Christian Soballa

Auswirkungen der HW/SW-Partitionierung auf zukünftige Halbleiter-Produkte in Konsummärkten

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Diplomarbeit

Auswirkungen der HW/SW-Partitionierung auf zukünftige Halbleiter-Produkte in Konsummärkten

Christian Soballa

10. August 1998

Danksagung

An dieser Stelle möchte ich den Mitarbeitern und Studenten des Lehrstuhls XII, insbesondere meinen Betreuern, für die gute Zusammenarbeit und das jederzeit hervorragende Arbeitsklima danken.

Mein besonderer Dank gilt meinem Betreuer Ralf Niemann, der mich bei der Durchführung dieser Arbeit hervorragend begleitet und unterstützt hat.

Inhaltsverzeichnis

Abbildungsverzeichnis	vii
Γabellenverzeichnis	ix
l Einleitung	1
1.1.1 Halbleiter-Produkte in Konsumm 1.1.2 HW/SW-Partitionierung	ärkten 1 2 3
2 Konsummärkte und ihre Produkte	5
	s
3 Heterogene Systeme	9
3.2 Problemstellung beim Entwurf	9
4 Software in Konsumelektronik	19
4.2 Markt- und Prozessor-Trends	

Die Bedeutung von ASIPs	25
4.3.1 Die Bedeutung von ASIPs bei der NORTHERN TELECOM	
4.3.2 ASIP-Einsatz in unterschiedlichen Applikationen verschiedener	
Hersteller	
4.3.3 Problemlösungsansätze für den ASIP-basierten Entwurf	28
4.4 Zusammenfassung der Ergebnisse	30
5 Hardware in Konsumelektronik	32
5.1 Einleitung	32
5.2 "THE NATIONAL TECHNOLOGY ROADMAP FOR	
SEMICONDUCTORS"	34
5.2.1 Die Intention der "NATIONAL TECHNOLOGY ROADMAP FOR	
SEMICONDUCTORS"	34
5.2.2 Annahmen der "NATIONAL TECHNOLOGY ROADMAP FOR	
SEMICONDUCTORS"	
5.3 Prognoseproblematik	36
5.4 "Overall Roadmap Technology Characteristics"	39
5.5 Charakteristika der bedeutenden Märkte	
5.6 Chip und Package: Physikalische und elektronische Attribute	
5.7 Attribute und Methoden der Fabrikation	
5.8 Design- und Test-Maße	
5.9 Zusammenfassung der Ergebnisse	
6 Abschließende Betrachtung der Marktanalyse	59
7 Grundlagen der Designstudie	60
7.1 HW/SW-Codesign	60
7.2 Das COdesign ToOL COOL	
8 Die Beispielapplikation	66
8.1 Anforderungen an die Applikation /	
Auswahl einer Applikation	66
8.2 MPEG-1 Audio, LayerII, Decoder-	
Charakteristika der Applikation	68
8.2.1 Einordnung von MPEG-1 in die MPEG-Familie	68
8.2.2 Einordnung des LayerII in die MPEG-1 Audio Layer-Familie	
8.2.3 MPEG-1 Audio, LayerII: Decoder ⇔ Encoder	72
9 Realisierung der Applikation	75
9.1 Spezifikation	75
9.1.1 Zieltechnologien / Design Constraints	
9.1.2 Granularität	
9.1.3 Datentypen / Zahlendarstellungen	82
9.1.4 Transformationen	83

9.1.5 Optimierungen	84
9.1.6 Simulation / Validierung der Funktionalität	86
9.2 Abschätzung	
9.2.1 Software-Abschätzung	88
9.2.1.1 Vorbereitende Maßnahmen	88
9.2.1.2 Ergebnisse der SW-Abschätzung	89
9.2.2 Hardware-Abschätzung	91
9.2.2.1 Vorbereitende Maßnahmen	
9.2.2.2 Ergebnisse der HW-Abschätzung	
9.2.3 Ergebnisse der Abschätzung	
9.3 Technology Forecasting	
9.4 Partitionierung	100
10 Abschließende Betrachtung der Designstudie	103
10.1 Bewertung der Ergebnisse	103
10.1.1 Spezifikation und Abschätzung/Cosynthese	
10.1.2 Partitionierung	
10.2 Zusammenfassung und Ausblick	106
11 Abzuleitende Trends	108
Anhang A	110
Anhang B	113
Anhang C	115
Abkürzungsverzeichnis	117
Literaturverzeichnis	119
Stichwortverzeichnis	123

Abbildungsverzeichnis

ABB. 3.1, HETEROGENES SYSTEM	9
ABB. 4.1, RELATIVE MARKTANTEILE BEI EINGEBETTETEN PROZESSOREN 1994	21
ABB. 4.2, DIE ENTWICKLUNG DER RELATIVEN EINKOMMENSANTEILE VON	
EINGEBETTETEN 8, 16 U. 32 BIT MCUS	22
ABB. 4.3, 1996 VERKAUFTE EINGEBETTETE 32 BIT PROZESSOREN	
ABB. 4.4, DIE ENTWICKLUNG DES EINSATZES PC-KOMPATIBLER ARCHITEKTUREN	
IN EINGEBETTETEN SYSTEMEN.	25
ABB.4.5, RELATIVER ANTEIL VON KOMMERZIELLEN UND "IN-HOUSE"-PROZESSOREN	0
BEI DER NORTHERN TELECOM	26
ADD 5.1 EVENDI ADISCHE CEGENÜDERSTELLUNG SIA DOADMAD	
ABB. 5.1, EXEMPLARISCHE GEGENÜBERSTELLUNG SIA-ROADMAP	27
VERSION 1992 [18] / VERSION 1994 [17]	
ABB. 5.2, TRANSISTORS/ CM ²	43 47
ABB. 5.3, NUMBER OF PACKAGE PINS/ BALLS	
ABB. 5.4, PROZESSOR-PERFORMANCE	
ABB. 5.5, CHIP-TO-BOARD SPEED, HIGH PERFORMANCE	
ABB. 5.6, CHIP SIZE (MM²)	
ABB. 5.7, POWER SUPPLY VOLTAGE (V)	54
ABB. 5.8, GEGENÜBERSTELLUNG SIA-ROADMAP VERSION 1994 [17] /	~ 0
Version 1997 [23]	58
ABB. 7.1, ENTWICKLUNGSFLUSS BEIM HW/SW-CODESIGN	62
ABB. 8.1, GRUNDSTRUKTUR MPEG-1 FRAME	70
ABB. 8.2, SCHEMA MPEG ENCODER	73
ABB. 8.3, SCHEMA MPEG DECODER	
ABB. 9.1, ABLAUFSCHEMA SPEZIFIKATION	75
ABB. 9.2, BLOCKSCHEMA DECODER	
ABB. 9.3, DARSTELLUNG FESTPUNKTTYP	
ABB. 9.4, AUFTEILUNG DER SYSTEMFUNKTIONALITÄT	

				•	
Abbi	ldun	gsverze	10	hn	15

ABB. 9.5, HW/SW-KOSTEN KÜNFTIGER DESIGNS	102
ABB. C.1, VERGRÖSSERUNG DER ABBILDUNG 5.1	116

Tabellenverzeichnis

TAB. 3.1, GEGENÜBERSTELLUNG MEHRZWECK-PROZESSOREN /	
EINGEBETTETE PROZESSOREN	13
Tab. 3.2, Gegenüberstellung Hardware / Software	
TAB. 4.1, APPLIKATIONEN UND IHRE REALISIERUNGEN	27
TAB. 5.1, OVERALL ROADMAP TECHNOLOGY CHARACTERISTICS	42
TAB. 5.2, MAJOR MARKETS	
TAB. 5.3, CHIP AND PACKAGE	46
TAB. 5.4, HIGH-PERFORMANCE PROCESSORS	48
TAB. 5.5, FABRICATION	51
TAB. 5.6, ELECTRICAL DESIGN AND TEST METRICS	53
TAB. 5.7, TECHNOLOGIEGENERATIONEN	57
TAB. 9.1, BETRACHTETE PROZESSOREN	77
TAB. 9.2, HW-KOMPONENTEN	79
TAB. 9.3, SW-KOSTEN	91
Tab. 9.4, HW-Kosten	96
Tab. 9.5, Ausführungszeiten künftiger Entwicklungen	100
TAB. 9.6, HARDWAREKOMPONENTEN DES SYSTEMS	100
TAB. 9.7, HW/SW-KOSTEN KÜNFTIGER DESIGNS	102
TAB. A.1, MULTIMEDIA PROCESSORS (SET-TOP BOXES, DIGITAL TV,	
MPEG, VIDEOPHONE, DOLBY)	110
TAB. A.2, 3D ACCELERATOR PROCESSORS	111
TAB. A.3, GAME-ORIENTED PROCESSORS	111
TAB. A.4, PROCESSORS FOR GSM (EUROPE)	112
TAB. A.5, PROCESSORS FOR GSM (NORTH AMERICA, ASIA/PACIFIC)	112
TAR R 1 MARKET APPLICATION PACKAGING REQUIREMENTS	114

1 Einleitung

1.1 Themenschwerpunkte dieser Arbeit

Die vorliegende Arbeit untersucht die "Auswirkungen der HW/SW-Partitionierung auf zukünftige Halbleiter-Produkte in Konsummärkten". Die Arbeit hat demnach die zwei Themenschwerpunkte

- Halbleiter-Produkte in Konsummärkten sowie
- HW/SW-Partitionierung.

Beide Themenschwerpunkte werden zunächst isoliert untersucht. Abschließend werden die Ergebnisse beider Untersuchungen im Gesamtzusammenhang betrachtet. Das Ergebnis der vorliegenden Arbeit besteht aus der Verbindung der aus beiden Untersuchungen abzuleitenden Trends.

Vor Beginn der eigentlichen Analyse sollen an dieser Stelle beide Themengebiete sowie die jeweiligen Ziele dieser Arbeit vorgestellt werden.

1.1.1 Halbleiter-Produkte in Konsummärkten

Weite Teile der Industrie beschäftigen sich heutzutage mit der Produktion von Konsumprodukten. Im Bereich der Konsumprodukte kommt der Konsumelektronik eine bedeutende Rolle zu. Es wird davon ausgegangen, daß der größte Einfluß auf die weitere Technologieentwicklung in den späten 90ern und wohl auch noch im frühen 21. Jahrhundert vom Bereich der Konsumelektronik ausgehen wird. Ein Teilziel der vorliegenden Arbeit ist eine Kategorisierung der Technologie, die bei der Realisierung von Konsumelektronik zum Einsatz kommt. Auf der Basis der dabei erzielten Ergebnisse erfolgt eine Trendanalyse bzgl. der Technologie-Entwicklung für die nahe Zukunft.

1.1.2 HW/SW-Partitionierung

Die Entwicklung von Konsumelektronik verläuft i.d.R. in mehreren Schritten. In einem ersten Schritt wird das System in allgemeiner Form beschrieben. Desweiteren werden die Komponenten ausgewählt, mit denen das System schließlich realisiert werden soll. Diese Komponenten sind auf der Softwareseite Prozessoren und auf der Hardwareseite Bausteinbibliotheken. Im zweiten Schritt werden die Kosten abgeschätzt, die bei der Realisierung der verschiedenen Systembestandteile mittels der verschiedenen Komponenten entstehen würden. Auf der Basis dieser Abschätzung werden die Systembestandteile dann auf die Software- bzw. Hardwarekomponenten verteilt. Das System sollte nach dieser Aufteilung allen a priori definierten Anforderungen genügen. Dieses ist das Kernproblem der sogenannten HW/SW-Partitionierung. Es existieren verschiedene Ansätze, dieses Problem zu lösen [1], [2], [3], [4], [5], [6], [7]. Der HW/SW-Partitionierung wird in zunehmendem Maße Bedeutung zugemessen.

In dieser Arbeit wird exemplarisch der Entwurf eines Systems aus dem Bereich der Konsumelektronik bis zum Schritt der Partitionierung durchgeführt. Der gesamte Entwurf erfolgt mit COOL [1]. Mit Hilfe von COOL sollen verschiedene Partitionierungen für die Applikation ermittelt werden. Der Vergleich dieser Partitionierungen untereinander soll die Auswirkungen eines optimierten HW/SW-Partitionierungsprozesses auf künftige Systemrealisierungen darstellen. Außerdem soll untersucht werden, in welcher Form sich künftige Entwicklungen - wie z.B. eine konkrete Performance-Steigerung der Hardware - auf ein Design auswirken können.