. This
property is the subject of the following definition.

Definition 2.5 (consistency). The iterative method Φ is called consistent to the
system (2.1) with A ∈ D(Φ) if, for all right-hand sides b ∈ KI , any solution
of Ax = b is a fixed point of Φ(·, b, A).

According to Definition 2.5, consistency means: For all b, x ∈ KI and all
matrices A ∈ D(Φ), the implication Ax = b ⇒ x = Φ(x, b, A) holds. The re-
verse implication would yield an alternative (nonequivalent) form of consistency:

Ax = b for all fixed points x of Φ(·, b, A) and for all b ∈ KI, A ∈ D(Φ). (2.5)

Note that both variants of consistency do not require the regularity assumption
(2.2). Even without (2.2), there may be a solution of Ax = b for certain b.
Then Definition 2.5 implies the existence of a fixed point of Φ(·, b). Vice versa,
(2.5) states the existence of a solution of Ax = b as soon as Φ(·, b, A) has a fixed
point. The regularity of A will be discussed in Theorem 2.8.

2.1.4 Convergence

A natural definition of the convergence of an iterative method Φ seems to be

lim
m→∞x

m(y, b, A) exists for all y, b ∈ KI , (2.6)

where xm(y, b, A) are the iterates defined in (2.4) corresponding to the starting
value x0 := y, while A ∈ D(Φ) is a fixed matrix. Since the starting value may
be chosen arbitrarily, it may happen that an iteration satisfying (2.6) converges, but
to different limits depending on the starting value. Therefore, the independence of
the limit has to be incorporated into the definition of convergence. This yields the
following definition, which is stronger than (2.6).

Definition 2.6. Fix A ∈ D(Φ). An iterative method Φ(·, ·, A) is called convergent
if for all b ∈ KI , there is a limit x∗(b, A) of the iterates (2.4) independent of the
starting value x0 = y ∈ KI .

Note that consistency is a property of Φ for all A ∈ D(Φ), whereas convergence
is required for a particular A ∈ D(Φ). Therefore Φ(·, ·, A) may be convergent for
some A, while Φ(·, ·, A′) diverges for another A′.

20 2 Iterative Methods

2.1.5 Convergence and Consistency

Remark 2.7. In the following, we shall often assume that the iterative method Φ is
convergent and consistent. The term ‘convergent and consistent’ refers to a matrix
A ∈ D(Φ) and means precisely: Φ is consistent and, for A ∈ D(Φ), the particular
iteration Φ(·, ·, A) is convergent.

It will turn out that the chosen definitions of the terms ‘convergence’ and
‘consistency’ of Φ are almost equivalent to the combination of the alternative
definitions in (2.5) and (2.6).

Theorem 2.8. Let Φ be continuous in the first argument. Then Φ is consistent and
convergent if and only if A is regular and Φ fulfils the conditions (2.5) and (2.6).

Proof. (i) Assume Φ to be consistent and convergent. (2.6) follows from Defini-
tion 2.6. If A is singular, the equation Ax = 0 would have a nontrivial solution
x∗∗ �= 0 besides x∗ = 0. By consistency, both are fixed points of Φ with
respect to b = 0. Therefore, choosing the starting values x0 = x∗ and x0 = x∗∗,
we obtain the constant sequences xm(x∗, 0) = x∗ and xm(x∗∗, 0) = x∗∗. The
convergence definition states that the limits x∗ and x∗∗ coincide contrary to the
assumption. Hence, A is regular. It remains to prove (2.5). The preceding argument
shows that a convergent iterative method can have only one fixed point with respect
to b. Because of the regularity of A, there is a solution of Ax = b that, thanks to
consistency, is the unique fixed point of Φ with b. Hence, (2.5) is proved.

(ii) Assume Φ(x, b) to be continuous in x and that (2.5) and (2.6) are fulfilled.
Furthermore, let A be regular. Due to Lemma 2.4, x∗ := limxm(y, b) is a fixed
point of Φ with respect to b and therefore, by (2.5), a solution of Ax = b. Because
of the regularity ofA, the solution of the system is unique and hence also the limit of
xm(y, b), which thereby cannot depend on y. Hence, Φ is convergent in the sense of
Definition 2.6. Convergence leads to the uniqueness of the fixed point with respect
to b (cf. part (i)). Since, by (2.5), this fixed point is the uniquely determined solution
of Ax = b, Φ is consistent. ��

2.1.6 Defect Correction as an Example of an Inconsistent Iteration

In this monograph, all iterations will be assumed to be consistent. Usually, incon-
sistent iterations are an involuntary consequence of a bug in the implementation.
However, there are examples where inconsistent iterations are of practical relevance.
Assume that both Ax = b and By = c are discretisations of the same partial dif-
ferential equation. Assume further that Ax = b is simpler to solve than By = c,
but the error of the discretisation by B is smaller than the discretisation error of A.
Then there are combinations of both discretisations so that the overall treatment is
as simple as for A but yielding the accuracy of B.

21

The standard defect correction xm+1 = xm − A−1(Bxm − c) can be stopped
after a few iteration steps since the desired discretisation accuracy is reached (cf.
[194, §14.2.2], [197, §7.5.9.2]). This is even true if the matrixB is singular or almost
singular (this is the case of an unstable but consistent2 discretisation). An extreme
case of solving a problem with an unstable discretisation of high consistency order
is demonstrated in [178].

Another mixing of both discretisation is described in [194, §14.3.3], where parts
of the multigrid iteration for Ax = b use B in the smoothing step. The limit x∗ of
the iterates solves neither Ax∗ = b nor Bx∗ = c.

2.2 Linear Iterative Methods

One would expect iterative methods to be linear in x, b, since they solve linear equa-
tions. In fact, most of the methods described in this book are linear, but there are also
important nonlinear iterations as, e.g., discussed in Part II.

2.2.1 Notation, First Normal Form

Definition 2.9 (linear iteration, iteration matrix). An iterative method Φ is called
linear if Φ(x, b) is linear in (x, b), i.e., if there are matrices M and N such that

Φ(x, b, A) =M [A]x+N [A] b.

In most of the cases, A is fixed and we use the shorter form

Φ(x, b) =Mx+Nb. (2.7)

Here, the matrix M =M [A] is called the iteration matrix of the iteration Φ.

Iteration (2.3) takes the form (2.8), which represents the first normal form of the
iteration Φ :

xm+1 :=Mxm +Nb (m ≥ 0, b in (2.1)). (2.8)

Whenever possible, we shall denote the iteration matrix of a specific iteration
method ‘xyz’ by Mxyz; e.g., MGS belongs to the Gauss-Seidel method. Similarly
for Nxyz . When we refer to the mapping Φ, we write MΦ, NΦ, etc.

Remark 2.10. Assume (2.2). If N = N [A] is singular, there is some x∗ �= 0 with
Nx∗ = 0 and b := Ax∗ �= 0. Starting iteration (2.8) with x0 = 0 yields xm = 0
and hence limxm = 0. In Corollary 2.17b we shall state that, in this case, the
iteration is not convergent.

The iteration Φ(·, ·, A) is algebraic in the sense of Definition 2.2b if and only if
the matrices M and N are explicit functions of A.

2 Concerning the terms ‘consistent’ and ‘consistency order’, we refer to Hackbusch [197, §§6,7].

2.1 Consistency and Convergence

22 2 Iterative Methods

2.2.2 Consistency and Second Normal Form

For a linear and consistent iteration Φ, each solution of Ax = b must be a fixed
point with respect to b: x = Mx + Nb. Each x ∈ KI can be the solution of
Ax = b (namely, for b := Ax). Hence,

x =Mx+Nb =Mx+NAx

holds for all x and leads to the matrix equation

M [A] +N [A]A = I, (2.9)

or in short,
M +NA = I,

establishing a relation between M and N in (2.8). This proves the next theorem.

Theorem 2.11 (consistency). A linear iteration Φ is consistent if and only if the
iteration matrix M can be determined from N by

M [A] = I −N [A]A for all A ∈ D(Φ). (2.9′)

If, in addition, A is regular, N can be represented as a function of M :

N [A] = (I −M [A])A−1. (2.9′′)

Combining formulae (2.8) and (2.9′), we can represent linear and consistent
iterations in their second normal form:

xm+1 := xm −N [A] (Axm − b) (m > 0, A, b in (2.1)). (2.10)

In the sequel, the matrix

N = N [A] = NΦ = NΦ[A]

will be called the ‘matrix of the second normal form of Φ’. Equation (2.10) shows
that xm+1 is obtained from xm by a correction which is the defect Axm − b
of xm multiplied by N . The fact that the defect of xm vanishes if and only if it
is a solution of Ax = b, proves the next remark.

Remark 2.12. The second normal form (2.10) with arbitrary N ∈ KI×I represents
all linear and consistent iterations.

Since consistent linear iterations are the standard case, we introduce the follow-
ing notation for the set of these iterations:

L := {Φ : KI × KI × KI×I → KI consistent linear iteration, #I < ∞}. (2.11)

2.2 Linear Iterative Methods 23

2.2.3 Third Normal Form

The third normal form of a linear iteration reads as follows:

W [A] (xm − xm+1) = Axm − b (m > 0, A, b in (2.1)). (2.12)

W = W [A] = WΦ = WΦ[A] is called the ‘matrix of the third normal form of Φ’.
Equation (2.12) can be understood in the following algorithmic form:

solve Wδ = Axm − b and define xm+1 := xm − δ. (2.12′)

This represents a definition of xm+1 as long asW is regular. Under this assumption,
one can solve for xm+1. A comparison with (2.10) proves the following.

Remark 2.13. If W in (2.12) is regular, iteration (2.12) coincides with the second
normal form (2.10), where N is defined by

N =W−1. (2.13)

Vice versa, the representation (2.10) with regular N can be rewritten as (2.12) with
W = N−1.

We shall see that for the interesting cases, N must be regular (cf. Remark 2.18).
Combining (2.9′) and (2.13) yields

M [A] = I −W [A]−1A. (2.13′)

2.2.4 Representation of the Iterates xm

By the notation xm(x0, b, A) in (2.4) we express the dependency on the starting
value x0 and on the the data b, A of the system (2.1). The explicit representation
of xm in terms of x0 and b is given in (2.14).

Theorem 2.14. The linear iteration (2.7) produces the iterates

xm(x0, b, A) =M [A]mx0 +

m−1∑
k=0

M [A]kN [A] b (2.14)

for m ≥ 0 and A ∈ D(Φ) .

Proof. For the induction start at m = 0, Eq. (2.14) takes the form x0(x0, b) = x0

in accordance with (2.4). Assuming (2.14) for m− 1, we obtain from (2.7) that

xm(x0, b) =Mxm−1 +Nb =M

(
Mm−1x0 +

m−2∑
k=0

MkNb

)
+Nb

=Mmx0 +

m−1∑
k=1

MkNb+Nb =Mmx0 +

m−1∑
k=0

MkNb. ��

24 2 Iterative Methods

In the following, em denotes the (iteration) error of xm:

em := xm − x, where x solves Ax = b. (2.15)

Assuming consistency, we have x = Mx + Nb for the solution x in (2.15).
Forming the difference with (2.8): xm+1=Mxm+Nb, we attain the simple relation

em+1 =Mem (m ≥ 0), e0 = x0 − x, (2.16a)

between two successive errors. Therefore the iteration matrix is the amplification
matrix of the error. A trivial conclusion is

em =Mme0 (m ≥ 0). (2.16b)

The expression Ax− b is called the defect of a vector x. In particular,

dm := Axm − b (2.17)

denotes the defect of the m-th iterate xm.

Exercise 2.15. Prove: (a) The defect d̄ = Ax̄ − b and the error ē = x̄ − x fulfil
the equation A ē = d̄ .
(b) Let Φ ∈ L (cf. (2.11)) and assume that A is regular. Then the defects satisfy

dm+1 = AMA−1dm, d0 := Ax0 − b, dm = (AMA−1)md0.

2.2.5 Convergence

A necessary and sufficient convergence criterion can be formulated by the spectral
radius ρ(M) of the iteration matrix (cf. Definition A.17).

Theorem 2.16 (convergence theorem, convergence rate). A linear iteration (2.7)
with the iteration matrix M =M [A] is convergent if and only if

ρ(M) < 1. (2.18)

ρ(M) is called the convergence rate of the iteration Φ(·, ·, A).

In the sequel, the terms convergence rate, convergence speed, and iteration speed
are used synonymously for ρ(M). Some authors define the convergence rate as the
negative logarithm − log(ρ(M)) (cf. (2.30a) and Varga [375], Young [412]).

Proof. (i) Let iteration (2.7) be convergent. In Definition 2.6 we may choose b := 0
and exploit the representation (2.14): xm = Mmx0. The starting value x0 := 0
yields the limit x∗= 0, which by the convergence definition must hold for any start-
ing value. If ρ(M) ≥ 1, one could choose x0 �= 0 as the eigenvector corresponding
to an eigenvalue λ with |λ| = ρ(M) ≥ 1. The resulting sequence xm = λmx0

cannot converge to x∗ = 0. Hence, inequality (2.18) is necessary for convergence.

2.2 Linear Iterative Methods 25

(ii) Now let (2.18) be valid: ρ(M) < 1. By Lemma B.28, Mmx0 converges
to zero, while Theorem B.29 proves

∑m−1
k=0 M

k → (I − M)−1. Thanks to the
representation (2.14), xm tends to

x∗ := (I −M)−1Nb. (2.19)

Since this limit does not depend on the starting value, the iteration is convergent. ��

The proof already contains the first statement of the following corollary.

Corollary 2.17. (a) If the iterative method (2.7) is convergent, the iterates converge
to (I −M)−1Nb.
(b) If the iteration is convergent, then A and N = N [A] are regular.
(c) If, in addition, the iteration is consistent, the iterates xm converge to the unique
solution x = A−1b.

Proof. (b) If either A or N are singular, the product AN is singular and ANx = 0
holds for some x �= 0. As M = I − NA, x is an eigenvector of M with the
eigenvalue 1. Hence ρ(M) ≥ 1 proves the divergence of the iteration. This proves
part (b).

(c) By consistency and part (b), there is a representation (2.10) with regular N
and A, so that (I −M)−1N = A−1 follows from (2.9). (2.19) proves part (c). ��

Remark 2.18. Since only convergent and consistent iterations are of interest and
since in this case, by Corollary 2.17b,A andN are regular, the representation (2.9′′)
of N and the third normal form (2.4) hold with the matrix W = N−1.

The convergence xm → x is an asymptotic statement for m → ∞ that allows
no conclusion concerning the error em = xm − x for some fixed m. The values
of um16,16 given in Tables 1.1–1.2 even deteriorate during the first steps before they
converge monotonically to the limit 1

2 . Often, one would like to have a statement for
a fixed iteration number m. In this case, the convergence criterion (2.18) has to be
replaced with a norm estimate.

Theorem 2.19. Let ‖·‖ be a corresponding matrix norm. A sufficient condition for
convergence of an iteration is the estimate

‖M‖ < 1 (2.20)

of the iteration matrix M . If the iteration is consistent, the error estimates (2.21)
hold:

‖em+1‖ ≤ ‖M‖ ‖em‖ , ‖em‖ ≤ ‖M‖m ‖e0‖. (2.21)

Proof. (2.20) implies (2.18) (cf. (B.20b)). (2.21) is a consequence of (2.16a,b). ��

‖M‖ is called the contraction number of the iteration (with respect to the norm
‖·‖). In the case of (2.20), the iteration is called monotonically convergent with
respect to the norm ‖·‖, since ‖em+1‖ < ‖em‖. If the norm ‖·‖ fulfils the equality
ρ(M) = ‖M‖, the terms ‘convergence’ and ‘monotone convergence’ coincide.

26 2 Iterative Methods

2.2.6 Convergence Speed

Inequality (2.21), i.e., ‖em+1‖ ≤ ζ ‖em‖ with ζ := ‖M‖ < 1, describes linear
convergence. Faster convergence than linear convergence is only attainable by non-
linear methods (cf. §10.2.3). The contraction number ζ depends on the choice of the
norm. According to (B.20b), the contraction number ζ is always larger or equal to
the convergence rate ρ(M). On the other hand, Lemma B.26 ensures that for a suit-
able choice of the norm, the contraction number ζ approximates the convergence
rate ρ(M) arbitrarily well.

The contraction number as well as the convergence rate determine the quality
of an iterative method. Both quantities can be determined from the errors em as
follows.

Remark 2.20. The contraction number is the maximum of the ratios ‖e1‖/‖e0‖
taken over all starting values x.

Proof. Use (2.16b) for m = 1 and Exercise B.10d. ��

Exercise 2.21. Prove: (a) In general, Remark 2.20 becomes wrong if ‖e1‖/‖e0‖ is
replaced with ‖em+1‖/ ‖em‖ for some m > 0.
(b) The latter quotient takes the maximum

ζm+1 :=

{
max{‖Mx‖ / ‖x‖ : x ∈ range(Mm)\{0}} if Mm �= 0,
0 otherwise,

which can be interpreted as the matrix norm of the mapping x �→ Mx restricted to
the subspace Vm := range(Mm) := {Mmx : x ∈ KI}.
(c) The inclusion Vm+1 ⊂ Vm holds with an equality sign at least for m ≥ #I .
(d) ρ(M) ≤ ζm+1 ≤ ζm ≤ ζ0 = ζ := ‖M‖ holds for m ≥ 0.
(e) For regular M, one has ζm = ζ for all m.

Exercise 2.21 demonstrates that the contraction number is a somewhat too coarse
term: It may happen that the contraction number gives a too pessimistic prediction
of the convergence speed. A more favourable estimate can be obtained by the nu-
merical radius r(·) of the matrix Mm (cf. §B.3.4). The inequalities

‖Mm‖2 ≤ 2 r(Mm) (cf. (B.28d)) (2.22a)

and (2.16b) yield the error estimate

‖em‖2 ≤ 2 r(Mm) ‖e0‖2 (m ≥ 0) (2.22b)

with respect to the Euclidean norm. If ‖·‖C is the norm defined by (C.5a) with a
positive definite matrix C, one analogously proves the inequality

‖em‖C ≤ 2 r(C1/2MmC−1/2)‖e0‖C (m ≥ 0). (2.22c)

For the practical judgment of the convergence speed from ‘experimental data’,
i.e., from a sequence of errors em belonging to a special starting value x0, one
may use the reduction factors

2.2 Linear Iterative Methods 27

ρm+1,m := ‖em+1‖/‖em‖ . (2.23a)

These numbers can, e.g., be found in the last column of Tables 1.1–1.2. More
interesting than a single value ρm+1,m is the geometric mean

ρm+k,m := [ρm+k,m+k−1 · ρm+k−1,m+k−2 · . . . · ρm+1,m]
1/k
,

which due to definition (2.23a) can more easily be represented by

ρm+k,m :=
[
‖em+k‖/‖em‖

]1/k
. (2.23b)

The properties of ρm+k,m are summarised below.

Remark 2.22. (a) Denote the dependence of the magnitude ρm+k,m on the starting
value x0 by ρm+k,m(x0). Then

lim
k→∞

max{ρm+k,m(x0) : x0 ∈ KI} = ρ(M) for all m.

(b) Even without maximisation over all x0 ∈ KI ,

lim
k→∞

ρm+k,m(x0) = ρ(M) for all m (2.23c)

holds, provided that x0 does not lie in the subspace U ⊂ KI of dimension <#I
spanned by all eigenvectors and possibly existing principal vectors of the matrix
M corresponding to eigenvalues λ with |λ| < ρ(M). (2.23c) holds almost always
because a stochastically chosen starting value x0 lying in a fixed lower dimensional
subspace has probability zero.
(c) The reduction factors ρm+1,m(x0) tend to the spectral radius of M :

lim
m→∞ ρm+1,m(x0) = ρ(M) (2.23d)

for all x0 /∈ U with U in part (b) if and only if there is exactly one eigenvalue λ ∈
σ(M) with |λ| = ρ(M), and if, for this eigenvalue, the geometric and algebraic
multiplicities coincide. Sufficient conditions are: (i) λ ∈ σ(M) with |λ| = ρ(M)
is a single eigenvalue, or (ii) M is a positive matrix (cf. (C.11a)).
(d) Choose a norm ‖·‖ = ‖·‖C with C > 0 (cf. (2.22c)) in (2.23a). If C

1
2MC− 1

2

is Hermitian, ρm+1,m(x0) (x0 /∈ U) converges monotonically increasing to ρ(M).

Proof. (i) Use

ρ(M) ≤ max
x0∈KI

ρm+k,m(x0) ≤ max
x0∈KI

ρk,0(x
0) ≤ ‖Mk‖1/k

and ‖Mk‖1/k → ρ(M) according to Theorem B.27. This proves part (a).
(ii) Let I0 ⊂ I be the nonempty index subset I0 := {i ∈ I : |Jii| = ρ(M)},

where Jii are the diagonal elements of the Jordan normal form M = TJ T−1 (cf.
(A.15a,b)). The subspace U := {x : (T−1x)i = 0 for all i ∈ I0} is the maximal
subspace with the property limm→∞ [‖Mmx‖ / ‖x‖]1/m < ρ(M). Its dimension
is dim(U) = #I − #I0 < #I .

28 2 Iterative Methods

(iii) Define M̂ = C1/2MC−1/2 and êm := C1/2em. Since the norms are
related by ‖em‖C = ‖êm‖2, we obtain for m ≥ 1 that

‖êm‖22 = ‖M̂mê0‖22 =
〈
M̂mê0, M̂mê0

〉
=
〈
M̂m+1ê0, M̂m−1ê0

〉
=
〈
êm+1, êm−1

〉
≤ ‖êm+1‖2‖êm−1‖2.

Hence it follows that ρm+1,m = ‖em+1‖
‖em‖ = ‖êm+1‖2

‖êm‖2
≥ ‖êm‖2

‖êm−1‖2
= ρm,m−1. ��

Remark 2.22 allows us to view the value ρm+k,m and possibly also ρm+1,m for
sufficiently large m as a good approximation of the spectral radius. This viewpoint
can be reversed.

Remark 2.23. The convergence rate ρ(M) is a suitable measure for judging
(asymptotically) the convergence speed. This holds even if convergence is required
with respect to a specific norm.

Proof. By Theorem B.27, for each ε > 0 there is some m0 such that m ≥ m0

implies that ρ(M) ≤ ‖Mm‖1/m ≤ ρ(M) + ε and ‖em‖ ≤ (ρ(M) + ε)m‖e0‖. ��

2.2.7 Remarks Concerning the Matrices M , N , and W

Considerations in §§2.2.5–2.2.6 show the close connection between the iteration
matrix M and the convergence speed. M directly describes the error reduction or
amplification (cf. (2.16a)). Roughly speaking, the convergence is better the smaller
M is. M = 0 would be optimal. However, then Φ is a direct method, since x1 is
already the exact solution (its error is e1 =Me0 = 0).

The matrix N transforms the defect Axm − b into the correction xm − xm+1.
The optimal case3 M = 0 mentioned above corresponds to N [A] =A−1. There-
fore, one may regard N [A] as an approximate inverse of A.

Concerning implementation, often the matrix W of the third normal form (2.12)
is the important one. By the relation W = N−1 (cf. (2.13)), W = A would be
optimal. However, then computing the correction xm − xm+1 is equivalent to the
direct solution of the original equation. Therefore, one has to find approximations
W of A, so that the solution of the system Wδ = d is sufficiently easy.

In the case of some of the classical iterations discussed in §3, we have explicit
expressions for N or W and may use these matrices for the computation. On the
other hand, there will be iterative methods, for which the algorithm is implemented
differently without reference to the matrices M, N, W (see, e.g., Propositions 3.13
or 5.25).

3 Consistent linear iterations with M = 0 can be called direct solvers. Vice versa, any direct
solver defines a linear iteration with M = 0.

2.2 Linear Iterative Methods 29

2.2.8 Three-Term Recursions, Two- and Multi-Step Iterations

So far we considered one-step iterations, i.e., xm+1 is computed in one step from
xm. Sometimes linear iterations occur, in which computing xm+1 involves xm

and xm−1:

xm+1 =M0 x
m +M1 x

m−1 +N0 b (m ≥ 1). (2.24)

For the starting procedure, one needs two initial values x0 and x1. Such two-step
iterations are also called three-term recursions since they involved the three terms
xm+1, xm, xm−1. Formally, a three-term recursion can be reduced to a standard
one-step iteration acting in the space KI × KI :[

xm+1

xm

]
= M

[
xm

xm−1

]
+

[
N0b
0

]
with M :=

[
M0 M1

I 0

]
. (2.25)

Now the convergence condition

ρ(M) < 1 (2.26a)

ensures that recursion (2.25) has a limit that is also the fixed point. The consistency
condition takes the form

I −M0 −M1 = N0A . (2.26b)

Exercise 2.24. The limit of the iteration (2.25) has the general form
[
ξ
η

]
∈ KI ×KI .

Show that the conditions (2.26a,b) imply ξ = η = A−1b.

Exercise 2.25. Given an iteration xm+1 = Mxm + Nb, define the matrices M0,
M1, N0 in (2.24) by

M0 := ΘM + ϑI,

M1 := (1 −Θ − ϑ) I,

N0 := ΘN

with Θ, ϑ ∈ R. The three-term recursion (2.24) takes the form

xm+1 = Θ
[
(Mx

m
+Nb) − x

m−1
]
+ ϑ(xm − xm−1) + xm−1. (2.27)

Prove that (a) M has the spectrum

σ(M) =

{
1

2
(Θλ+ ϑ) ±

√
1 −Θ − ϑ+

1

4
(Θλ+ ϑ)

2
: λ ∈ σ(M)

}
.

(b) Conclude from ρ(M) < 1 and Θ > 0, ϑ ≥ 0, Θ + ϑ ≤ 1 that ρ(M) < 1.

30 2 Iterative Methods

2.3 Efficacy of Iterative Methods

The convergence rate cannot be the only criterion for the quality of an iterative
method because one has also to take into account the amount of computational
work of Φ.

2.3.1 Amount of Computational Work

The representation (2.12′) suggests that any iteration requires at least computing the
defect Axm−b. For a general n×nmatrix A ∈ KI×I (n=#I), multiplyingAxm

would require 2n2 operations. However, as discussed in §1.7, it is more realistic
to assume that A is sparse; i.e., the number s(n) of the nonzero elements of A
is distinctly smaller than n2. For matrices arising from discretisations of partial
differential equations, one has

s(n) ≤ CAn, (2.28)

where CA is a constant with respect to n, but depends on the matrix A. For the five-
point formula (1.4a) of the model problem, inequality (2.28) holds with CA = 5.
Under assumption (2.28), one can perform matrix-vector multiplication in 2CAn
operations.

After evaluating d := Axm − b, one has still to solve the system Wδ = d
in (2.12′). For any practical iterative method, we should require that this part
consumes only O(n) operations, so that the total amount of work is also of the
order O(n). We relate the constant in O(n) to CA in (2.28) and obtain the
following formulation:

The number of arithmetic operations per iteration
step of the method Φ is Work (Φ,A) ≤ CΦCAn . (2.29)

Here, Work (Φ,A) is the amount of work of the Φ iteration applied toAx = b. Note
that CΦ depends on the iteration Φ but not on A, whereas CAn indicates the degree
of sparsity of A. Therefore, the constant CΦ may be called the cost factor of the
iteration Φ.

So far we only discussed the cost arising by performing one iteration step of Φ.
Depending on the method, some initialisation may be necessary for precomputing
some quantities required by Φ . Let Init(Φ,A) be the corresponding cost.

Remark 2.26. If m iteration steps are performed, the effective cost per iteration is

Work (Φ,A) + Init(Φ,A)/m.

In the standard case, the initialisation uses only the data of A. Therefore it pays if
many systems Axi = bi are solved with different right-hand sides bi but the same
matrix A.

2.3 Efficacy of Iterative Methods 31

2.3.2 Efficacy

An iteration Φ can be called ‘more effective’ than Ψ if for the same amount of
work Φ is faster, or if Φ has the same convergence rate, but consumes less work
than Ψ . To obtain a common measure, we ask for the amount of work that is
necessary to reduce the error by a fixed factor. This factor is chosen as 1/e, since
the natural logarithm is involved. According to Remark 2.23, we use the conver-
gence rate ρ(M) for the (asymptotic) description of the error reduction per iteration
step. After m iteration steps, the asymptotic error reduction is ρ(M)m. In order
to ensure ρ(M)m ≤ 1/e, we have to choose m ≥ −1/ log(ρ(M)), provided that
convergence holds: ρ(M) < 1 ⇔ log(ρ(M)) < 0. Therefore, we define

It(Φ) := −1/ log(ρ(M)). (2.30a)

It(Φ) represents the (asymptotic) number of the iteration steps for an error
reduction by the factor of 1/e. Note that, in general, It(Φ) is not an integer.

Remark 2.27. (a) Convergence of Φ is equivalent to 0 ≤ It(Φ) < ∞. The value
It(Φ) = 0 corresponds to ρ(M) = 0, i.e., to a direct method.
(b) Let Φ ∈ L . To reduce the iteration error (asymptotically) by a factor of ε < 1,
we need the following number of iteration steps:

It(Φ, ε) := −It(Φ) log(ε) (2.30b)

(c) If ρ(M) = ‖M‖ or ρ(M) in (2.30a) is replaced with ‖M‖ < 1, one can
guarantee (not only asymptotically) that

‖em+k‖ ≤ ε ‖em‖ for k ≥ It(Φ, ε). (2.30c)

(d) If r(M) < 1 holds for the numerical radius of M introduced in §B.3.4,
definition (2.30b) can be replaced with It(Φ, ε) := log(ε/2)/ log(r(M)). Then,
inequality (2.30c) holds with respect to the Euclidean norm.

The amount of work corresponding to the error reduction by 1/e is the product
It(Φ)Work(Φ,A) ≤ It(Φ)CΦCAn (cf. (2.29)). As a characteristic quantity we
choose the effective amount of work

Eff(Φ) := It(Φ)CΦ = −CΦ/ log(ρ(M)). (2.31a)

Eff(Φ) measures the amount of work for an error reduction by 1/e in the unit
‘CAn arithmetic operations’. Correspondingly, the effective amount of work for the
error reduction by the factor of 1/e is given by

Eff(Φ, ε) := −It(Φ)CΦ log(ε) = CΦ log(ε)/ log(ρ(M)). (2.31b)

Example 2.28. In the case of the model problem, the cost factor of the Gauss–Seidel
iteration is CΦ = 1 (because of CA = 5, cf. Remark 1.14). The numerical values in
Table 1.1 suggest ρ(M) = 0.99039 for the grid size h = 1/32. Thus, the effective
amount of work equals Eff(Φ) = 103.6. Using ρ(M) = 0.82 for the SOR method
and CΦ = 7/5, we deduce an effective amount of work of Eff(Φ) = 7.05 for the
SOR method with h = 1/32.

