

Knowledge Updates 2016/2

Volume Editors

Editorial Board E. M. Carreira C. P. Decicco A. Fuerstner G. Koch G. A. Molander E. Schaumann M. Shibasaki E. J. Thomas B. M. Trost

Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope

SOS Science of Synthesis

L. M. Guilena	E. Schaumann
C. P. Decicco	M. Shibasaki
A. Fuerstner	E. J. Thomas
G. Koch	B. M. Trost
G. A. Molander	
G. F. Herrmann	
M. F. Shortt de Herna	ndez
K. M. Muirhead-Hofm	lann
T. B. Reeve	
A. G. Russell	
M. Weston	
M. J. White	
F. Wuggenig	
	C. P. Decicco A. Fuerstner G. Koch G. A. Molander G. F. Herrmann M. F. Shortt de Herna K. M. Muirhead-Hofm T. B. Reeve A. G. Russell M. Weston M. J. White F. Wuggenig

Georg Thieme Verlag KG Stuttgart · New York

Knowledge Updates 2016/2

Volume Editors	I. Marek (Vol. 2)	
	T. Murai (Vol. 30)	
	B. M. Stoltz (Vol. 1)	
Responsible	A. Fuerstner (Vol. 3	30)
Members of the	M. Shibasaki (Vol. 1	2)
Editorial Board	B. M. Trost (Vol. 1)	
Authors	J. Bruffaerts	Y
	T. V. Chciuk	k
	R. A. Flowers, II	Л
	H. Fujioka	F

A. Ishii

X. Jiang

T. Kimura

Y. Li K. Murai T. Nokami A. Tsubouchi A. Vasseur W. Xie M. Yoshimatsu

2016 Georg Thieme Verlag KG Stuttgart · New York © 2016 Georg Thieme Verlag KG Rüdigerstrasse 14 D-70469 Stuttgart

Printed in Germany

Typesetting: Konrad Triltsch GmbH, Ochsenfurt-Hohestadt Printing and Binding: AZ Druck und Datentechnik GmbH, Kempten

Bibliographic Information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available on the internet at <http://dnb.ddb.de>

Library of Congress Cataloging in Publication Data

Science of synthesis : **Houben–Weyl** methods of molecular transformations.

p. cm. Includes bibliographical references. Contents: Science of Synthesis Knowledge Updates 2016/2 / volume editors, I. Marek, T. Murai, B. M. Stoltz ISBN 978-3-13-220871-1 1. Organic compounds–Synthesis. I. Title: **Houben–**

Weyl methods of molecular transformations. QD262.S35 2000 547'.2–dc21

00-061560

(Houben-Weyl methods of organic chemistry)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-3-13-220871-1

Date of publication: September 21, 2016

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user's own understanding as a scientist. Scaleup of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising therefrom.

Preface

As the pace and breadth of research intensifies, organic synthesis is playing an increasingly central role in the discovery process within all imaginable areas of science: from pharmaceuticals, agrochemicals, and materials science to areas of biology and physics, the most impactful investigations are becoming more and more molecular. As an enabling science, synthetic organic chemistry is uniquely poised to provide access to compounds with exciting and valuable new properties. Organic molecules of extreme complexity can, given expert knowledge, be prepared with exquisite efficiency and selectivity, allowing virtually any phenomenon to be probed at levels never before imagined. With ready access to materials of remarkable structural diversity, critical studies can be conducted that reveal the intimate workings of chemical, biological, or physical processes with stunning detail.

The sheer variety of chemical structural space required for these investigations and the design elements necessary to assemble molecular targets of increasing intricacy place extraordinary demands on the individual synthetic methods used. They must be robust and provide reliably high yields on both small and large scales, have broad applicability, and exhibit high selectivity. Increasingly, synthetic approaches to organic molecules must take into account environmental sustainability. Thus, atom economy and the overall environmental impact of the transformations are taking on increased importance.

The need to provide a dependable source of information on evaluated synthetic methods in organic chemistry embracing these characteristics was first acknowledged over 100 years ago, when the highly regarded reference source **Houben-Weyl Methoden der Organischen Chemie** was first introduced. Recognizing the necessity to provide a modernized, comprehensive, and critical assessment of synthetic organic chemistry, in 2000 Thieme launched **Science of Synthesis, Houben-Weyl Methods of Molecular Transformations**. This effort, assembled by almost 1000 leading experts from both industry and academia, provides a balanced and critical analysis of the entire literature from the early 1800s until the year of publication. The accompanying online version of **Science of Synthesis** provides text, structure, substructure, and reaction searching capabilities by a powerful, yet easy-to-use, intuitive interface.

From 2010 onward, **Science of Synthesis** is being updated quarterly with high-quality content via **Science of Synthesis Knowledge Updates**. The goal of the **Science of Synthesis Knowledge Updates** is to provide a continuous review of the field of synthetic organic chemistry, with an eye toward evaluating and analyzing significant new developments in synthetic methods. A list of stringent criteria for inclusion of each synthetic transformation ensures that only the best and most reliable synthetic methods are incorporated. These efforts guarantee that **Science of Synthesis** will continue to be the most up-to-date electronic database available for the documentation of validated synthetic methods.

Also from 2010, **Science of Synthesis** includes the **Science of Synthesis Reference Library**, comprising volumes covering special topics of organic chemistry in a modular fashion, with six main classifications: (1) Classical, (2) Advances, (3) Transformations, (4) Applications, (5) Structures, and (6) Techniques. Titles will include *Stereoselective Synthesis*, *Water in Organic Synthesis*, and *Asymmetric Organocatalysis*, among others. With expertevaluated content focusing on subjects of particular current interest, the **Science of Synthesis Reference Library** complements the **Science of Synthesis Knowledge Updates**, to make **Science of Synthesis** the complete information source for the modern synthetic chemist. The overarching goal of the **Science of Synthesis** Editorial Board is to make the suite of **Science of Synthesis** resources the first and foremost focal point for critically evaluated information on chemical transformations for those individuals involved in the design and construction of organic molecules.

Throughout the years, the chemical community has benefited tremendously from the outstanding contribution of hundreds of highly dedicated expert authors who have devoted their energies and intellectual capital to these projects. We thank all of these individuals for the heroic efforts they have made throughout the entire publication process to make **Science of Synthesis** a reference work of the highest integrity and quality.

The Editorial Board

July 2010

E. M. Carreira (Zurich, Switzerland)

- C. P. Decicco (Princeton, USA)
- A. Fuerstner (Muelheim, Germany)
- G. Koch (Basel, Switzerland)
- G. A. Molander (Philadelphia, USA)

E. Schaumann (Clausthal-Zellerfeld, Germany) M. Shibasaki (Tokyo, Japan) E. J. Thomas (Manchester, UK) B. M. Trost (Stanford, USA)

Abstracts

New

1.2.7 Radical-Based Palladium-Catalyzed Bond Constructions

Y. Li, W. Xie, and X. Jiang

Palladium(0) and palladium(II) species are frequently used as catalysts and are considered to be active intermediates in traditional palladium-catalyzed coupling reactions, participating in oxidative addition and reductive elimination via two-electron-transfer processes. Meanwhile, the catalytic modes involving palladium(I) and palladium(III) have been gradually developed. Single-electron-transfer pathways are thought to be involved via related catalytic cycles. Various palladium(I) and palladium(III) complexes have been synthesized and characterized. The palladium(I) precatalysts in Suzuki coupling and Buchwald-Hartwig amination exhibit higher reactivity than traditional palladium(0) and palladium(II) catalysts. Palladium-catalyzed single-electron-transfer conditions allow alkyl halides to participate in a series of cross-coupling, carbonylation, atom-transfer, and cyclization reactions, in which the palladium(I) species and various alkyl radicals are thought to be key intermediates. Palladium(III) species have been proposed as active intermediates in various directed C-H activation reactions. Moreover, it has been proved that palladium(III) intermediates can catalyze C-F bond formation and asymmetric Claisen rearrangement reactions. Beyond these systems, it is thought that palladium(I) and palladium(III) species might take part in the same system. In summary, radical-type palladiumcatalyzed systems possess new properties which help to realize various otherwise difficult transformations.

p1

Keywords: bond construction \cdot palladium(I) catalysis \cdot palladium(III) catalysis \cdot radical processes

New p 113 2.11.15 C(sp³)—H Functionalization by Allylic C—H Activation of Zirconocene Complexes A. Vasseur and J. Bruffaerts

Zirconocene-assisted allylic C(sp³)—H activation allows the remote functionalization of alkenes through multipositional migration of the olefinic double bond as a communicative process between two distant sites. The transformation involves the successive formation of zirconacyclopropane species along an alkyl chain. This C—H activation promoted migration proceeds rapidly under mild conditions. Moreover, it occurs in a unidirectional manner if associated with thermodynamically favored termination steps such as elimination, selective carbon–carbon bond activation, or ring expansion. The remotely formed zirconocene species can subsequently react with a variety of electrophilic carbon, oxygen, or nitrogen reagents to give a wide range of added-value products from simple substrates. Transmetalation processes further increase the synthetic potential by allowing the remote formation of a new carbon–carbon bond. The global transformation is not

VIII

only stereo- and regioselective, but also enables the relay of stereochemical information. Alternatively, a ziconacyclopropane/crotylzirconocene hydride equilibrium can be promoted under particular reaction conditions, leading to direct regio- and stereoselective allylation reactions with acid chloride, aldehyde, diketone and imine derivatives.

Keywords: zirconocenes · allylic C—H activation · alkenes · conjugated dienes · trienes · homoallylic alcohols · homoallylic amines · alkenylcyclopropanes · cyclopropanols · diastereoselectivity · quaternary stereocenters

Reactive and stereodefined vinylzirconocene derivatives are efficiently prepared from a variety of different heterosubstituted alkenes in the presence of a stoichiometric amount of the Negishi reagent. This chapter describes the synthesis of these compounds along with their applications in the synthesis of various substituted alkenes.

Keywords: organometallic compounds · zirconocenes · alkenes · vinyl compounds · stereoselective synthesis · elimination

New p 177 — 2.12.17 The Role of Solvents and Additives in Reactions of Samarium(II) Iodide and Related Reductants

T. V. Chciuk and R. A. Flowers, II

The use of additives with samarium(II) iodide (SmI₂) greatly impacts the rate, diastereoselectivity, and chemoselectivity of its reactions. Additives that are commonly utilized with samarium(II) iodide and other samarium(II)-based reductants can be classified into three major groups: (1) Lewis bases such as hexamethylphosphoric triamide (HMPA) and other electron-donor ligands and chelating ethers; (2) proton donors, such as water, alcohols, and glycols; and (3) inorganic additives such as nickel(II) iodide, iron(III) chloride, and lithium chloride. In addition, the solvent milieu can also play an important role in the reactivity of samarium(II) reductants, predominantly through changes in the coordination sphere of the metal. The main focus of this chapter is on the use of additives and solvent milieu to provide selective and efficient reactions, with at least one example being given for each subclass of samarium(II)-promoted reaction.

Keywords: cross-coupling reactions \cdot electron transfer \cdot hexamethylphosphoric triamide \cdot inorganic additives \cdot intramolecular cyclization \cdot Lewis bases \cdot proton donors \cdot reductive coupling \cdot ring expansion \cdot samarium(II) iodide \cdot solvent effects

2016 30.1.3 Carbohydrate Derivatives (Including Nucleosides)

T. Nokami

O,*N*-Acetals are found in various types of organic molecules and are core motifs in carbohydrates, including nucleosides. This chapter summarizes the synthetic methods to prepare N-linked glycopeptides, ribonucleosides, 2-deoxyribonucleosides, and others. Glycosylation between the anomeric carbon and the nitrogen atom of a nucleophile is a conventional method for the synthesis of these molecules, but stereoselectivity highly depends on the structures of the substrates. Glycosylamines are also important precursors for the stereoselective synthesis of N-linked glycopeptides and ribonucleosides.

Keywords: aminoglycosides · carbohydrates · glycopeptides · glycosylation · nucleosides

2016		 n 295 —
2010	O.D. Asstals	P _ 3 3
30.2. 3	O,P-Acetais	
	K. Murai and H. Fuijoka	

This chapter is an update to the earlier *Science of Synthesis* contribution (Section 30.2) describing methods for the synthesis of *O*,*P*-acetals. It focuses on the literature published in the period 2006–2015. Key methods covered include the addition of phosphorus compounds to carbonyl groups (including enantioselective variations), kinetic resolution of α -hydroxyphosphonates, oxidation of α , β -unsaturated phosphorus compounds, addition of phosphorus to *O*,*O*-acetals, reduction of acylphosphonates and related compounds, and aldol-type reactions of keto phosphonates.

Keywords: 0,*P*-acetals \cdot asymmetric synthesis \cdot diastereoselectivity \cdot enantioselectivity \cdot kinetic resolution \cdot hydrogenation \cdot organocatalysis \cdot oxidation \cdot epoxidation \cdot reduction \cdot phosphorus compounds \cdot Pudovik reaction

XI

- p267 —

2016

30.3.1.3 Acyclic S,S-Acetals

A. Tsubouchi

This chapter is an update to the earlier *Science of Synthesis* contribution (Section 30.3.1) describing methods for the preparation of acyclic *S*,*S*-acetals. It focuses on the literature published in the period 2006–2014, presenting complementary information with respect to new developments and transformations. It also contains an important extension of the coverage of the previous contribution. Key methods covered include the thioacetalization of carbonyl compounds using a variety of catalysts, conversion of *O*,*O*-acetals, addition of thiols to C—C multiple bonds, addition of disulfides to methylenecyclopropanes, and ring opening of 1,2-cyclopropanated 3-oxo sugars with thiols.

– p 329 —

Keywords: acetals · carbonyl compounds · chemoselectivity · Lewis acid catalysts · *S*,*S*-acetals · supported catalysis · surfactants · thiols · ring opening

This chapter is an update to the earlier *Science of Synthesis* contribution (Section 30.3.6) published in 2007. *S*,*S*-Acetal *S*-oxides and *S*,*S*'-dioxides are synthesized by the reaction of sulfanyl- or sulfinyl-stabilized carbanions with electrophiles or by the (asymmetric) oxidation of *S*,*S*-acetals. Reaction of a carbanion with an aldehyde or ketone followed by dehydration provides ketene *S*,*S*-acetal oxides. Recent advances in synthetic application have been seen in conjugate additions of nucleophiles or radicals to ketene *S*,*S*-acetal oxides and in reactions utilizing reactive sulfonium intermediates generated by treatment with acid anhydrides (Pummerer conditions).

Keywords: sulfur-stabilized carbanions \cdot asymmetric oxidation \cdot condensation \cdot ketene dithioacetals \cdot conjugate addition \cdot cyclopropanation \cdot cross-coupling reaction \cdot hydrolysis \cdot Pummerer conditions \cdot benzo[*b*]chalcogenophenes

2016 30.5.6 Selenium- and Tellurium-Containing Acetals M. Yoshimatsu

This chapter is an update to the earlier *Science of Synthesis* contribution (Section 30.5) concerning the synthesis and reactions of selenium- and tellurium-containing acetals. Recent interest has changed to the new field of *Se*,*N*- and *Te*,*N*-acetals including 4'-selenonucleosides, which may be used as unique building blocks for new DNA and RNA analogues. The published methods for *Se*,*N*- and *Te*,*N*-acetals could open up new applications in this field.

Keywords: Se, Se-acetals \cdot Se, Te-acetals \cdot Se, N-acetals \cdot 4'-selenonucleosides \cdot seleno-Pummerer reactions

This chapter is an update to the earlier *Science of Synthesis* contribution (Section 30.7) describing methods for the synthesis of *N*,*P*- and *P*,*P*-acetals. It focuses on the literature published in the period 2007–2014. As well as covering the synthesis of the title compounds, their applications in organic synthesis are also briefly reviewed.

 $\begin{array}{c} O \\ R^{1}O_{-} \overset{H}{\overset{H}} \\ R^{1}O' \overset{H}{\overset{H}} + \\ R^{2} \overset{N}{\overset{R^{3}}} \\ \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{1}O_{-} \overset{H}{\overset{H}} \\ R^{1}O' \overset{H}{\underset{R^{2}}} \\ R^{3} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{1}O_{-} \overset{H}{\overset{H}} \\ R^{1}O' \overset{H}{\underset{R^{2}}} \\ R^{3} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{1}O_{-} \overset{H}{\overset{H}} \\ R^{1}O' \overset{H}{\underset{R^{2}}} \\ R^{3} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{1}O_{-} \overset{H}{\overset{H}} \\ R^{1}O' \overset{H}{\underset{R^{2}}} \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{1}O_{-} \overset{H}{\overset{H}} \\ R^{1}O' \overset{H}{\underset{R^{2}}} \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{1}O_{-} \overset{H}{\underset{R^{2}}} \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ \end{array} \xrightarrow{} \begin{array}{c} O \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} O \\ R^{2} \end{array} \xrightarrow{} \begin{array}{c} O \\ \end{array} \xrightarrow{} \begin{array}{c} O \\ \end{array} \xrightarrow{}$

Keywords: α -aminophosphonates \cdot hydrophosphorylation \cdot imines \cdot Pudovik addition \cdot Kabachnik–Fields three-component condensation \cdot Horner–Wadsworth–Emmons alkenation \cdot gem-bisphosphonates \cdot phospha-Claisen condensation \cdot Michaelis–Becker substitution \cdot Michaelis–Arbuzov rearrangement

- p 379 —

Science of Synthesis Knowledge Updates 2016/2

	Preface ·····	V
	Abstracts	VII
	Table of Contents	XVII
1.2. 7	Radical-Based Palladium-Catalyzed Bond ConstructionsY. Li, W. Xie, and X. Jiang	1
2.11. 15	C(sp ³)—H Functionalization by Allylic C—H Activation of Zirconocene Complexes A. Vasseur and J. Bruffaerts	113
2.11. 16	Synthesis and Reactivity of Heteroatom-Substituted Vinylzirconocene Derivatives and Hetarylzirconocenes J. Bruffaerts and A. Vasseur	147
2.12. 17	The Role of Solvents and Additives in Reactions of Samarium(II) Iodide and Related Reductants T. V. Chciuk and R. A. Flowers, II	177
30.1. 3	Carbohydrate Derivatives (Including Nucleosides) T. Nokami ·····	267
30.2. 3	O,P-Acetals (Update 2016) K. Murai and H. Fujioka	295
30.3. 1.3	Acyclic S,S-Acetals (Update 2016) A. Tsubouchi	329
30.3. 6.3	Acyclic and Cyclic S,S-Acetal S-Oxides and S,S'-Dioxides (Update 2016) A. Ishii	351
30.5. 6	Selenium- and Tellurium-Containing Acetals (Update 2016) M. Yoshimatsu	379
30.7. 3	N,P- and P,P-Acetals (Update 2016) T. Kimura	407
	Author Index	463
	Abbreviations	479

Table of Contents

	Volume 1 Compour and Com Fe, Ru, Os	: nds with Transition Metal–Carbon π-Bonds pounds of Groups 10–8 (Ni, Pd, Pt, Co, Rh, Ir, s)	
1.2	Product Clas	s 2: Organometallic Complexes of Palladium	
1.2. 7	Radical-Base Y. Li, W. Xie, a	d Palladium-Catalyzed Bond Constructions New	
1.2. 7	Radical-Base	d Palladium-Catalyzed Bond Constructions	1
1.2. 7.1	Method 1:	Reactions Involving Palladium(I) Species ·····	1
1.2. 7.1.1	Variation 1:	Synthesis of Organometallic Palladium(I) Complexes •••••••	1
1.2. 7.1.2	Variation 2:	Reactions Involving Palladium(I) Precatalysts	8
1.2. 7.1.3	Variation 3:	Cross-Coupling Reactions	16
1.2. 7.1.4	Variation 4:	Carbonylation Reactions	27
1.2. 7.1.5	Variation 5:	Cyclization Reactions ·····	42
1.2. 7.1.6	Variation 6:	Atom-Transfer Reactions	48
1.2. 7.2	Method 2:	Reactions Involving Palladium(III) Species	62
1.2. 7.2.1	Variation 1:	Synthesis of Organometallic Palladium(III) Complexes	62
1.2. 7.2.2	Variation 2:	C—H Activation Reactions Involving Palladium(III) ······	72
1.2. 7.2.3	Variation 3:	C—F Bond-Constructing Reactions Involving Palladium(III) \cdots	79
1.2. 7.2.4	Variation 4:	Reactions Involving Phenyl or Benzoyl Radicals	82
1.2. 7.2.5	Variation 5:	Asymmetric Aza-Claisen Rearrangements	92
1.2. 7.3	Method 3:	Reactions Involving Palladium(I) and Palladium(III) Species \cdots	95
1.2. 7.4	Method 4:	Miscellaneous Reactions	98

	Volume 2 Compour La…, Ac…	: Ids of Groups 7–3 (Mn…, Cr…, V…, Ti…, Sc…, ·)	
2.11	Product Class	s 11: Organometallic Complexes of Zirconium and Hafnium	
2.11. 15	C(sp³)—H Fur Zirconocene A. Vasseur and	nctionalization by Allylic C—H Activation of New Complexes d J. Bruffaerts	I
2.11. 15	C(sp³)—H Fur Zirconocene	nctionalization by Allylic C—H Activation of Complexes	113
2.11. 15.1	Method 1:	Synthesis of Conjugated Dienes from Nonconjugated Dienes \cdot	118
2.11. 15.1.1	Variation 1:	From Nonheteroatom-Substituted Alkenes	118
2.11. 15.1.2	Variation 2:	From Nonconjugated Dienes Bearing an Alkoxy Substituent \cdot	119
2.11. 15.2	Method 2:	Synthesis of Trienes	122
2.11. 15.3	Method 3:	Synthesis of Homoallylic Alcohols	123
2.11. 15.3.1	Variation 1:	From Acid Chlorides without Ligand Exchange	123
2.11. 15.3.2	Variation 2:	From Acid Chlorides with Ligand Exchange	124
2.11. 15.3.3	Variation 3:	From Aldehydes without Ligand Exchange	126
2.11. 15.3.4	Variation 4:	From Aldehydes with Ligand Exchange ·····	128
2.11. 15.4	Method 4:	Diastereoselective Synthesis of Homoallylic Amines	129
2.11. 15.5	Method 5:	Diastereoselective Synthesis of 1,4-Homoallylic Diols	130
2.11. 15.5.1	Variation 1:	From Grignard Reagents	130
2.11. 15.5.2	Variation 2:	From Terminal Alkenes	132
2.11. 15.6	Method 6:	Synthesis of 1,2-Disubstituted Cyclopropanols	133
2.11. 15.7	Method 7:	Synthesis of Substituted Allylic Derivatives from Unsaturated Fatty Alcohols	133
2.11. 15.8	Method 8:	Selective Reduction of the Double Bond of ω -Ene Dihydrofurans and Dihydropyrans \cdots	135
2.11. 15.9	Method 9:	Synthesis of Acyclic Fragments Possessing an All-Carbon Quaternary Stereogenic Center	136
2.11. 15.9.1	Variation 1:	From ω -Ene Cyclopropanes \cdots	136
2.11. 15.9.2	Variation 2:	From Alkylidenecyclopropanes	139
2.11. 15.9.3	Variation 3:	From ω -Alkenylcyclopropanes Bearing a Leaving Group \cdots	142

2.11.16

Synthesis and Reactivity of Heteroatom-Substituted

Vinylzirconocene Derivatives and Hetarylzirconocenes

New	

XIX

	J. Bruffaerts a	and A. Vasseur	
2.11. 16	Synthesis an zirconocene	d Reactivity of Heteroatom-Substituted Vinyl- Derivatives and Hetarylzirconocenes	147
2.11. 16.1	General Prep	aration of Vinylzirconocene Derivatives	148
2.11. 16.2	General Reac	tivity of Vinylzirconocene Derivatives	150
2.11. 16.3	Preparation of Alkenes	of Vinylzirconocene Derivatives from Heteroatom-Substituted	151
2.11. 16.3.1	Method 1:	From Alkenyl Halides	152
2.11. 16.3.2	Method 2:	From Aryl Halides ·····	154
2.11. 16.3.3	Method 3:	From Enol Sulfonates ·····	158
2.11. 16.3.4	Method 4:	From Enol Ethers and Silyl Enol Ethers	160
2.11. 16.3.5	Method 5:	From Sulfides, Sulfoxides, and Sulfones	162
2.11. 16.3.6	Method 6:	From Carbamates ·····	166
2.11. 16.3.7	Method 7:	From Dienyl Systems	168
2.12	Product Clas the Lanthan	is 12: Organometallic Complexes of Scandium, Yttrium, and ides	
2.12. 17	The Role of S Iodide and R T. V. Chciuk a	Solvents and Additives in Reactions of Samarium(II) New Related Reductants and R. A. Flowers, II	>
2.12. 17	The Role of S and Related	Solvents and Additives in Reactions of Samarium(II) Iodide Reductants	177
2.12. 17.1	Synthesis of S	Samarium(II) Reductants ·····	177
2.12. 17.1.1	Samarium(II)	Iodide ·····	178
2.12. 17.1.1.1	Method 1:	Synthesis in Tetrahydrofuran from Samarium and 1,2-Diiodoethane	178
2.12. 17.1.1.2	Method 2:	Synthesis in Tetrahydrofuran from Samarium and Iodine	179
2.12. 17.1.1.3	Method 3:	Synthesis in Tetrahydropyran ·····	181
2.12. 17.1.1.4	Method 4:	Synthesis in 1,2-Dimethoxyethane ·····	181
2.12. 17.1.1.5	Method 5:	Synthesis in Acetonitrile and Other Nitriles	181
2.12. 17.1.1.6	Method 6:	Synthesis in Benzene/Hexamethylphosphoric Triamide	183
2.12 .17.1.2	Samarium(II)	Bromide and Samarium(II) Chloride	183
2.12. 17.1.2.1	Method 1:	Synthesis of Samarium(II) Bromide from Samarium(III) Oxide	103
2.12. 17.1.2.2	Method 2:	Synthesis of Samarium(II) Bromide from Samarium and 1,1,2,2-Tetrabromoethane	184
2.12. 17.1.2.3	Method 3:	Synthesis of Samarium(II) Bromide from Samarium(II) Iodide and Lithium Bromide	185

XX	Table of Conte	nts	
2.12. 17.1.2.4	Method 4:	Synthesis of Samarium(II) Chloride from Samarium(III) Chloride	185
2.12. 17.1.2.5	Method 5:	Synthesis of Samarium(II) Chloride from Samarium(II) Iodide and Lithium Chloride	186
2.12. 17.1.2.6	Method 6:	Synthesis of Samarium(II) Chloride in Water from Samarium(III) Chloride and Samarium	186
2.12. 17.1.3	Samarium(II)	Trifluoromethanesulfonate ·····	187
2.12. 17.1.3.1	Method 1:	Synthesis from Samarium(III) Trifluoromethanesulfonate, Samarium Metal, and Ethylmagnesium Bromide	187
2.12. 17.1.3.2	Method 2:	Synthesis from Samarium(III) Trifluoromethanesulfonate and <i>sec</i> -Butyllithium	187
2.12. 17.1.3.3	Method 3:	Synthesis from Samarium Metal and 1,5-Dithioniabicy- clo[3.3.0]octane Bis(trifluoromethanesulfonate) ······	188
2.12. 17.1.3.4	Method 4:	Mercury-Catalyzed Reduction of Samarium(III) Trifluorometh- anesulfonate ·····	189
2.12. 17.1.3.5	Method 5:	Synthesis from Samarium(III) Trifluoromethanesulfonate and Samarium Metal	189
2.12. 17.1.4	Samarium(II)	Amides ·····	190
2.12. 17.1.5	(η⁵-Cyclopent	adienyl)samarium(II) Complexes	190
2.12. 17.1.5.1	Method 1:	Synthesis of Bis(η^5 -cyclopentadienyl)samarium(II) $\cdots \cdots \cdots$	191
2.12. 17.1.5.2	Method 2:	Synthesis of Bis(η⁵-pentamethylcyclopentadienyl) samarium(II) ·····	191
2.12. 17.2	Use of Lewis E	Bases in Samarium(II)-Based Reactions	191
2.12. 17.2.1	Hexamethylp	hosphoric Triamide	192
2.12. 17.2.1.1	Method 1:	Reduction of Alkyl and Aryl Halides	192
2.12. 17.2.1.2	Method 2:	Reduction of α -Oxygenated Carbonyl Compounds	192
2.12. 17.2.1.3	Method 3:	Reduction of 4-Methylbenzoates	194
2.12. 17.2.1.4	Method 4:	Grignard and Barbier Reactions	195
2.12. 17.2.1.4.1	Variation 1:	Intermolecular Samarium Grignard Reactions	196
2.12. 17.2.1.4.2	Variation 2:	Intermolecular Samarium Barbier Reactions	197
2.12. 17.2.1.4.3	Variation 3:	Intramolecular Samarium Barbier Reactions	200
2.12. 17.2.1.5	Method 5:	Reformatsky- and Aldol-Type Reactions	200
2.12. 17.2.1.6	Method 6:	Halide–Alkene Coupling Reactions ·····	201
2.12. 17.2.1.7	Method 7:	Spirocyclization via Intramolecular Aryl Iodide Radical Addition	202
2.12. 17.2.1.8	Method 8:	Carbonyl–Alkene Coupling ·····	203
2.12. 17.2.1.8.1	Variation 1:	Intramolecular Cyclization of Unactivated Alkenyl Ketones \cdots	203
2.12. 17.2.1.8.2	Variation 2:	Sequential Intramolecular Cyclization with Intermolecular Electrophilic Addition	204
2.12. 17.2.1.8.3	Variation 3:	Intermolecular Ketone–Allene Coupling ·····	205
2.12. 17.2.1.8.4	Variation 4:	Sequential Intramolecular Cyclization with Electrophilic Addition to 1 <i>H</i> -Indole Derivatives ······	205

2.12. 17.2.1.9	Method 9:	Intramolecular Pinacol Coupling of Carbonyl Compounds \cdots	206
2.12. 17.2.1.10	Method 10:	Intramolecular Pinacol-Type Coupling of Ketones and Imines \cdot	207
2.12. 17.2.1.11	Method 11:	Tandem Epoxide-Opening/Cyclization To Afford γ -Lactones $\ \cdot$	208
2.12. 17.2.1.12	Method 12:	Tandem Elimination and Coupling of Aliphatic Imides with Carbonyl Compounds	209
2.12. 17.2.1.13	Method 13:	Intermolecular and Intramolecular Reductive Dimerization $ \cdots $	210
2.12. 17.2.2	Additives Rela	ited to Hexamethylphosphoric Triamide	211
2.12. 17.2.2.1	Method 1:	Tri(pyrrolidin-1-yl)phosphine Oxide in Reductive Coupling Reactions	212
2.12. 17.2.2.2	Method 2:	<i>N</i> -Methyl- <i>P</i> , <i>P</i> -di(pyrrolidin-1-yl)phosphinic Amide in Reductive Cyclization Reactions	212
2.12. 17.2.2.3	Method 3:	Hydroxylated Hexamethylphosphoric Triamide in Reductive Coupling Reactions	213
2.12. 17.3	Use of Proton	Donors in Samarium(II)-Based Reactions	214
2.12. 17.3.1	Water ·····		214
2.12. 17.3.1.1	Method 1:	Reduction of Alkyl Iodides ·····	214
2.12. 17.3.1.2	Method 2:	Reduction of Aromatic Carboxylic Acids, Esters, Amides, and Nitriles	215
2.12. 17.3.1.3	Method 3:	Reduction of Azido Oligosaccharides to Amino Sugars ••••••	216
2.12. 17.3.1.4	Method 4:	Reduction of Six-Membered Lactones	217
2.12. 17.3.1.5	Method 5:	Reduction of Cyclic Esters	218
2.12. 17.3.1.6	Method 6:	Reductive Cyclization of Lactones	219
2.12. 17.3.1.7	Method 7:	Reduction of Sodium S-Alkyl Thiosulfates and Alkyl Thio- cyanates	220
2.12. 17.3.1.8	Method 8:	Reduction of Cyclic 1,3-Diesters	221
2.12. 17.3.1.9	Method 9:	Cross Coupling of N-Acyloxazolidinones to Acrylamides and Acrylates	222
2.12. 17.3.1.10	Method 10:	Coupling To Produce α , α -Disubstituted Pyrrolidin-2-yl-methanols	223
2.12. 17.3.1.11	Method 11:	Reductive Coupling of Nitrones and Acrylates •••••••	223
2.12. 17.3.2	Water and Am	nines ·····	224
2.12. 17.3.2.1	Method 1:	Reduction of Ketones	225
2.12. 17.3.2.2	Method 2:	Reduction of β -Hydroxy Ketones \cdots	225
2.12. 17.3.2.3	Method 3:	Reduction of Alkyl Halides ·····	226
2.12. 17.3.2.4	Method 4:	Reduction of Double and Triple Bonds in Conjugated Alkenes	227
2.12. 17.3.2.5	Method 5:	Deprotection of Allyl Ether Protected Alcohols	228
2.12. 17.3.2.6	Method 6:	Deprotection of Toluenesulfonamides	229
2.12. 17.3.2.7	Method 7:	Reduction of Nitroalkanes ·····	230
2.12. 17.3.2.8	Method 8:	Reductive Cleavage of Benzyl–Heteroatom Bonds	231
2.12. 17.3.2.9	Method 9:	Reduction of Nitriles	232
2.12. 17.3.2.10	Method 10:	Reduction of Unactivated Esters	233
2.12. 17.3.2.11	Method 11:	Reduction of Amides to Alcohols	235

XXII	Table of Conte	nts	
7 17 17 3 7 17	Method 12	Reduction of Carboxylic Acids to Alcohols	236
2.12. 17.3.2.12	Method 12: Method 13:	Intramolecular Coupling of Aryl Iodides with Alkenyl and	250
		Alkynyl Groups ·····	237
2.12. 17.3.3	Methanol ···		238
2.12. 17.3.3.1	Method 1:	Stereoselective Reduction of β -Hydroxy Ketones to anti- 1,3-Diols	238
2.12. 17.3.3.2	Method 2:	Reductive Cyclization of $\delta ext{-Halo}\alpha,\beta ext{-Unsaturated Esters}\cdots\cdots$	238
2.12. 17.3.3.3	Method 3:	Ring Expansion of Alkyl (n + 1)-Oxobicyclo[n.1.0]alkane- 1-carboxylates ·····	239
2.12. 17.3.3.4	Method 4:	Cyclization of γ,δ-Unsaturated Ketones To Afford <i>syn</i> -Cyclo- pentanols ·····	240
2.12. 17.3.4	tert-Butyl Alco	bhol ·····	241
2.12. 17.3.4.1	Method 1:	Reductive Cyclization of Carbodiimides to Indolin-2-amines \cdot	241
2.12. 17.3.4.2	Method 2:	Cross Coupling of Chiral <i>N-(tert</i> -Butylsulfinyl)imines with Aldehydes	242
2.12. 17.3.5	Glycols ·····		243
2.12. 17.3.5.1	Method 1:	Synthesis of Uracils	243
2.12. 17.3.6	2-(Dimethyla	mino)ethanol ·····	244
2.12. 17.3.6.1	Method 1:	Reductive Ring Opening of Aziridine-2-carboxylates and Aziri- dine-2-carboxamides to β -Amino Esters and Amides $\cdots \cdots \cdots$	244
2.12. 17.3.6.2	Method 2:	Simple Functional Group Reductions Using Samarium(II) Iodide/2-(Dimethylamino)ethanol ······	245
2.12. 17.4	Use of Inorga	nic Additives in Samarium(II)-Based Reactions	246
2.12. 17.4.1	Transition-Me	tal Additives	247
2.12. 17.4.1.1	Method 1:	Carbonyl–Alkene Coupling Reactions	247
2.12. 17.4.1.2	Method 2:	Barbier Coupling Reactions	249
2.12. 17.4.2	Lithium Halid	e Salts	250
2.12. 17.4.2.1	Method 1:	Intramolecular Coupling of Isocyanates and Cyclic α , β -Unsat- urated Ketones	250
2.12. 17.4.2.2	Method 2:	Cross Coupling of Nitrones with Allenoates	251
2.12. 17.5	Impact of Sol Coupling Rea	vents on Reactivity in Samarium-Mediated Reductions and ctions	252
2.12. 17.5.1	Coordinating	Solvents (Other than Tetrahydrofuran)	252
2.12. 17.5.1.1	Method 1:	Coupling of Ketones with Acid Chlorides in Tetrahydropyran	252
2.12. 17.5.1.2	Method 2:	Coupling of Allylic and Benzylic Samarium Compounds with Ketones and Esters in Tetrahydropyran	253
2.12. 17.5.1.3	Method 3:	Reduction of β -Hydroxy Ketones in 1,2-Dimethoxyethane \cdots	254
2.12. 17.5.1.4	Method 4:	Reductive Intramolecular Ketyl–Alkene Coupling in Acetonitrile	255
2.12. 17.5.1.5	Method 5:	2,3-Wittig Rearrangement by Partial Reduction of Diallyl Acetals in Acetonitrile	256

2.12. 17.5.1.6	Method 6:	Coupling of α -Chloro α , β -Unsaturated Aryl Ketones to Aldehydes in Acetonitrile	257
2.12. 17.5.1.7	Method 7:	Coupling of Carbonyls in Pivalonitrile	257
2.12. 17.5.2	Non-coordina	ting Solvents ·····	259
2.12. 17.5.2.1	Method 1:	Barbier-Type Coupling of Aryl Halides and Ketones in Benzene/Hexamethylphosphoric Triamide	259
2.12. 17.5.2.2	Method 2:	Coupling of Iodoalkynes and Carbonyl Compounds in Benzene/Hexamethylphosphoric Triamide	260
2.12. 17.5.2.3	Method 3:	Reduction of Dithioacetals to Sulfides in Benzene/Hexa- methylphosphoric Triamide	261
2.12. 17.5.2.4	Method 4:	Reductive Defluorination in Hexane	261
	Volume 3 Acetals: 0 Heteroat	0: D/N, S/S, S/N, and N/N and Higher om Analogues	
30.1	Product Clas	s 1: O,N-Acetals	
30.1. 3	Carbohydrat T. Nokami	e Derivatives (Including Nucleosides) 2016	•
30.1. 3	Carbohydrat	e Derivatives (Including Nucleosides) ·····	267
30.1. 3.1	Glycosyl Aspa	ragine Derivatives ·····	268
30.1. 3.1.1	Method 1:	Synthesis from Glycosyl Imidates	268
30.1. 3.1.2	Method 2:	Synthesis from Pent-4-enyl Glycosides	270
30.1. 3.1.3	Method 3:	Synthesis from Thioglycosides	271
30.1. 3.1.4	Method 4:	Synthesis from Glycals	272
30.1. 3.1.4.1	Variation 1:	Other C—N Bonds from Glycals ·····	275
30.1. 3.1.5	Method 5:	Synthesis from Glycosyl Halides	275
30.1. 3.1.6	Method 6:	Synthesis from Glycosyl Isothiocyanates	276
30.1. 3.1.7	Method 7:	Synthesis from N-Glycosyl Hydroxylamines	277
30.1. 3.1.8	Method 8:	Synthesis from Glycosyl Azides	278
30.1. 3.2	Ribonucleosid	les	279
30.1. 3.2.1	Method 1:	Synthesis from Glycosyl Acetates	280
30.1. 3.2.2	Method 2:	Synthesis from Glycosyl Halides	282
30.1. 3.2.3	Method 3:	Synthesis from Glycosyl Imidates	283
30.1. 3.2.4	Method 4:	Synthesis from Thioglycosides	285
30.1. 3.2.5	Method 5:	Synthesis from Glycosyl 2-Alk-1-ynylbenzoates	286
30.1. 3.2.6	Method 6:	Synthesis from Glycosylamines	287
30.1. 3.3	2-Deoxyribon	ucleosides ·····	287
30.1. 3.3.1	Method 1:	Synthesis from Glycosyl Halides	287
30.1. 3.3.2	Method 2:	Synthesis from Thioglycosides	288

2016 Updated Section • 2016 Completely Revised Contributions • New New Contributions

XXIV	Table of Conte	nts	
30.1. 3.4	Other Deoxyf	uranosides	290
30.1. 3.4.1	Method 1:	Synthesis from Glycals	290
30.1. 3.4.2	Method 2:	Synthesis from Thioglycosides	291
30.2	Product Clas	s 2: O,P- and S,P-Acetals	
30.2. 3	O,P-Acetals K. Murai and	C 2016	>
30.2. 3	O,P-Acetals		295
30.2. 3.1	Method 1:	Addition of Phosphorus Compounds to Ketones or Aldehydes	295
30.2. 3.1.1	Variation 1:	Diastereoselective Hydrophosphonylation	301
30.2. 3.1.2	Variation 2:	Enantioselective, Metal-Catalyzed Addition of Phosphites to Aldehydes (Pudovik Reaction)	303
30.2. 3.1.3	Variation 3:	Enantioselective, Organocatalyzed Addition of Phosphites to Aldehydes (Pudovik Reaction)	307
30.2. 3.1.4	Variation 4:	Enantioselective, Metal-Catalyzed Addition of Phosphites to Ketones (Pudovik Reaction)	311
30.2. 3.1.5	Variation 5:	Enantioselective, Organocatalyzed Addition of Phosphites to Ketones (Pudovik Reaction)	312
30.2. 3.2	Method 2:	Kinetic Resolution of α -Hydroxy Phosphonates \cdots	313
30.2. 3.3	Method 3:	Oxidation of α , β -Unsaturated Phosphorus Compounds \cdots	314
30.2. 3.4	Method 4:	Addition of Phosphorus Compounds to O,O-Acetals	315
30.2. 3.5	Method 5:	Reduction/Hydrogenation ·····	316
30.2. 3.6	Method 6:	Aldol-Type Reactions and Other Reactions Using Carbon Nucleophiles	320
30.3	Product Clas	s 3: S,S-Acetals	
30.3. 1.3	Acyclic S,S-A A. Tsubouchi	cetals (2016)	>
30.3. 1.3	Acyclic S,S-A	cetals ·····	329
30.3. 1.3.1	Method 1:	Thioacetalization of Carbonyl Compounds	329
30.3. 1.3.1.1	Variation 1:	With Metal Salt Based Lewis Acid Catalysts	329
30.3. 1.3.1.2	Variation 2:	With Non-Metal Lewis Acid Catalysts	333
30.3. 1.3.1.3	Variation 3:	With Solid-Supported Lewis Acid Catalysts ······	335
30.3. 1.3.1.4	Variation 4:	With Solid Acid Catalysts	338
30.3. 1.3.1.5	Variation 5:	In Micelles ·····	340
30.3. 1.3.1.6	Variation 6:	Without Acid Catalysis	340
30.3. 1.3.2	Method 2:	Conversion of O,O-Acetals ·····	341
30.3. 1.3.2.1	Variation 1:	In Micelles ·····	341
30.3. 1.3.2.2	Variation 2:	With Odorless Thiol Equivalents	342

2016 Updated Section • 2016 Completely Revised Contributions • New New Contributions

30.3. 1.3.3	Method 3:	Addition of Thiols to C—C Multiple Bonds	343
30.3. 1.3.3.1	Variation 1:	Addition to Propargyl Alcohols	343
30.3. 1.3.3.2	Variation 2:	Addition to Allenes ·····	344
30.3. 1.3.3.3	Variation 3:	Addition to Alkynes	345
30.3. 1.3.4	Method 4:	Addition of Disulfides to Methylenecyclopropanes	347
30.3. 1.3.5	Method 5:	Ring Opening of 1,2-Cyclopropanated 3-Oxo Sugars with Thiols	348
30.3. 6.3	Acyclic and C A. Ishii	Cyclic S,S-Acetal S-Oxides and S,S'-Dioxides)
30.3. 6.3	Acyclic and C	Cyclic S,S-Acetal S-Oxides and S,S'-Dioxides	351
30.3. 6.3.1	Synthesis of A	Acyclic and Cyclic S,S-Acetal S-Oxides and S,S'-Dioxides	351
30.3. 6.3.1.1	Method 1:	Reactions of α -Sulfanyl α -Sulfinyl Carbanions $\cdots \cdots \cdots \cdots \cdots$	351
30.3. 6.3.1.1.1	Variation 1:	Monoalkylation with Alkyl or Hetaryl Halides, Epoxides, or Enones	351
30.3. 6.3.1.1.2	Variation 2:	Condensation with Carbonyl Compounds	352
30.3. 6.3.1.2	Method 2:	Oxidation Reactions	354
30.3. 6.3.1.2.1	Variation 1:	Oxidation of S,S-Acetals	354
30.3. 6.3.1.2.2	Variation 2:	Oxidation of Ketene S,S-Acetals	356
30.3. 6.3.1.2.3	Variation 3:	Oxidation of α -Sulfanyl Vinyl Sulfenates \cdots	358
30.3. 6.3.1.3	Method 3:	Addition of S,S-Acetal S,S'-Dioxides to Carbonyl Compounds \cdot	360
30.3. 6.3.1.4	Method 4:	Conjugate Addition to Ketene S,S-Acetal S-Oxides and S,S'-Dioxides	361
30.3. 6.3.1.6	Method 6:	Cross-Coupling of Ketene S, S-Acetal S-Oxides	366
30.3. 6.3.2	Applications of Organic Synthesis	of Acyclic and Cyclic S,S-Acetal S-Oxides and S,S'-Dioxides in nesis	367
30.3. 6.3.2.1	Method 1:	Synthesis of Aldehydes from S,S-Acetal S,S'-Dioxides	367
30.3. 6.3.2.2	Method 2:	Synthesis of Carboxylic Acid Derivatives from S,S-Acetal S,S'-Dioxides	368
30.3. 6.3.2.3	Method 3:	Synthesis of α -Amino Acid Derivatives \cdots	370
30.3. 6.3.2.4	Method 4:	Synthesis of Heteroaromatic Compounds	371
30.3. 6.3.2.5	Method 5:	Miscellaneous Reactions of S,S-Acetal S-Oxides and S,S-Acetal S,S'-Dioxides	374

XXVI	Table of Conte	nts	
30.5	Product Class	s 5: Selenium- and Tellurium-Containing Acetals	
30.5. 6	Selenium- an M. Yoshimats	d Tellurium-Containing Acetals 2016	>
30.5. 6	Selenium- an	d Tellurium-Containing Acetals	379
30.5. 6.1	S,Se- and S,Te	-Acetals ·····	379
30.5. 6.1.1	Method 1:	Reaction between Selenium Dihalides and Divinyl Sulfide or Divinyl Sulfone	379
30.5. 6.1.2	Method 2:	Selanylation–Deselanylation Process To Introduce a C=C Bond ·····	380
30.5. 6.1.3	Method 3:	Electrochemical Fluoroselanylation of Vinyl Sulfones	381
30.5. 6.2	Se,Se- and Se,	Te-Acetals	382
30.5. 6.2.1	Method 1:	Palladium-Catalyzed Double Hydroselanylation of Alkynes \cdots	382
30.5. 6.2.2	Method 2:	Lewis Acid Catalyzed Conversion of Methylenecyclopropanes into 1,1-Bis(organoselanyl)cyclobutanes ·····	383
30.5. 6.2.3	Method 3:	Indium/Chlorotrimethylsilane Promoted Selenoacetalization of Aldehydes Using Diorganyl Diselenides	384
30.5. 6.2.4	Method 4:	Diselanylation of Dihaloalkanes with 1-(Organoselanyl)per- fluoroalkanols	384
30.5. 6.2.5	Method 5:	Diselanylation of Dihaloalkanes Using Selenolate Anions \cdots	385
30.5. 6.3	Te, Te-Acetals		386
30.5. 6.3.1	Method 1:	In Situ Generation and Reaction of Tellurocarbamates with Dihaloalkanes	386
30.5. 6.4	Se,N-Acetals		387
30.5. 6.4.1	Method 1:	Phosphoric Acid Catalyzed Addition of Benzeneselenol to an N-Acylimine	387
30.5. 6.4.2	Method 2:	1,3-Dipolar Cycloaddition Reactions between Azidomethyl Aryl Selenides and Alkynes (Click Reactions) ······	387
30.5. 6.4.3	Method 3:	Base-Promoted Selanylation Using Se-[2-(Trimethylsilyl)ethyl] 4-Methylbenzoselenoate	389
30.5. 6.4.4	Method 4:	Synthesis of 4'-Selenonucleosides by Pummerer Condensation	390
30.5. 6.4.5	Method 5:	Synthesis of 3'-Azido-4'-selenonucleosides and Related Derivatives	394
30.5. 6.4.6	Method 6:	[2 + 2] Cyclization of <i>S</i> , <i>Se</i> -Diphenyl Carbonimidoseleno- thioates with Ketene Equivalents	396
30.5. 6.4.7	Method 7:	Reactions of Selenoamide Dianions with N,N-Disubstituted Thio- or Selenoformamides	397
30.5. 6.4.8	Method 8:	Photoinduced Di- π -methane Rearrangement of 3-(Organose-lanyl)-5 <i>H</i> -2,5-methanobenzo[<i>f</i>][1,2]thiazepine 1,1-Dioxide \cdots	398
30.5. 6.4.9	Method 9:	Decarboxylative Selanylation of Acids	398
30.5. 6.4.10	Method 10:	Base-Promoted Alkylation of α -Selanyl Nitroalkanes $\cdots \cdots \cdots$	399

30.5. 6.4.11	Method 11:	Reaction of Bromoalkanes with Selenium/Sodium Borohydride	399
30.5. 6.4.12	Method 12:	Selanylation of (Chloromethyl)benzotriazoles	400
30.5. 6.4.13	Method 13:	Synthesis of (Arylselanyl)methyl-Functionalized Imidazolium Ionic Liquids	400
30.5. 6.4.14	Method 14:	Application of <i>N</i> -[(Phenylselanyl)methyl]phthalimide as a Reagent for Protecting Alcohols as Phthalimidomethyl Ethers	400
30.5. 6.5	Se,P- and Te,P	-Acetals ·····	401
30.5. 6.5.1	Method 1:	Diels–Alder Reaction of Selenoaldehydes and Phosphole Chalcogenides ·····	401
30.5. 6.5.2	Method 2:	Michaelis–Arbuzov Reaction of Chloromethyl Phenyl Selenide	402
30.5. 6.5.3	Method 3:	Reaction between a Phosphorylmethyl 4-Toluenesulfonate and Sodium Selenide or Telluride	402
30.5. 6.5.4	Method 4:	Base-Promoted Reaction between Bis[(diphenylphosphor- yl)methyl] Telluride and Chalcones	403
30.7	Product Class	s 7: N,P- and P,P-Acetals	
30.7. 3	N,P- and P,P- T. Kimura	Acetals 2016	>
30.7. 3	N,P- and P,P-	Acetals ·····	407
30.7. 3.1	N,P-Acetals		407
30.7. 3.1.1	Synthesis of N	I,P-Acetals	407
30.7. 3.1.1.1	Method 1:	Cross Dehydrogenative Coupling of Amines and Phosphonates	407
30.7. 3.1.1.1.1	Variation 1:	Using a Copper Catalyst under an Oxygen Atmosphere ······	408
30.7. 3.1.1.1.2	Variation 2:	Using an Iron Catalyst and <i>tert</i> -Butyl Hydroperoxide as Co-oxidant	408
30.7. 3.1.1.2	Method 2:	Aldehyde-Induced C—H Substitution with Phosphine Oxides \cdot	409
30.7. 3.1.1.3	Method 3:	Electrophilic Amination	410
30.7. 3.1.1.4	Method 4:	Aldehyde-Induced Decarboxylative Coupling of α -Amino Acids and Phosphonates	411
30.7. 3.1.1.4.1	Variation 1:	Using Copper/N,N-Diisopropylethylamine Catalyst	412
30.7. 3.1.1.4.2	Variation 2:	Without Catalyst ·····	413
30.7. 3.1.1.5	Method 5:	Substitution of α -Hydroxyphosphonates with Amines $\cdots \cdots$	413
30.7. 3.1.1.5.1	Variation 1:	Under Microwave Irradiation	414
30.7. 3.1.1.5.2	Variation 2:	Using Trifluoromethanesulfonic Acid	414
30.7. 3.1.1.6	Method 6:	Substitution of α -Amido Sulfones with Organophosphorus Compounds	415
30.7. 3.1.1.7	Method 7:	Substitution of Dichloromethane with Tertiary Amines and Organophosphorus Compounds	416
30.7. 3.1.1.8	Method 8:	Asymmetric Hydrogenation of $lpha$ -Enamido Phosphonates \cdots	417

XXVIII	Table of Contents					
30.7. 3.1.1.9	Method 9:	Reduction of α -Iminophosphonates	418			
30.7. 3.1.1.10	Method 10:	1,4-Addition of Aryltrifluoroborates to α -Enamido				
		Phosphonates	419			
30.7. 3.1.1.11	Method 11:	Addition of Carbon Nucleophiles to $\alpha\text{-Iminophosphonates} ~\cdots$	420			
30.7. 3.1.1.11.1	Variation 1:	Using Terminal Alkynes ·····	420			
30.7. 3.1.1.11.2	Variation 2:	Using Pyruvonitrile ·····	421			
30.7. 3.1.1.12	Method 12:	Hydrophosphorylation of Imines (Pudovik Reaction)	422			
30.7. 3.1.1.12.1	Variation 1:	Using a Chiral Aluminum–Salalen Catalyst	423			
30.7. 3.1.1.12.2	Variation 2:	Using a Chiral Tethered Bis(quinolin-8-olato)aluminum Catalyst	424			
30.7. 3.1.1.12.3	Variation 3:	Using Cinchona Alkaloid Catalysts	425			
30.7. 3.1.1.12.4	Variation 4:	Using a Chiral Copper Catalyst ·····	426			
30.7. 3.1.1.12.5	Variation 5:	Using a Chiral Auxiliary	427			
30.7. 3.1.1.13	Method 13:	Three-Component Coupling Reaction of Amines, Carbonyl Compounds, and Phosphonates (Kabachnik–Fields Reaction).	428			
30.7. 3.1.1.13.1	Variation 1:	Using a Magnesium Perchlorate Catalyst ·····	428			
30.7. 3.1.1.13.2	Variation 2:	Using a Chiral Phosphoric Acid Catalyst	429			
30.7. 3.1.1.14	Method 14:	Reductive Phosphorylation of Amides	431			
30.7. 3.1.1.15	Method 15:	Hydroamination and Hydrophosphorylation of Alkynes ••••••	431			
30.7. 3.1.1.16	Method 16:	Asymmetric Isomerization of α -Iminophosphonates $\cdots \cdots \cdots$	433			
30.7. 3.1.1.17	Method 17:	Consecutive Reaction of Methyleneaziridines with Organo- magnesium Chlorides, Organic Bromides, and Phosphonates ·	434			
30.7. 3.1.1.18	Method 18:	Three-Component Coupling of α -Diazophosphonates, Anilines, and Aldehydes \cdots	435			
30.7. 3.1.2	Applications o	f N.P-Acetals in Organic Synthesis	436			
30.7. 3.1.2.1	Method 1:	Horner–Wadsworth–Emmons Alkenation ·····	436			
30.7. 3.1.2.2	Method 2:	Intramolecular Hydroamination of α -Aminophosphonates Possessing an Alkynyl Group	437			
30.7. 3.1.2.2.1	Variation 1:	Via 5-exo-dig Cyclization Using a Palladium Catalyst	438			
30.7. 3.1.2.2.2	Variation 2:	Via 6-endo-dig Cyclization Using a Silver Catalyst	438			
30.7. 3.1.2.3	Method 3:	[3 + 2] Cycloaddition with Alkenes	439			
30.7. 3.2	P,P-Acetals ···		440			
30.7. 3.2.1	Synthesis of P,	P-Acetals	441			
30.7. 3.2.1.1	Method 1:	Consecutive Phosphorylation of Carbanions	441			
30.7. 3.2.1.2	Method 2:	Phosphorylation of α -Phosphoryl Carbanions $\cdots \cdots \cdots$	442			
30.7. 3.2.1.2.1	Variation 1:	Generated from Alkylphosphonates	442			
30.7. 3.2.1.2.2	Variation 2:	Via Phospha-Claisen Condensation	443			
30.7. 3.2.1.2.3	Variation 3:	Generated from Phosphine Sulfides	444			
30.7. 3.2.1.2.4	Variation 4:	Generated from Phosphine–Boranes ·····	446			
30.7. 3.2.1.3	Method 3:	Synthesis from α -Chloroalkylphosphonates, Organoboranes, and Chlorophosphines \cdots	446			
30.7. 3.2.1.4	Method 4:	Substitution of α -Silylphosphines with Chlorophosphines $\ \cdots$	448			

2016 Updated Section • 2016 Completely Revised Contributions • New New Contributions

	Table of Conten	ts	XXIX
30.7. 3.2.1.5	Method 5:	Consecutive Substitution of Dihaloalkanes with Organophos- phorus Nucleophiles	449
30.7. 3.2.1.5.1	Variation 1:	Using Phosphides ·····	449
30.7. 3.2.1.5.2	Variation 2:	Using Phosphites (Michaelis–Arbuzov Reaction) ······	451
30.7. 3.2.1.6	Method 6:	Substitution of Organophosphorus Compounds Possessing a Leaving Group at the α -Position with Organophosphorus Nucleophiles \cdots	451
30.7. 3.2.1.6.1	Variation 1:	Using Phosphides ·····	452
30.7. 3.2.1.6.2	Variation 2:	Using Phosphites (Michaelis–Arbuzov Reaction) ······	453
30.7. 3.2.1.7	Method 7:	Conjugate Addition to Vinylidenebisphosphonates	453
30.7. 3.2.1.7.1	Variation 1:	Using Aldehydes in the Presence of an Organocatalyst	454
30.7. 3.2.1.7.2	Variation 2:	Using Boronic Acids in the Presence of a Copper Catalyst $\ \cdots$	454
30.7. 3.2.2	Applications of	P,P-Acetals in Organic Synthesis	455
30.7. 3.2.2.1	Method 1:	Alkylation of <i>gem</i> -Bisphosphorus Compounds	455
30.7. 3.2.2.2	Method 2:	Horner–Wadsworth–Emmons Alkenation	456
	Author Index		463
	Abbreviations		479

1.2.7 Radical-Based Palladium-Catalyzed Bond Constructions

Y. Li, W. Xie, and X. Jiang

General Introduction

During the evolution of organic chemistry, palladium catalysts have played an important and irreplaceable role in studies on carbon–carbon^[1–7] and carbon–heteroatom^[8–10] bond formation. Beyond the methodological studies, palladium-catalyzed reactions have also been widely applied in the preparation of natural products,^[11] pharmaceuticals, agrochemicals, and materials, even on large scale.^[12] Palladium(0) and palladium(II) species are frequently used as the catalysts and considered as active intermediates, participating in oxidative addition and reductive elimination steps in two-electron-transfer processes.^[1–15] Throughout the development of palladium chemistry, an increasing number of single-electron-transfer procedures have been proposed and carefully studied, which mainly involve palladium(I)^[16] and palladium(III)^[17] species. The focus of this chapter is on radical-based palladium-catalyzed bond constructions in organic synthesis.

1.2.7.1 Method 1: Reactions Involving Palladium(I) Species

1.2.7.1.1 Variation 1: Synthesis of Organometallic Palladium(I) Complexes

Various palladium(I) complexes have been successfully synthesized, most of which exist as dimers. In previously reported reactions starting from palladium(I) complexes, the palladium species tended to undergo a single-electron oxidation to generate the corresponding palladium(II) complexes in monomeric or dimeric form. Besides the common ligand-exchange reactions, palladium(I) complexes have been transformed with hydrogen, carbon monoxide,^[18,19] oxygen,^[20] and even ammonia gas,^[21] which has helped to further the understanding of palladium chemistry.

The complexes **1** ($\{PdX[P(t-Bu)_3]\}_2$; X = Br, I) are palladium(I) dimers of great significance that have been successfully isolated and transformed (Scheme 1).^[18,19] When the dimer **1** (X = Br) is stirred under a hydrogen or carbon monoxide atmosphere, the new palladium hydride species **2** and CO-bridged palladium complex **3**, respectively, can be isolated and characterized. In addition, dimer **1** (X = Br) also reacts with terminal alkynes to produce polyethylene derivatives. When dimer **1** (X = I) is reacted with 1,2-disubstituted alkynes (diethyl or dimethyl but-2-ynedioate), a new trinuclear palladium species is formed.^[19] Furthermore, an isonitrile also reacts efficiently with dimers **1** to generate new palladium(I) dimers **4**, which have four isonitrile units coordinated.

Scheme 1 Typical Reactions of Palladium(I) Dimers^[18,19]

The palladium(I) dimer **1** (X=Br) can be reacted with aerial oxygen to produce the Pd–O–Pd bridge complex **5** through dual intramolecular C–H activation (Scheme 2).^[20] It has been proposed, but not yet clearly confirmed, that the mechanism might include three steps: (1) coordination between the palladium(I) dimer and molecular oxygen with cleavage of the O=O bond; (2) intramolecular activation of two C–H bonds; and (3) the formation of new C–O bonds. In addition, it is not yet clear whether the two oxygen atoms originate from the same molecule of oxygen.

The photochemical homolysis of Pd—C bonds has been observed with the PNP-ligated palladium–alkyl complexes **6**, which form the (PNP)Pd—Pd(PNP) dimers **7** with a single Pd—Pd bond (Scheme 3).^[21] X-ray diffraction reveals that each palladium center is four-coordinate with a distorted square-planar environment. In addition, electron paramagnetic resonance (EPR) experiments have helped to reveal that the PNP–palladium monomer is reversibly produced in solvent. In fact, thermolysis or photolysis of a 1:1 mixture of **7** (R¹ = F) and **7** (R¹ = Me) in benzene-*d*₆ results in the formation of a ca. 1:1:2 mixture of complexes **7** (R¹ = F), **7** (R¹ = Me), and **8**. More importantly, the palladium(I) dimers **7** react efficiently with dihydrogen, water, or ammonia via binuclear oxidative addition (Scheme 4).^[21] The reaction with ammonia represents a new mode of activation.

Scheme 3 Synthesis of (PNP)Pd—Pd(PNP) Dimers^[21]

R¹ = F, Me

Scheme 4 Oxidative Addition to Palladium(I) Dimers^[21]

When the palladium(I) dimer **7** ($\mathbb{R}^1 = F$) reacts with oxygen (1 atm, >10 equivalents) under irradiation by sunlight, it affords the palladium superoxide complex **9** in 95% yield within 1 minute (Scheme 5).^[22] The mixture undergoes a rapid color change from the green of complex **7** ($\mathbb{R}^1 = F$) to the orange of complex **9**. When the oxygen amount is less than 10 equivalents, the formation of complex **10** can be observed. By combining complex **7** ($\mathbb{R}^1 = F$) and **9** in a ca. 1:2 ratio, it is possible to generate the complex **10** in relatively pure form. When the solution of complex **9** was concentrated, and the residue was redissolved and then irradiated, complex **10** was again detected, which further confirms the equilibrium between complexes **9** and **10**. In summary, the reaction between oxygen and dimer **7** ($\mathbb{R}^1 = F$) is irreversible, but an equilibrium exists between oxygen, complex **9**, and complex **10** (Scheme 5).

Scheme 5 Oxidation of a Palladium(I) Dimer with Oxygen^[22]

E

When the solvated complexes $[Pd_2(NCMe)_6]X_2$ **11** $[X = BF_4, NH_2\{B(C_6F_5)_3\}_2]$ react with 2-substituted 1,8-naphthyridines, various di- or trinuclear palladium(II) cyclometalated complexes are obtained through C—H/Br activation under mild conditions (Scheme 6).^[23]

Scheme 6 Formation of C—H Activated Complexes^[23]

L = NCMe; R¹ = H, Br

 $BNB = NH_2\{B(C_6F_5)_3\}_2^-$

1.2.7.1.2 Variation 2: Reactions Involving Palladium(I) Precatalysts

Most commonly, palladium complexes have been introduced into reaction systems as palladium(0) or palladium(II) species. Since the investigation of palladium(I) catalysts, it has been shown that palladium(I) generally exhibits more efficiency in C–C and C–N bondforming transformations, which is attributed to the easy generation of active palladium(0) species from the palladium(I) dimer complexes.^[24–27] Suzuki couplings, Buchwald– Hartwig aminations, carbonylation couplings, and α -arylation of carbonyl compounds can all be achieved using palladium(I) precatalysts under mild conditions (room temperature) in shortened time (minutes). However, the development of other common cross coupling, oxidative coupling, reductive coupling, and C–H activation reactions is still to be achieved.

The seminal report of a reaction involving a palladium(I) precatalyst is that from Hartwig's group in 2002.^[24] Air-stable palladium(I) dimers have been utilized to catalyze the coupling between various aryl bromides/chlorides and amines to give arylamines **12** (Scheme 7). The reactions are complete within minutes at room temperature, with excellent yields. The aryl halides can have an electron-withdrawing or electron-donating substituent; *ortho*-substitution is also tolerated. The amines can be secondary aliphatic ones, or primary or secondary aryl ones. Furthermore, the coupling between aryl bromides and phenylboronic acid has been presented, resulting in biaryls **13** (Scheme 8).

Scheme 7 Cross Coupling between Aryl Halides and Amines Using Palladium(I) Dimer Catalysts^[24]

$Ar^{1}X + H^{1}$	7 ²	Pd cataly <i>t</i> -BuONa THF, rt, ⁻	vst (0.5 mol%) (1.5 equiv) 15 min	R ¹ I Ar ^{1 − N} R ² 12		
Ar ¹	Х	R ¹	R ²	Catalyst	Yield (%)	Ref
4-Tol	Cl	(CH ₂) ₂	O(CH ₂) ₂	{PdBr[P(<i>t</i> -Bu) ₂ (1-adamantyl)]} ₂	92	[24]
$4-NCC_6H_4$	Cl	Bu	Bu	{PdBr[P(t-Bu) ₂ (1-adamantyl)]} ₂	93	[24]
$4-O_2NC_6H_4$	Cl	Bu	Bu	$\{PdBr[P(t-Bu)_3]\}_2$	97	[24]
4-t-BuO ₂ CC ₆ H ₄	Cl	Bu	Bu	$\{PdBr[P(t-Bu)_3]\}_2$	>99	[24]
4-t-BuC ₆ H ₄	Br	Bu	Bu	$\{PdBr[P(t-Bu)_3]\}_2$	96	[24]
4- <i>t</i> -BuC ₆ H₄	Br	Me	Ph	{PdBr[P(t-Bu) ₂ (1-adamantyl)]} ₂	98	[24]
4- <i>t</i> -BuC ₆ H ₄	Br	Ph	Ph	$[PdBr[P(t-Bu)_3]]_2$	96	[24]

Scheme 8 Suzuki Coupling Catalyzed by a Palladium(I) Dimer^[24]

Ar ¹ Br + PhB(OH) ₂	{PdBr[P(<i>t</i> -Bu) ₂ (1-adamantyl)])]₂ (0.5 mol%) KOH (3 equiv), THF, rt, 15 min	Ar ¹ Ph 13
Ar ¹	Yield (%)	Ref
4-Tol	95	[24]
2-NCC ₆ H ₄	92	[24]
$2-F_3CC_6H_4$	90	[24]
2-MeOC ₆ H ₄	96	[24]

In 2004, new palladium(I)–palladium(I) dinuclear complexes **14** with one bridging halide were synthesized, in which only one phosphine is retained in the dinuclear core.^[25] An unprecedented μ^2 - η^3 : η^3 coordination mode between a phenyl ring of the biphenyl-2-yldi*tert*-butylphosphine ligand and the palladium(I) unit was present in the complexes (Scheme 9). Furthermore, the catalytic ability in the amination of aryl halides was concisely investigated (Scheme 10); both complexes efficiently catalyze the coupling between an aryl bromide/chloride and primary or secondary arylamines to give diarylamines **15**.

Scheme 9 Synthesis of a Palladium(I)–Palladium(I) Dinuclear Complex^[25]

Z = Br, Cl

Ar ¹ X + R ¹	N ⁻ R ²	14 (1 mol ^s <i>t</i> -BuONa (THF, rt	%) 1.4 equiv)	R ¹ ↓ Ar ^{1 ^ N} R 15	2		
Ar ¹	Х	R ¹	R ²	Catalyst	Time (h)	Yield (%)	Ref
4-t-BuC ₆ H ₄	Br	Ph	Ph	14 (Z = Br)	19	86	[25]
4-t-BuC ₆ H ₄	Br	Ph	Ph	14 (Z = Cl)	19	76	[25]
4-Tol	Cl	4-Tol	Н	14 (Z = Br)	3	78	[25]
4-Tol	Cl	4-Tol	Н	14 (Z = Cl)	3	81	[25]

The palladium(I)-catalyzed amination of aryl bromides has been investigated with a focus on the use of secondary alkyl(aryl)amines and aryl bromides bearing electron-donating and electron-withdrawing groups (Scheme 11).^[26] The reactions using the palladium(I) dimer were conducted in parallel with the use of palladium(II) acetate/tri-*tert*-butylphosphine; generally, the reactions with the palladium(I) dimer as catalyst afford better yields of amines **16**.

Scheme 11 Cross Coupling between Aryl Halides and Aryl(alkyl)amines^[26]

Ar ¹ Br + Ph、Ar ¹ Br + N	{PdBr[P(<i>t</i> -Bu) ₃]}; <i>t</i> ·BuONa (3 equi toluene, 110 ℃,	₂ (0.25 mmol%) v) 1 h →	Ar ¹ ↓ Ph ^{∽ N} ∼ R ¹ 16
Ar ¹	R ¹	Yieldª (%)	Ref
Ph	Су	93 (86)	[26]
3-MeOC ₆ H ₄	Су	94 (89)	[26]
4-FC ₆ H ₄	Су	77 (71)	[26]

Ar ¹	R ¹	Yield ^a (%)	Ref
2-Tol	Cy	60 (52)	[26]
Ph	<i>t</i> -Bu	92 (87)	[26]
3-MeOC ₆ H ₄	<i>t</i> -Bu	91 (90)	[26]
$4-FC_6H_4$	<i>t</i> -Bu	87 (87)	[26]
2-Tol	<i>t</i> -Bu	61 (12)	[26]

^a Yields using Pd(OAc₂) (1 mol%) and *t*-Bu₃P (1 mol%) are given in parentheses.

Control of the chemoselectivity of a palladium(I)-catalyzed Suzuki coupling has been realized by adjusting solvent polarity (Scheme 12).^[27] Thus, reaction of 4-chlorophenyl trifluoromethanesulfonate in a polar solvent (acetonitrile) produces the C—OTf insertion product **17** (X = Cl) selectively; in contrast, use of the less-polar solvent tetrahydrofuran provides the C—Cl insertion product **17** (X = OTf). In addition, regioselective coupling has also been achieved with hetaryl halides **18** (Table 1). In mechanistic studies, ³¹P NMR analysis and DFT calculations have been used to show that a Pd(I)L monomer is the real catalyst, and not the dimer. Detailed computational studies suggest that the active catalyst is generated through a reduction instead of homocleavage or direct disproportionation of the precatalyst. Meanwhile, ³¹P NMR spectroscopy has confirmed that the combination of an arylboronic acid, potassium fluoride, and water triggers the generation of bis(tri*tert*-butylphosphine)palladium(0) (Scheme 13). At the same time, a black precipitate forms, which is most likely palladium black. This phenomenon is assigned to the deactivation of catalyst and the incomplete conversion of aryl chlorides in palladium(I)-dimercatalyzed Suzuki couplings.

Scheme 12 Suzuki Coupling of 4-Chlorophenyl Trifluoromethanesulfonate Using a Palladium(I) Catalyst in Different Solvents^[27]

 Table 1
 Selective Couplings of Dihalogenated Heterocycles^[27]

The palladium(I)-catalyzed carbonylative coupling of aryl halides and amines has been achieved under an atmospheric pressure of carbon monoxide (Scheme 14).^[28] The reactions yield the desired products 20 in moderate to good yields within 10 minutes. Aryl iodides are better substrates than aryl bromides, and can be transformed with a lower catalyst loading and at a lower temperature. In light of the high efficiency, this system has been successfully applied in synthesizing radiolabeled amides 21 using ¹¹CO gas (Scheme 15).

Scheme 14 Palladium(I)-Catalyzed Carbonylative Coupling of Aryl Halides and Amines^[28]

Ar ¹	Х	R^1	R ²	Solvent	Catalyst (%)	Temp (°C)	Yield (%)	Ref
Ph	Br	Н	Bn	mesitylene	10	150	46	[28]
4-MeOC ₆ H ₄	Br	Н	Bn	mesitylene	10	150	46	[28]
2-MeOC ₆ H ₄	Br	Н	Bn	mesitylene	10	150	46	[28]
	I	(Cl	H₂)₅	toluene	2.2	100	82	[28]

Scheme 15 Palladium(I)-Catalyzed Carbonylative Coupling of Aryl Halides and Amines Using ¹¹CO^[28]

Ar ¹	Х	R ¹	R ²	Catalyst	Trapped Radioactivity (%)	¹¹ C Amide RCPª (%)	¹¹ C Amide RCY ^b (%)	Ref
Ph	Br	н	Bn	${PdI[P(t-Bu)_3]}_2$	87	81	70	[28]
Ph	Br	Н	Bn	${PdI[P(t-Bu)_3]}_2$	72	68	47	[28]
	I	(Cł	H₂)₅	{Pdl[P(t-Bu) ₃]] ₂	78	88	69	[28]

^a RCP = radiochemical purity.

^b RCY = radiochemical yield.

The cross coupling between aryl bromides and esters can also be catalyzed by {PdBr[P(t-Bu)₃]}₂ in a process promoted by lithium dicyclohexylamide (Scheme 16).^[29] The catalyst loading is 0.05–0.5 mol%. The aryl bromides can be substituted by electron-withdrawing or electron-donating groups. In addition, pyridyl and thienyl bromides are also compatible. However, the choice of esters is limited to tert-butyl propanoate, methyl 2-methylpropanoate, and *tert*-butyl acetate. It is worth noting that reactions with all three esters can be conducted on a 10-gram scale.

$\stackrel{R^1}{{}}_{R^2}$	O OR ³	1. C 2. {F	y₂NLi (1.3 equiv), toluene, rt, 'dBr[P(t-Bu) ₃]}₂, Ar¹Br, rt, 4 h	$\xrightarrow{10 \text{ min}} \qquad \xrightarrow{P_1} \qquad \xrightarrow{O} \qquad \xrightarrow{R_1} \qquad \xrightarrow{O} \qquad \xrightarrow{R_1} \qquad \xrightarrow{O} \qquad \xrightarrow{Ar_1} \qquad \xrightarrow{O} \qquad \xrightarrow{O} \qquad \xrightarrow{Ar_1} \qquad \xrightarrow{O} \qquad \xrightarrow{Ar_1} \qquad \xrightarrow{O} \qquad $		
R ¹	R ²	R ³	Ar ¹	$\{PdBr[P(t-Bu)_3]\}_2 \pmod{8}$	Yield (%)	Ref
Н	Н	t-Bu	4- <i>t</i> -BuC ₆ H ₄	0.20	83	[29]
Н	Н	<i>t</i> -Bu	$4-F_3CC_6H_4$	0.40	73	[29]
Н	Н	<i>t</i> -Bu	$4-FC_6H_4$	0.40	82	[29]
Me	Н	<i>t</i> -Bu	4-t-BuC ₆ H ₄	0.04	87ª	[29]
Me	Н	<i>t</i> -Bu	$4-FC_6H_4$	0.20	88	[29]
Me	Н	<i>t</i> -Bu	2,4,6-Me ₃ C ₆ H ₂	0.05	72	[29]
Me	Me	Me	4-t-BuC ₆ H ₄	0.05	72	[29]
Me	Me	Me	$4-F_3CC_6H_4$	0.50	60	[29]
Me	Me	Me	2-pyridyl	0.50	71	[29]
Me	Me	Me	3-thienyl	0.50	75	[29]

Scheme 16 α -Arylation of Esters Catalyzed by Palladium(I)^[29]

^a Reaction was performed on a 40-mmol scale.

Arylamines 12; General Procedure:^[24]

In a drybox, the Pd catalyst (0.005 M in THF), t-BuONa (144.0 mg, 1.50 mmol), an aryl halide (1.00 mmol), and an amine [1.05 mmol in THF (1 mL)] were added to a vial containing a stirrer bar. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. The mixture was then stirred at rt for 15 min. After this time, H_2O (1 mL) was added into the vial, and the mixture was extracted with CH_2Cl_2 . The organic layer was dried (MgSO₄) and concentrated, and the residue was purified by column chromatography.

Biaryls 13; General Procedure:^[24]

In a drybox, $\{PdBr[P(t-Bu)_3]\}_2$ (0.005 M in THF), KOH (168.0 mg, 3.0 mmol), $PhB(OH)_2$ (1.08 mmol), and an aryl bromide [1.00 mmol in THF (1.5 mL)] were added to a vial containing a stirrer bar. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. The mixture was then stirred at rt for 15 min. After this time, H₂O (1 mL) was added into the vial, and the mixture was extracted with CH₂Cl₂. The organic layer was dried (MgSO₄) and concentrated, and the residue was purified by column chromatography.

Arylamines 15; General Procedure:^[25]

To an argon-filled Schlenk tube containing a mixture of the catalyst **14** (0.01 mmol), *t*-BuONa (1.4 mmol), an aryl halide (1.0 mmol), and an amine (1.2 mmol) was added THF (1 mL). The resulting mixture was stirred at rt until the aryl halide was consumed, and then it was extracted with CH_2Cl_2 . The organic layer was dried (MgSO₄) and concentrated, and the residue was purified by column chromatography (silica gel, hexane/EtOAc).

Alkyldiarylamines 16; General Procedure:^[26]

To an argon-flushed, three-necked flask, containing $Pd(OAc)_2$ (12.8 mg, 0.057 mmol) or $\{PdBr[P(t-Bu)_3]\}_2$ (22.0 mg, 0.0285 mmol), *t*-BuONa (1.64 g, 17.1 mmol), an aniline (5.7 mmol), and an aryl bromide (6.9 mmol), was added dry, degassed toluene (20 mL). After stirring at rt for 15 min, *t*-Bu₃P [only in the cases where $Pd(OAc)_2$ was used; 11.5 mg, 0.057 mmol] dissolved in toluene was added. Then, the mixture was heated to 108–110 °C and kept at the same temperature for 1 h. After cooling to rt, the reaction was quenched with H_2O (10 mL), and then the organic layer was washed with H_2O and concentrated. The crude product was purified by chromatography (silica gel).

2'-Methyl-[1,1'-biphenyl]-4-yl Trifluoromethanesulfonate (17, X = OTf) or 4'-Chloro-2-methyl-1,1'-biphenyl (17, X = Cl); General Procedure:^[27]

A N₂-filled dry reaction vessel was charged with 4-chlorophenyl trifluoromethanesulfonate (276.0 mg, 1.1 mmol), 2-tolylboronic acid (146 mg, 1.1 mmol), and KF (186 mg, 3.2 mmol). After the vessel was transferred to a drybox, THF or MeCN (2 mL; previously deoxygenated for 30 min) and H₂O (3.0 equiv) were added and the mixture was stirred for 5 min. Then, {PdBr[P(t-Bu)₃]}₂ (12.4 mg, 0.016 mmol) was added and the mixture was stirred at rt for 30 min. The resulting mixture was subsequently diluted with Et₂O and filtered through silica using Et₂O as the eluant. The filtrate was concentrated in vacuo and purified by column chromatography.

Hetarenes 19; General Procedure:^[27]

In a glovebox, to a N₂-filled dry reaction vessel containing the heterocyclic substrate (0.5 mmol) was added recrystallized, deoxygenated, and dried boronic acid (0.5 mmol), KF (87.0 mg, 1.5 mmol), and deoxygenated THF (1 mL). The mixture was stirred for 5 min and then $\{PdBr[P(t-Bu)_3]\}_2$ (4.1 mg, 0.005 mmol), THF (0.5 mL), and H₂O (3.0 equiv) were added (THF and H₂O were deoxygenated prior to use). After this, the mixture was stirred for an additional 30 min. Then, the mixture was quenched with Et₂O and filtered through silica gel, the filtrate was concentrated, and the residue was purified by column chromatography.

Benzamides 20; General Procedure:^[28]

CAUTION: Carbon monoxide is extremely flammable and toxic, and exposure to higher concentrations can quickly lead to a coma.

To a CO-filled Schlenk tube, containing the catalyst complex (2.2 or 10 mol%), was added the aryl halide (0.45 mmol) and the amine (BnNH₂ or piperidine; 4.6 mmol) in the stated solvent. The mixture was stirred in a preheated oil bath for the desired time. Then, the reaction was quenched with 1 M aq HCl (4.5 mL). The rubber septum was removed and the unreacted CO was vented into the fumehood. The crude product mixture was extracted with CH₂Cl₂ (2 × 5 mL), the extracts were filtered and concentrated, and the residue was purified by column chromatography (silica gel).

For the preparation of ¹¹C-radiolabeled benzamides, the procedure was as described above but with the use of ¹¹CO instead of CO.

α-Aryl Esters 22; General Procedure with tert-Butyl Propanoate:^[29]

In a drybox, to a 4-mL, screw-capped vial containing Cy₂NLi (0.243 g, 1.30 mmol) dissolved in toluene (2 mL), was slowly added the ester (1.10 mmol). After stirring at rt for 10 min, the soln was added to another 4-mL, screw-capped vial containing the aryl bromide (1.00 mmol) and catalyst {PdBr[P(t-Bu)₃]}₂. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. After stirring at rt for 4 h, the mixture was diluted with Et₂O (30 mL) and then washed with 0.1 M HCl (10 mL). The aqueous phase was extracted with Et₂O (3 × 10 mL). To the combined organic layers was added sat. aq NaHCO₃ (30 mL), and the aqueous layer was back-extracted with Et_2O (3 × 10 mL). The combined organic layers were washed with H_2O (30 mL), the aqueous layer was extracted with Et_2O (3 × 10 mL), and the combined organic layers were dried (MgSO₄), and concentrated. The crude product was purified by flash column chromatography (silica gel, 2.5% EtOAc in hexanes).

tert-Butyl (4-*tert*-Butylphenyl)acetate (22, $R^1 = R^2 = H$; $R^3 = t$ -Bu; $Ar^1 = 4$ -*t*-BuC₆H₄); Typical Procedure on a Large Scale:^[29]

To a N₂-filled, 500-mL, three-necked round-bottomed flask equipped with a rubber septum, a glass stopper, and a stirrer-bar, was added Cy₂NH (10.3 mL, 0.052 mol) dissolved in toluene (300 mL). The mixture was stirred for 10 min at 0 °C, and then a 2.5 M soln of BuLi in hexane (20.7 mL, 0.052 mol) was added slowly to the cooled soln. Then, the mixture was stirred for 30 min at 0 °C. *tert*-Butyl acetate (5.93 mL, 0.044 mol) was added slowly over 20 min. The mixture was stirred for an additional 50 min at 0 °C. To another N₂-filled, pear-shaped, 10-mL flask, containing {PdBr[P(*t*-Bu)₃]}₂ (0.062 g, 0.0790 mmol), were added 1-bromo-4-*tert*-butylbenzene (6.93 mL, 0.040 mol) and toluene (5 mL). The mixture was transferred via cannula to the round-bottomed flask containing the lithium enolate of *tert*-butyl acetate. Toluene (2 × 5 mL) was used to wash the pear-shaped flask, and the wash was transferred to the round-bottomed flask. The mixture was stirred for 4 h at rt, and then concentrated until the reaction volume was reduced to half by rotary evaporation. A sat. aq soln of NH₄Cl (300 mL) was added, and the aqueous phase was washed with Et₂O (5 × 200 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated, and purified; yield: 7.90 g (79.5%).

1.2.7.1.3Variation 3:
Cross-Coupling Reactions

Palladium-catalyzed cross-coupling reactions have been studied for about half a century. The typical mechanism involves oxidative addition and reductive elimination via twoelectron transfer. Cross-coupling reactions involving alkyl halides, especially those with β -hydrogen atoms, are a challenge because of the slow rate of oxidative addition and the rapid rate of β -hydrogen elimination.^[30] At the same time, cross-coupling reactions of the related alkylmetal compounds are also difficult because of the slow rate of transmetalation.^[31] Recently, reactions that proceed via single-electron transfer processes have been developed, which have partially solved these problems. Generally, the radical properties of the reaction systems are supported by various radical-trapping experiments.

Cross coupling between 9-alkyl-9-borabicyclo[3.3.1]nonane (9-alkyl-9-BBN) derivatives and alkyl iodides has been achieved in the presence of a catalytic amount of tetrakis(triphenylphosphine)palladium(0) (Scheme 17).^[30] Primary iodides, even including iodomethane, deliver the products **23** in 45–71% yield; neopentyl iodide (1-iodo-2,2-dimethylpropane) also reacts successfully. However, reactions with secondary iodides are not successful. In terms of the boranes, various functionalized compounds are tolerated, including the presence of alkene, ester, and acetal groups.

$R^{1}I + \sum_{B_{R^{2}}}^{B}$	Pd(PPh ₃) ₄ (3 mol%) K ₃ PO ₄ (3 equiv) dioxane, 60 °C, 24 h $R^1 - R^2$ 23		
R ¹	R ²	Yield (%)	Ref
Me	(CH ₂) ₁₀ CO ₂ Me	71	[30]
(CH₂)₅Me	(CH ₂) ₇ Me	64	[30]
(CH ₂) ₅ Me		58	[30]
(CH₂)₅Me	(CH ₂) ₁₀ CO ₂ Me	54	[30]
(CH ₂) ₃ CN		61	[30]
(CH ₂) ₃ CO ₂ Me		57	[30]
(CH ₂) ₉ Me	(E)-CH=CHBu	64	[30]
(CH ₂) ₉ Me	Ph	55	[30]

Scheme 17 Cross-Coupling Reactions of 9-Alkyl-9-borabicyclo[3.3.1]nonane Derivatives with Alkyl Iodides^[30]

In 1987, reactions of polyfluoroalkyl iodides with organostannanes in a tetrakis(triphenylphosphine)palladium(0)-catalyzed Negishi coupling were reported (Table 2).^[32] The stannane can be allyl-, alkenyl-, and alkynyl-substituted. It is worthy to note that even trifluoroiodomethane leads to the desired product, albeit with lower yield (entry 3). Both the *E*- and *Z*-isomers of alkenylstannanes react with an iodide to afford only products with *E* configuration (entries 1, 2, 9, and 10). A possible mechanism is the addition of a polyfluoroalkyl radical to the alkenylstannane, followed by the elimination of tributyl-iodostannane; the palladium(0) species is thought to act as a radical initiator (Scheme 18).

R ¹	$R^{1} \xrightarrow{Pd(PPh_{3})_{4} (10 \text{ mol}\%)}_{\text{hexane}} \qquad R^{1} \xrightarrow{R^{2}}$								
Entry	Starting Materi	als	Equiv of Iodide	Temp	Time (h)	Product	Yield (%)	Ref	
	Stannane	Alkyl Iodide							
1	Ph SnBu ₃	F ₃ C(CF ₂) ₃ I	2	70°C	4	Ph CF ₃ F F	70	[32]	
2	SnBu ₃ Ph	F ₃ C(CF ₂) ₃ I	2	70°C	4	Ph CF ₃ F F	70	[32]	
3	Ph SnBu ₃	CF ₃ I	excess	80°C	3	Ph CF ₃	11ª	[32]	
4	SnBu ₃	F ₃ C(CF ₂) ₅ I	1.2	rt	1	F F 5 CF3	100	[32]	
5	SnBu ₃	F ₃ C(CF ₂) ₅ I	3	70°C	3	$F_{3}C$ F_{5} F_{5} F_{5} CF_{3}	64	[32]	
6	OH SnBu ₃	$F_3C(CF_2)_3I$	2	70°C	4	F ₃ C - OH	68	[32]	
7	Me ₃ Sn — — — — — — — — — — — — — — — — — — —	$F_3C(CF_2)_5I$	2	70°C	6	F ₃ C (1)5 F F	55	[32]	
8	Me ₃ Sn	F ₃ C(CF ₂) ₃ I	2	70°C	6	F ₃ C (⁴ OTHP) F F	60	[32]	
9	Ph SnBu ₃	F ₃ CCH ₂ I	2	80°C	4	Ph CF3	38ª	[32]	
10	SnBu ₃ Ph	F ₃ CCH ₂ I	2	80°C	4	Ph CF3	35ª	[32]	

 Table 2
 Cross Coupling of Polyfluoroalkyl Iodides and Organostannanes^[32]

^a Benzene was used as solvent.

Ph ______R1 + SnBu₃I + Pd⁰