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Preface to the Third English Edition

Crystal structure determination by X-ray diffraction, also called X-ray
structure analysis or simply X-ray crystallography, has recently celebrated
the centenary of its discovery by Max von Laue. Because of its wide ap-
plicability and its high precision, it has become one of the most important
tools in chemical research. Its results are invaluable in organic and inor-
ganic chemistry, as well as in biochemistry, materials science, and miner-
alogy. Today, a scientific paper concerning a new chemical compound is
rarely published without a proof by an X-ray structure analysis.
When the first German edition of this book appeared 1994, four-circle

diffractometers were state-of-the-art for recording diffraction data from
single crystals, and computers were slow. A crystal structure determi-
nation took several days or even weeks. Today, sensitive area detectors
have replaced the counting tubes, and the computation times have be-
come almost negligible. New micro-focus X-ray sources using only 50-80
watts generate more brilliant X-ray beams than older X-ray generators
operating at several kilowatts. Thus, in favorable cases, it is now possi-
ble to determine a crystal structure in a few hours. As a consequence,
more than five times the number of structures have been published in the
last twenty years than were in the previous eighty, making available the
structures of over a million compounds.
Crystal structure determinations are carried out today mainly in Chem-

istry Departments. Despite the fact that crystallography plays a very
minor role in most undergraduate study, many students have found that
in the course of graduate or even undergraduate research, they need to
undertake a crystal structure determination themselves, or at least to
become competent to interpret crystallographic results. Thanks to ever
improving program systems, the many complex steps of a structure analy-
sis are certainly becoming less and less difficult for the beginner to master.
Nonetheless, regarding the process simply as a ”black-box” is fraught with
danger. As there is no unambiguous direct route from the diffraction data
to the crystal structure, it is the responsibility of the crystallographer to
judge whether the acquired structure model really is the only and op-
timum one that is compatible with the data. At the time of writing, a
diffractometer system is for sale which promises to solve 80% of structures
automatically. Of the remaining 20%, some will have yielded no solution,
but for others, the black box will have issued erroneous pseudo-solutions



that have to be detected by the user.
This book is aimed mainly at those students of chemistry and related

subjects who wish to take a look into the black box before they step into
its territory, or who simply wish to learn more of the fundamentals, the
opportunities and the risks of the method. In view of the well-known
fact that the likelihood a book will actually be read is inversely propor-
tional to its number of pages, fundamentals of the method are treated
here as briefly and as intuitively as possible. It seems more important
that chemists should have a grasp of the basic principles and their appli-
cation to a problem, than that they be in a position to retrace fully the
complex mathematical formalisms employed by the computer programs.
On the other hand, some aspects of the subject, which bear directly on the
quality of a structure determination, are worth fuller treatment. These
include discussion of a number of significant errors and the recognition
and treatment of disorder and twinning. Most important crystallographic
literature is available in English, but a few references in other languages,
principally German, have been included.
For the third edition of this book, based on the eighth German edition

(Springer 2015), treatment of film methods, now extinct, and of the nearly
extinct four-circle diffractometers has been omitted. Instead, the meth-
ods of obtaining and interpreting area detector data have been expanded.
The best way to understand a method is, of course, to apply it yourself.
Therefore, data sets and example files together with some comments have
been made available on the internet. You may use them for your own cal-
culations, with one of the standard program systems for crystal structure
analysis.
I am grateful to all colleagues who helped by suggestions or criticisms to

improve this book, especially to my colleague R. O. Gould for continuing
his excellent translation of the earlier editions, and for the friendly and
careful collaboration in achieving many large and small improvements.

Werner Massa Marburg, June 2016
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Commonly used symbols

a, b, c lattice constants
a, b, c, n, d symbols for glide planes
a∗, b∗, c∗ reciprocal lattice constants
Å Ångström unit (= 10−10 m)
B Debye-Waller factor
d lattice-plane spacing
d∗ scattering vector in reciprocal space
E normalized structure factor
f atomic scattering factor (formfactor)
Fc calculated structure factor
Fo observed structure factor
FOM figure of merit
hkl Miller indices
I reflection intensity
L Lorentz factor
Mr mass of a mole
n order of diffraction or symbol for diagonal glide plane
p polarization factor
R conventional residual, calculated from Fo–data
SH sign of a structure factor
w weight of a structure factor
wR weighted residual, calculated from Fo–data
wR2 weighted residual, calculated from F 2

o –data
TDS thermal diffuse scattering
x, y, z atomic coordinates
Z number of formula units per unit cell
α, β, γ angles in unit cells
Δ path difference for interference or other difference
Δf ′,Δf ′′ real and imaginary parts of anomalous scattering
ǫ extinction coefficient
θ scattering angle
λ X-ray wavelength
µ absorption coefficient or various angles
µ/ρ mass absorption coefficient
σ standard error
Φ phase angle of a structure factor



1 Introduction

To solve a crystal structure means to determine the precise spatial ar-
rangements of all of the atoms in a chemical compound in the crystalline
state. This knowledge gives a chemist access to a large range of infor-
mation, including connectivity, conformation, and accurate bond lengths
and angles. In addition, it implies the stoichiometry, the density, the
symmetry and the three dimensional packing of the atoms in the solid.
Since interatomic distances are in the region of 100–300 pm or 1–3

Å 1, microscopy using visible light (wavelength λ ca. 300-700 nm) is
not applicable (Fig. 1). In 1912, Max von Laue showed that crystals
are based on a three dimensional lattice which scatters radiation with
a wavelength in the vicinity of interatomic distances, i.e. X-rays with
λ ∼ 50− 300 pm. The process by which this radiation, without changing
its wavelength, is converted through interference by the lattice to a vast
number of observable reflections with characteristic directions in space
is called X-ray diffraction. The method by which the directions and the
intensities of these reflections are measured, and the ordering of the atoms
in the crystal deduced from them, is called X-ray structure analysis. The
following chapter deals with the lattice properties of crystals, the starting
point for the explanation of these interference phenomena.

Fig. 1: Crystal dimensions and comparison with the wavelengths of the elec-
tromagnetic spectrum.

1Although not strictly S.I., the Ångström (Å) unit = 100 pm, is widely used, and
is almost universal in crystallographic programs



2 Crystal Lattices

2.1 The Lattice

A crystal is a solid object in which a basic pattern of atoms is repeated
over and over in all three dimensions. In order to describe the structure of
a crystal, it is thus only necessary to know the simplest repeating “motif”
and the lengths and directions of the three vectors which together describe
its repetition in space (Fig. 2). The motif can be a molecule, as in Fig.
2, or the building block of a network structure. Normally, it consists of

Fig. 2: Portion of the crystal of a simple molecular structure with the basis
vectors shown.

several such units, which may be converted into one another by symmetry
operations (as in Fig. 3). The three vectors a, b, c, which describe the
translations of the motif in space are called the basis vectors. By their
operation one upon another, a lattice is generated. Any point in such a
lattice may be described by a vector r,

r = n1a + n2b + n3c (1)
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where n1, n2 and n3 are integers. It is important to keep in mind that the
lattice is an abstract mathematical concept, the origin of which may be
chosen more or less arbitrarily in a crystal structure. If it is chosen to lie
on some particular atom, it follows that every point of the lattice will lie
on an identical atom in an identical environment. It is, of course, equally
valid to place the origin on an empty point in the structure.

Fig. 3: A more complex structure in which the motif consists of four differently
orientated molecules of (C5H5)3Sb. Wire model, H–atoms not shown.

Unfortunately, the word lattice has taken on a different meaning

in common speech: when, for example, the phrase “rock-salt lattice”

is used, what is meant is the “rock-salt structure type”.

2.1.1 The unit cell

The smallest repeating volume of the lattice is called the unit cell. It
is characterized by three lattice constants a, b, c (the lengths of the basis
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vectors) and by the three angles α, β, γ, which separate these vectors from
one another. By definition, α is the angle between the basis vectors b and
c , β between a and c , and γ between a and b (Fig. 4).

Fig. 4: Portion of a lattice.

The lengths of the lattice constants for “normal” organic or inorganic
structures, with the determination of which we are concerned here, is of
the order of 3 to 40 Å. For protein structures they rise to 100 Å or more.
A crystal structure is solved, if the types and locations of all the atoms
in the unit cell are known; in general there will be between 1 and 1000 of
these.

2.1.2 Atom Parameters

The positions of atoms are conveniently described in terms of the crys-
tallographic axes defined by the three basis vectors: these are normally
referred to as the a–, b– and c–axes. The lattice constants are then used
as units, and the atomic positions are given in terms of fractional co-
ordinates x, y, z, which describe fractions of the lattice constants a, b, and
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c respectively (Fig. 5). The coordinates of an atom at the center of the
unit cell, for example, are simply written as (12 ,

1
2 ,

1
2 ). When a drawing

is made using the published atom parameters for a structure, the lattice
parameters and angles must be known. Then, “absolute” coordinates for
each atom xa, yb, zc give the appropriate distances along each of the
crystallographic axes.

2.1.3 The Seven Crystal Systems

In addition to the three dimensional periodicity, a further very important
property of nearly all crystals is their symmetry. This is treated more
fully in Chapter 6; it is now only necessary to examine those aspects of
symmetry which affect the lattice. For example, if there is a mirror plane
in the crystal normal to the b–axis, it follows that the a– and c–axes must
lie in this plane, and hence be themselves perpendicular to the b–axis. If
a 3–fold rotation axis lies parallel to the c–axis, this implies that the angle
between a– and b–axis (γ) must be 120◦. Full consideration of the possible
symmetries for the lattice gives rise to seven possibilities, the seven crystal
systems (Tab. 1). They are distinguished from one another by their shape
— the geometry of the lattice that is required by the underlying symmetry
elements.

Conventions: In order to describe crystal structures clearly and un-
ambiguously, various rules have been adopted concerning the choice and
naming of the unit-cell axes. In general, a “right-handed” system is cho-
sen. This means that if the positive direction of a is directed toward the

Fig. 5: Fig. 2.1.2: Example of atomic parameters x,y,z in units of the basis
vectors.
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Table 1: The seven crystal systems and the restrictions on their cell dimensions.
See Fig. 4 for the definition of the angles.

restrictions in
cell edges cell angles

triclinic none none
monoclinic none α = γ = 90◦

orthorhombic none α = β = γ = 90◦

tetragonal a = b α = β = γ = 90◦

trigonal, hexagonal a = b α = β = 90◦, γ = 120◦

cubic a = b = c α = β = γ = 90◦

beholder and that of b to the right, then c must point upwards. If one
holds the thumb, the index finger and the middle finger of the right hand
as a waiter might to support a tray, then these three fingers, starting with
the thumb, give the directions of the a, b, c –axes of a right-handed sys-
tem. In the triclinic system, there are no restrictions on the choice of cell
edges or angles, but in the monoclinic system, there is a “unique” axis
— that one which is perpendicular to the other two. This unique axis is
normally taken as the b-axis, and the unrestricted angle is thus β (this
is, rather inconsistently, called the second setting) and the a- and c-axes
are chosen so that β > 90◦. At one time, the c–axis was chosen as the
unique axis (the “first setting”, the unrestricted angle is γ). The c–axis
is always chosen as the unique axis in trigonal, hexagonal and tetragonal
crystals. When the unit cell of an unknown crystal is determined experi-
mentally, its metric symmetry gives an indication of the crystal system. It
is, however, the actual underlying symmetry elements, which may only be
fully determined at a later stage of the investigations, that determine the
crystal system. That the metric symmetry of a crystal corresponds within
experimental error to the restrictions of a particular crystal system is a
necessary but not a sufficient condition for establishing it. Occasionally it
happens, as with the cryolites Na3M

IIIF6, that all cell angles are within a
few tenths of a degree of 90◦, but the crystal is actually not orthorhombic
but monoclinic. The β–angle is merely very near 90◦ by chance.
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2.2 The 14 Bravais Lattices

In the description of a lattice, it was said that the smallest possible basis
vectors should be chosen for the crystal. The smallest possible unit in this
lattice, the unit cell, is then the smallest volume that is representative of
the crystal as a whole. This is called a “primitive cell”. As is shown
in Fig. 6, there are several ways in which this unit cell can be chosen.
All of the cells, shown here in two dimensional projection, are primitive

Fig. 6: Various choices of primitive
unit cells in a lattice.

Fig. 7: The choice of cell 3
illustrates a centered lattice.

and have the same volume. The choice of cell for the description of a
crystal structure will be that by which the symmetry elements are best
described. In other words, the cell which shows the highest possible sym-
metry. Usually, this implies the choice of orthogonal or hexagonal axial
systems. The origin of the cell is located on an inversion center if that
is possible. There are situations (Fig. 7) where all variants of a primitive
unit cell are oblique, but that a larger cell, with 2, 3 or 4 times the volume,
may be chosen which corresponds to a crystal system of higher symmetry.
In order to be able to describe the symmetry elements conveniently, it is
usually better to use the larger cells, even though they contain additional
lattice points. Such cells are called centered and contain 2, 3 or 4 lattice
points. When lattices are described by these larger cells, to the six prim-
itive lattices must be added eight centered lattices, which together are
described as the fourteen Bravais lattices. Primitive lattices are given the
symbol P . The symbol A is given to a one–face–centered or end–centered
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lattice, in which a second lattice point lies at the center of the A-face (that
defined by the b– and c–axes), and B or C for a lattice centered on the B-
or C-face. In these cases, the cell volume is double that of the primitive
cell. If the cell has lattice points at the centers of the A,B and C faces,
it is called F (all face centered lattice), and has four times the volume
of a primitive cell. A cell with a lattice point at its center has double
the volume of its primitive cell and is called a body centered lattice and
given the symbol I (from the German innenzentriert). Nearly all metals
crystallize in a cubic I or F lattice.

N.B. In the cubic CsCl structure, a unit cell may be chosen with

the Cs atoms at the corners and the Cl atom at the body center. De-

spite what is written in many texts, this is a primitive cubic lattice.

A body centered lattice requires that the origin and the body center

of the cell be occupied by the same atoms or molecules having the

same environment and the same orientation. In other words, shift-

ing the origin of the cell to the body center must give a description

of the structure indistinguishable from the original one.

2.2.1 The Hexagonal, Trigonal and Rhombohedral Systems

Both the hexagonal (with 6-fold symmetry) and the trigonal (with 3-fold
symmetry) systems require a hexagonal axial system, (a = b = c, α = β =
90◦, γ = 120◦). They are conventionally described with the 6-fold axis
of the lattice parallel to the c–axis. For this reason, some texts recognize
only six crystal systems, and treat trigonal as a subset of hexagonal. The
trigonal system does, however, have one unique feature, and that is the
rhombohedral unit cell. In this case, the smallest primitive cell may be
chosen with a=b=c und α = β = γ = 90◦. Such a cell may be seen as a
cube elongated or compressed along a body diagonal. This diagonal is the
unique axis, along which the 3-fold symmetry axis lies. In order to make
this more easily described mathematically, it is convenient to transform
this cell to one which is centered at two points 1

3 ,
2
3 ,

2
3 and 2

3 ,
1
3 ,

1
3 , and is

thus three times as large, but has the shape of the conventional hexagonal
cell, with the c –direction as the unique axis. (Fig. 8). This is called the
obverse setting of a rhombohedral unit cell, and is the standard setting
for the rhombohedral system. Rotating the a– and b–axes by 60◦ about
c gives the alternative reverse setting. The lattice is now centered at the
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points 2
3 ,

1
3 ,

2
3 and 1

3 ,
2
3 ,

1
3 . Lattices which have rhombohedral centering

are given the symbol R. The full 14 Bravais lattices are given in Fig. 9,
they are characterized by the Pearson symbols.

It can be seen that only some centerings are distinct in some crystal
systems. For example, a B–centered monoclinic axial system (when b is
the unique axis) is not given — any such cell may be better described as
monoclinic P with half the volume (Fig. 10). Figure 11 shows that a
monoclinic C–lattice may equally well be described as monoclinic I. It is

Fig. 8: A Rhombohedral unit cell in the obverse (left) and reverse (right)
hexagonal setting
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Fig. 9: The 14 Bravais Lattices: aP triclinic; mP monoclinic; mC
monoclinic C–centered, (may be transformed to mI); oP orthorhombic
primitive; oA orthorhombic A–centered, (also, with different choice of
axes, oC); oI orthorhombic body–centered; oF orthorhombic (all–)face–
centered; tP tetragonal primitive; tI tetragonal body–centered; hP trigo-
nal or hexagonal primitive; hR rhombohedral, hexagonal setting; cP cubic
primitive; cI cubic body–centered; cF cubic (all–)face–centered.

most convenient here to choose whichever setting results in the smallest
value for the monoclinic angle ß (but ≥ 90◦).
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Fig. 10: Unnecessary monoclinic B-centering (big cell with dashes and correct
P -cell)

Fig. 11: Alternative monoclinic C– (dashed) and I–centering (full lines). In
this case, I is preferred. View approximately normal to the ac-plane

2.2.2 The Reduced Cell

In order to discover whether an experimentally determined unit cell may
in fact be transformed into a “better” cell of higher symmetry, algorithms
have been developed to transform any cell into the so–called standard re-
duced form (Delauney–reduction, see also International Tables for Crys-
tallography [1], Vol. A, Chapter 9)2. This must fulfil the condition that
a ≤ b ≤ c, and that α, β, and γ are all either ≤ 90◦ or all ≥ 90◦.

2The “International Tables for Crystallography” are a key resource for crystallogra-
phers. The latest edition (available in print and on-line) currently consists of Volumes
A—G, and A1, (see www.iucr.org/iucr-top/it), from which Vol. A (space group sym-
metry) and C (mathematical, physical and chemical tables) are the most important
for practical work. For Volume A a small teaching edition is available. Volume F
deals with the crystallography of biological macromolecules. In this text they will be
referenced simply as “International Tables”.

http://www.iucr.org/iucr-top/it
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For any crystal whatever, there is in principle only one cell which fulfils
these conditions. One very important use of the reduced cell is in checking
whether a particular structure has already been reported in the literature.
Comparison of a reduced cell with those in data bases (see Chapter 13)
should uncover any equivalent reduced cells, even if they were originally
reported differently. Such a precaution should always be taken before
embarking on intensity measurements (Chapter 7) for a “new” compound.
A second very important use of the reduced cell is that it gives a clear guide
to the metric symmetry of the cell. This is usually expressed in terms
of the Niggli-matrix (equation 2) which can indicate possible “correct”
conventional cells.

Niggli-Matrix:
a2 b2 c2

bc cosα ac cosβ ab cosγ
(2)

The reduction of a cell and its subsequent transformation to the con-
ventional cell is normally accomplished using the supplied software of a
single–crystal diffractometer. It will indicate the possible Bravais lattices
for a crystal. At this point, only the metric symmetry of the crystal can
be established. The actual symmetry may be lower, but cannot be higher.
How a unit cell is established experimentally will be discussed in chapters
3, 4 and 7.



3 The Geometry of X-Ray Diffraction

Since a crystal is a periodic, 3-dimensional array, characterized by its lat-
tice, it should show characteristic interference phenomena. These would
be expected when radiation with a wavelength of the order of the lattice
spacings interacts with the crystal. In the following sections, the produc-
tion of the necessary monochromatic X-rays will be described.

3.1 X-Rays

Most studies using X-rays generate them using a sealed high-vacuum tube
similar to that shown in Fig. 12. A focused beam of electrons, generated
by an applied voltage of 30—60 kV, is made to impinge on an anode (also
called an “anticathode”), which is a flat plate of a very pure metal (usually
Mo or Cu, less often Ag, Fe, Cr etc.) Thus, a small area (0.4 x 8 mm or 0.4
x 12 mm for “fine focus” tubes and 1 x 10 mm for “normal focus”) sustains
a power input of up to 3 kW, and is cooled by water. In the surface layers
of the anode, X-rays are then produced by two separate mechanisms. In
the first, the deceleration of the electrons by the field of the metal ions
converts some of their energy into radiation (“bremsstrahlung”). Since
this gives a continuous energy spectrum, the radiation produced is called
“white” radiation. The shortest wavelength is produced if the total kinetic
energy is consumed, and is simply related to the applied voltage:

λmin =
hc

eU
(3)

where h is Planck’s constant, c is the velocity of light, e is the elec-
tronic charge and U is the applied voltage. If U is set in in kV, λmin

is thus approximately 12.4/U Å. In addition to this white radiation, the
“characteristic radiation” is produced which is much more important for
the study of crystal structure. This radiation arises as a result of many
electrons being ionized from atoms of the target material, in particular
from the K–shell (principal quantum number n = 1). When an electron
from a higher level (usually the L–shell, n = 2) falls back into the va-
cancy in the K–shell, an X–ray photon with a well–defined wavelength is
emitted, this wavelength corresponding to the energy difference between
the two levels. In terms of the angular momentum quantum number, l,
and the inner quantum number j, resulting from spin–orbit coupling, the
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Fig. 12: Schematic diagram of an X-ray tube.

Fig. 13: Spectrum of a Mo–tube.

L-shell gives three possibilities, l = 0, j = 1
2 ; l = 1, j = 1

2 und l = 1, j = 3
2 .

Because of the selection rule for transitions between the K– and the L–
shells (Δl = ±1), a closely spaced doublet is expected, known as Kα1–
and Kα2–radiation. This is similar to the doublet observed for the Na–
D–line in the visible region. If an electron from the M–shell falls back to
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the K–shell, by the same argument the higher energy doublet Kβ1 and
Kβ2 is emitted. Radiation resulting from ionizations of the L– or higher
shells is much weaker, and is not significant for X-ray diffraction. Fig. 13
shows a typical spectrum for an X-ray tube with a Mo target.

The radiation will be emitted from the line–focus in all directions, but
the only useful radiation is that which leaves the tube by one of the four
Be windows. If a window parallel to the line-focus is used (Fig.14 down)
a broad X–ray beam from the line focus results, which is ideal for powder
diffraction. On the other hand, if a window at 90◦ to this (Fig.14 right)
is chosen, the radiation at the usual “take off–angle” of 6◦ to the plane
of the anode will give a point–like projection of the line focus, which is
preferred as an intense radiation source for single–crystal work.

Fig. 14: Use of an X-ray tube as a radiation source with a line focus (down) or
point focus (right).

Monochromatization.

Since nearly all diffraction experiments are carried out with monochro-
matic radiation, the very strongKα–lines are normally employed (Tab. 2),
and it is essential to eliminate radiation of other wavelengths, particularly
the Kβ radiation. One way of doing this is to use a filter. These make
use of the fact that metals strongly absorb X-rays when their energy is
just above that required to ionize an inner electron of the metal. For
example, to eliminate Cu Kβ radiation but allow Cu Kα to pass, a filter
of Ni foil is suitable, since the ionization energy of the K–shell of Ni lies
under the energy of Cu Kβ radiation but above that of Kα. In the same
way, Mn filters may be used for Fe-radiation, and Zr for Mo-radiation. By
this method, relatively little of the required radiation is lost, while most
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Table 2: Kα–wavelengths [Å] of the most important types of X-ray tubes.
(International Tables C, Tab. 4.2.2.1)[1]. The commonly used mean Kᾱ–
wavelength are derived from the mean of the Kα1– and Kα2–wavelengths
weighted by their 2 : 1 intensity ratio.

Mo Cu Fe
Kα1 0.70932 1.54059 1.93604
Kα2 0.71361 1.54443 1.93997
Kᾱ 0.71075 1.54187 1.93735

of the interfering radiation is removed. A better method, for radiation
of high intensity, is to use a single-crystal monochromator. This consists
of a thin, single–crystal flake usually of graphite, quartz, germanium or
lithium fluoride, with an area of a few cm2, orientated to the beam so that
only the desired Kα line meets the condition for constructive interference.
The scattered radiation thus becomes the “primary beam” for the actual
diffraction experiment.

Using bent quartz or germanium monochromators, it is even possible to
separate the Kα1 andKα2–wavelengths. For most single crystal work, this
is not necessary, and in order to get the highest possible intensity, graphite
monochromators are used which do not split the Kα1/Kα2–doublet.

Rotating anode generators. Very considerably higher intensity may be
obtained by replacing the sealed high vacuum tube containing a fixed
anode by an open system with a rapidly rotating anode. In this way,
the heat generated is more easily carried away, and higher power may be
used. The high vacuum is obtained by continuous pumping of the system.
The intensities obtained will be about six times and more that of a sealed
tube, but this is obtained only with the penalty of more costly apparatus
which requires much more servicing.

Capillary collimators and X-ray mirrors. The X-ray beam which leaves
the focal point is strongly divergent, and a more or less parallel beam


