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Preface to the Second Edition

As a result of feedback from readers of the first edition of this book and from
colleagues, this second edition is a major revision that goes beyond mere error cor-
rection and minor clarification. While the book has been modified and extended
greatly, the initial concept of a combined tutorial introduction into surface crys-
tallography, with bulk crystallography as a basis, and an overview of modern sub-
jects for the advanced researcher has been conserved. Many sections have been
updated for completeness and have been extended to include recent developments
due to the advent of new and more refined measuring techniques.

The second edition is also targeted at researchers working on graphene and
other weakly adsorbing overlayers that form large size moiré patterns observed
by scanning tunneling and electron microscopy. They might appreciate the new
section on moiré lattice formation, which until now has not been available in any
textbook format. Nanoparticle physicists and materials scientists who are inter-
ested in structure information of very small particles and seek to connect, for
example, electronic and magnetic properties with structural data, may benefit
from the sections on nanoparticles, crystal spheres, nanotubes, as well as faceting.
This might also interest catalytic chemists trying to interpret chemical behavior,
such as reactivity, by structural information of small particles.

Specific items that have been newly added or revised include
• nanoclusters and crystallites, giving a basic overview on structure details;
• incommensurate and quasicrystals, being treated on a common basis;
• basics of epitaxy and crystal growth;
• further details on chiral surfaces and adsorbates;
• the theoretical treatment of high-order commensurate (HOC) overlayers;
• the theory of interference lattices and moiré patterns;
• the geometric structure of high-symmetry adsorbate sites;
• more detailed computational algorithms in the appendices; and
• structure database formats, documenting measured surface structures.

Furthermore, the list of references to original publications and books on specific
subjects has been revised and extended to account for more recent experimental
and theoretical developments. The set of exercises that conclude each section has
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been substantially enlarged following suggestions by readers of the first book edi-
tion. All structure graphics in this book have been created using the interactive
software Balsac (Build and Analyze Lattices, Surfaces, And Clusters) developed
by the author ((C) K. Hermann, Fritz-Haber-Institut, Berlin, 1990–2016).

Michel A. Van Hove and Wolfgang Moritz have once again lent invaluable
support through their constructive criticism and detailed suggestions. I am par-
ticularly indebted to Michel for our fruitful discussions during various extended
research visits to the Institute of Computational and Theoretical Studies (ICTS)
at Hong Kong Baptist University, which have helped to improve the revised text
in innumerable ways. Advice from other colleagues on subjects specific to the
second edition has likewise been instrumental in improving this edition, as also
the suggestions on interference lattices by Michael S. Altman, on growth mecha-
nisms by Ernst G. Bauer, on quasicrystals by Renee D. Diehl, and on chirality by
Andrew J. Gellman and Rasmita Raval. Critical reading of the final manuscript
by Travis Jones and color design advice on figures by Liudmyla Masliuk are
greatly acknowledged.

Finally, unsurpassed support and overwhelming patience by my wife Hanna has
again proven essential for the completion of this book project.

Fritz-Haber-Institut, Berlin Klaus Hermann
Autumn 2015
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Preface to the First Edition

The objective of this book is to provide students and researchers with the crys-
tallographic foundations necessary to understand the structure and symmetry
of surfaces and the interfaces of crystalline materials. This includes macroscopic
single crystals as well as crystalline nanoparticles. Knowledge of their geometric
properties is a prerequisite for the interpretation of corresponding experimental
and theoretical results, which explain both their physical and chemical behavior.
In particular, surface and interface structure is of vital importance not only for the
study of properties near single crystal surfaces, but also for research on thin films
at solid substrates. Here, technological applications range from semiconductor
devices and magnetic storage disks to heterogeneous catalysts.

Crystalline nanoparticles, such as nanotubes, nanowires, or compact particles
of finite size have recently attracted considerable interest due to their novel chem-
ical and physical properties. Examples are carbon nanotubes, silicon nanowires,
nanosize quantum dots at semiconductor surfaces, or catalytically active crystal-
lites. These particles are of finite size in one or more dimensions, but their local
atom arrangement can still be close to that of extended bulk crystals. In addition,
their surfaces and interfaces with other material can be described analogously to
those found for single crystal surfaces. Thus, surface crystallography, covered in
this book, can also be applied for the analysis of structural properties of nanopar-
ticle surfaces.

While treatises on three-dimensional crystallography are abundant, there are
only few chapters on surface crystallography that are available in specialized sur-
face science reviews. In particular, comprehensive textbooks on surface structure
have not yet been published. Nevertheless, students and researchers entering the
field need to obtain a thorough overview of surface structure and geometry, which
includes all relevant basic crystallographic methods required for theoretical and
experimental analyses. This book tries to serve this purpose. It is primarily meant
for graduate and PhD students in physics, chemistry, and crystallography, but will
also help researchers who want to learn more details about geometric structure at
surfaces of single crystals or nanoparticles.

The book is written by a theoretical surface scientist. Therefore, the discussion
of methods and approaches in the text is frequently adapted to surfaces and differs
in some places from traditional treatment of crystallography. As an example,
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number theoretical methods are used to derive appropriate transformations
between equivalent lattice descriptions. Further, some of the conventional sur-
face structure concepts are looked at from a different perspective and go beyond
the standard treatment that is practiced inside the surface science community.
Examples are the introduction of Miller indices based on netplane-adapted
lattices and a thorough mathematical treatment of symmetry, which results in
the 17 two-dimensional space groups. Therefore, the text can also be used as a
resource that is complementary to the standard surface science literature.

This book started as a manuscript of a series of lectures on surface crystallog-
raphy, given by the author at several international workshops and in universities
as well as in research institutions where surface science and catalysis groups were
engaged in research on the structural properties of surfaces. Questions and dis-
cussions during the lectures were often the source for more detailed work on
different sections of the manuscript and thus helped to improve its presentation.
Furthermore, research visits to various surface science groups raised the author’s
awareness of new or incompletely treated issues that had to be dealt with. The
author is indebted to all those who contributed with their scientific curiosity and
criticism. The text has benefited from numerous discussions with surface scien-
tists, crystallographers, and mathematicians of whom only a few are mentioned
in alphabetic order: Gerhard Ertl, Klaus Heinz, Bernhard Hornfeck, Klaus Müller,
John B. Pendry, Gabor A. Somorjai, D. Phil Woodruff. Wolfgang Moritz served as
an extremely valuable sparring partner in the world of crystallography. Very spe-
cial thanks go to Michel A. Van Hove whose constructive criticism, rich ideas, and
continuous support during the writing phase were unmatched. Without him the
book would not exist in its present form.

Finally, I am greatly indebted to my wife Hanna for her patience and loving care
throughout the time it took to finish this book and beyond.

Fritz-Haber-Institut, Berlin Klaus Hermann
Summer 2010
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1
Introduction

Research in many areas of materials science requires detailed knowledge about
crystalline solids on an atomic scale. These systems may represent real materials
such as complex semiconductors, or may act as meaningful models, for example,
by simulating reactive sites of catalysts. Here, physical and chemical insight
depends very much on the details of the geometric structure of local environ-
ments of atoms and of the possible periodic atom arrangements inside the crystal
as well as at its surface. As examples we mention the following:

• Chemical binding between atoms inside a crystal but also at its surfaces
depends, apart from atomic parameters, strongly on local geometry [1, 2]. This
is very often expressed by local coordination that describes the number and
arrangement of nearest neighbor atoms with respect to the binding atom. As
an example, metal atoms inside a bulk metal crystal are usually characterized
by a large number of nearest neighbors, 8 or 12, yielding metallic binding. At
surfaces, the change in chemical binding due to different coordination, com-
pared with that inside the bulk, is tightly connected with local structure, which
can be expressed by relaxation and reconstruction. Further, atoms or molecules
can adsorb at specific sites of crystalline substrates, where the adsorption
geometry is essential for understanding their local binding behavior.

• Electronic properties at surfaces of single crystals can differ substantially from
those of the corresponding bulk. For example, the existence of a surface can
induce additional electronic states, so-called surface states, that have been
found in experiments and studied theoretically for some time [3]. Here, the
detailed surface structure determines the existence as well as the energetic
behavior of the states. Further, electronic interband transitions in silicon
nanowires and nanodots are found to cause photoluminescence that does not
occur in silicon bulk crystals [4]. The difference is explained by both the spatial
confinement of the nanoparticles and also by changes in geometric properties
of their atom arrangement. Finally, it has been claimed from experiments
that semiconducting bulk silicon shows metallicity at its (7× 7) reconstructed
(1 1 1) surface [5], and metallicity is also found in theoretical studies on silicon
nanowires [6].

Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists,
Second Edition. Klaus Hermann.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Introduction

• Magnetism of crystalline bulk material as well as of its surfaces depends on the
crystal structure and local coordination. For example, vanadium sesquioxide,
V2O3, in its monoclinic crystal structure is antiferromagnetic at low tempera-
tures, whereas its high-temperature phase, described by a trigonal corundum
lattice, is paramagnetic [7]. Vanadium crystals with a body-centered cubic lat-
tice are found to be paramagnetic in their bulk volume but ferromagnetic at their
surfaces [8]. Other examples are thin iron films grown on top of copper single
crystal surfaces where, as a function of film thickness, their crystal structure
changes and, as a consequence, their magnetic properties [9].

• Anisotropic electrical conductivity is often connected with dense atom
packing along specific directions inside a crystal. An example is given by
trigonal LiCoO2 crystals that form the most common lithium storage material
for rechargeable batteries. Here, the electrical conductivity is greatly enhanced
along densely packed Co and Li planes while it is much smaller perpendicular
to the planes [10].

• Catalytic surface reactions depend crucially on structural properties of
the surfaces of crystalline catalyst materials at an atomic scale [11, 12]. The
atomic surface structure determines possible adsorption and reaction sites
for molecules, which can support specific catalytic reactions but can also
exclude others known as structure–reactivity relationships [11]. For example,
catalytic CO oxidation happens at single crystal surfaces of platinum with
different efficiency depending on the surface orientation [13], where the surface
structure determines the type and density of reactive sites.

In addition to bulk crystals and their surfaces, studies on crystalline nanopar-
ticles [14, 15] have become an exciting field of research. This includes nanotubes
[16], nanowires [14], or compact particles of finite size, such as atom clusters [17],
fullerenes [18], or quantum dots [19], which show novel physical and chemical
properties deviating from those of the corresponding bulk material. Examples are
carbon nanotubes providing substrate material to yield new active catalysts [20]
or silicon nanowires whose visible photoluminescence is determined by their size
[21]. Further, nanosize quantum dots at semiconductor surfaces are found to yield
quite powerful light emitting diodes (LEDs) of technological relevance [19].

These nanoparticle systems are described as atom aggregates of finite size in
one or more dimensions, where their local geometric arrangement can still be
close to that of extended bulk crystals. Likewise, their spatial confinement with
corresponding surfaces and interfaces can be considered analogous to that appear-
ing at bulk crystal surfaces. Therefore, surface crystallography, initially developed
to describe structural properties at single crystal surfaces, also forms a sound basis
by which the structure of nanoparticle surfaces can be characterized. This is par-
ticularly interesting since the relative number of atoms positioned at nanoparticle
surfaces compared with those of their inner volume is always larger than that
of extended macroscopic single crystals. Thus, the relative importance of atoms
at nanoparticle surfaces in determining physical properties is expected to be
greater than that of atoms at single crystal surfaces. In addition, nanoparticles
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(0 0 1)

(−1 1 0)

(1 1 1)

Mg

O

Figure 1.1 Section of an MgO crystal (NaCl lattice). The atoms are shown as shaded balls
of different color and labeled accordingly. The section is enclosed by nonpolar (0 0 1),
(−1 1 0), and by polar (1 1 1) oriented surfaces.

can possess symmetry and geometric properties that do not appear in single crys-
tals or at their surfaces. Examples are icosahedral clusters or curved nanoparticle
surfaces that originate from bending single crystal sections, where in this book
nanotubes will be discussed as examples.

In many experimental and theoretical studies real crystalline systems are,
for the sake of simplicity, approximately described as ideal single crystals
with a well-defined atomic composition and an unperturbed three-dimensional
periodicity. In addition, planar surfaces of single crystals are often assumed to be
bulk-terminated and of unperturbed two-dimensional periodicity. With this
approximation in mind a rigorous mathematical description of all structural
parameters becomes possible and is one of the basic subjects of classical crys-
tallography. As an illustration, Figure 1.1 shows the structure of a section of an
ideal single crystal of magnesium oxide, MgO, with its perfect three-dimensional
periodic arrangement of atoms. Here, sections of ideal planar surfaces, originating
from bulk truncation, become visible and demonstrate the variety of surface
types for the same crystal depending on the crystal cut.

In the following chapters of this book we will discuss the basic elements as
well as the mathematical methods used in crystallography to evaluate structural
parameters of single crystals with particular emphasis on their surfaces. We start
with ideal bulk crystals of three-dimensional periodicity, where classical bulk
crystallography provides a quantitative description. Then we introduce ideal
two-dimensional surfaces as a result of bulk truncation along specific directions
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including high density, vicinal, stepped, kinked, and chiral surfaces. We give
a detailed account of their two-dimensional symmetry behavior following the
crystallographic classification scheme of Bravais lattices and two-dimensional
space groups. Next, we discuss details of the deviation of atomic structures at
surfaces due to changes in surface binding compared with that in the bulk. This
is usually described by surface relaxation and reconstruction, where we consider
different schemes. In addition, structural behavior during growth processes is
discussed. Then we deal with the crystallographic aspects of commensurate,
high-order commensurate, and incommensurate adsorbate systems as special
cases of surface reconstruction. Here also the different structure notations used
in the literature will be described. The discussion of surface structure will be
completed by an overview of the surfaces that have been analyzed quantitatively
at an atomic level in scattering, diffraction, imaging, or spectroscopic experi-
ments. Further, formal requirements of complete quantitative surface structure
databases will be considered. Finally, we describe the theoretical aspects and
structural details of nanotubes of different element composition as special cases
of rolled sections of crystal monolayers. These nanotubes are examples of a larger
class of crystalline materials, nanoparticles mentioned above, and demonstrate
that crystallographic methods can also be applied to these systems in order
to account for their structural properties. Finally, the book concludes with
appendices spelling out further details of the mathematical methods used in the
different sections, with tabulations of typical surface sites, and with compilations
of structural parameters of crystals.

The theoretical concepts treated in this book will be illustrated by example
applications for further understanding, which include results from measured
real single crystal surfaces documented in the Surface Structure Database (SSD)
[22–24] or its earlier version SCIS (Surface Crystallographic Information Ser-
vice) [25]. In addition, each chapter of the book concludes with a set of exercises.
These exercises are of varying difficulty, ranging from simple questions to small
research projects, and are meant to stimulate the discussion on the different
subjects and to contribute to their clarification. Some of the exercises may require
visualization tools for crystals, such as Balsac [26] or Survis [27] or the like.

In the theoretical treatment of some structural properties of ideal single crystals
we will apply number theoretical methods, dealing with relations between inte-
gers. While this approach is not commonly used in textbooks on surface science
or crystallography it can simplify the formal treatment considerably. Examples
are solutions of linear and quadratic Diophantine equations that facilitate the dis-
cussion of monolayers or of atom neighbor shells in crystals. Therefore, number
theoretical methods will be introduced briefly as required and further details are
found in Appendix E.

A few illustrations are included as stereo pictures for an enhanced three-
dimensional impression. These pictures may be viewed either by using optical
stereo glasses (available separately) or by cross-eyed viewing without glasses.



1 Introduction 5

In the latter case, viewing for an extended time may overstrain the eyes and
should be avoided.

Clearly, the present book cannot cover all aspects of the field and may, in some
cases, be quite brief. Further, the selection of topics as well as their presentation
is, to some degree, determined by the author’s personal preferences. However,
the interested reader is referred to the extensive crystallographic literature, see
for example, [28–33], to the surface science literature, see for example, [34–39],
or to the solid state physics literature, see for example, [1, 2, 40], to explore
additional details.
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2
Bulk Crystals: Three-Dimensional Lattices

This section deals with the geometric properties of three-dimensional bulk
crystals, which are described, in their perfect structure, by atom arrangements
that are periodic in three dimensions. As an example, Figure 2.1 shows a section
of a tetragonal YBa2Cu3O7 crystal, where vectors R1, R2, R3 (lattice vectors)
indicate the mutually perpendicular directions of periodicity. Further, the basis
of the crystal structure consists of 13 atoms (1× yttrium, 2× barium, 3× copper,
7× oxygen) inside a rectangular block (unit cell) that is repeated periodically
inside the crystal. The building unit is shown to the left of the figure.

In this section, all basic definitions used for a quantitative description of
structural properties of perfect three-dimensionally periodic crystals will be
provided. Here, the crystals are considered not only in terms of their translational
symmetry, that is, periodicity, but also by their different point symmetry elements,
such as inversion points, mirror planes, or rotation axes, which characterize the
positions of all atoms inside a crystal. While the definitions and general properties
are rather abstract and mathematical, they can be quite relevant for theoretical
studies of real three-dimensional crystals. As an example, lattice representations
of crystals are required as input to any electronic structure calculation for solid
crystalline material. Further, the theoretical treatment of three-dimensional
crystals serves as a foundation to study the surfaces of single crystals, as will be
discussed in Chapters 4, 5, and 6.

2.1
Basic Definition

The basic definition of a perfect three-dimensional bulk crystal becomes quite
clear by considering a simple example. Figure 2.2a shows a section of the cubic
CsCl crystal, which is periodic in three perpendicular directions. Thus, its
periodicity can be described by orthogonal vectors R1, R2, R3 (lattice vectors),
as indicated in Figure 2.2b, whose lengths define the corresponding periodicity
lengths. The lattice vectors span a cubic cell (morphological unit cell) that
contains one cesium and one chlorine atom each at positions given by vectors
r1 (Cs) and r2 (Cl) (lattice basis vectors), see Figure 2.2b. A periodic repetition

Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists,
Second Edition. Klaus Hermann.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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 Y

 Ba

 Cu

 O

   

   

R3

R2

R1

Figure 2.1 Section of a tetragonal YBa2Cu3O7 crystal. The atoms are labeled accordingly.
In addition, the basis of 13 atoms inside a rectangular cell and lattice vectors R1, R2, R3 are
included to the left.

Cs

Cl

(a) (b)

R2

R1

R3

r1 = 0

r2

Cs

Cl

Figure 2.2 (a) Section of a cubic CsCl crystal. Sticks connect neighboring Cs atoms to indi-
cate the crystal structure. (b) Primitive morphological unit cell with two atoms, Cs and Cl,
inside. The lattice vectors R1, R2, R3 as well as lattice basis vectors, r1 = 0 for Cs and r2 for
Cl, are shown and labeled accordingly.
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of the unit cell along R1, R2, R3 can then be used to build the complete infinite
crystal.

In the general case, the formal definition of a perfect three-dimensional bulk
crystal starts from a three-dimensionally periodic arrangement of atoms. Here,
the crystal periodicity is described by a lattice with lattice vectors R1, R2, R3.
Thus, the lattice forms an infinite and periodic array of lattice points reached
from a common origin by vectors R with

R = n1 R1 + n2 R2 + n3 R3 (2.1)

where the coefficients n1, n2, n3 can assume any integer value. This means, in
particular, that each lattice point experiences the same environment created by all
other points.

The lattice vectors can be given in different ways, where the choice depends on
the type of application. While for numerical calculations it may be preferable to
define R1, R2, R3 with respect to an absolute Cartesian coordinate system as

Ri = (xi, yi, zi), i = 1, 2, 3 (2.2)

it is common in the crystallographic literature to define these vectors by lattice
parameters describing their lengths (lattice constants) a, b, c and by their mutual
angles α, β, γ, as sketched in Figure 2.3, where

a = |R1|, b = |R2|, c = |R3|
(R1 R2) = ab cos(γ), (R1 R3) = ac cos(β), (R2 R3) = bc cos(α) (2.3)

Examples are given by lattices denoted as

simple cubic where a = b = c, α = β = γ = 90∘ (2.4)

R1

R2

R3

α

γ

β
a

b

c

Figure 2.3 Definition of crystallographic lattice parameters a, b, c, α, β, γ in a perspective
view.
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hexagonal where a = b ≠ c, α = β = 90∘, γ = 120∘ (2.5)

Relations (2.3) can be converted to yield lattice vectors in Cartesian coordinates
starting from the six parameters, a, b, c, and α, β, γ, given in Eq. (2.3), where one
possible conversion is

R1 = a (1, 0, 0), R2 = b (cos(γ), sin(γ), 0)
R3 = c (cos(β), (cos(α) − cos(β) cos(γ))∕sin(γ), v3∕sin(γ)) (2.6a)

with

v3 = {(cos(β − γ) − cos(α)) (cos(α) − cos(β + γ))}1∕2 (2.6b)

This yields for simple cubic (sc) lattices with Eq. (2.4)

R1 = a (1, 0, 0), R2 = a (0, 1, 0), R3 = a (0, 0, 1) (2.7)

and for hexagonal lattices with Eq. (2.5)

R1 = a (1, 0, 0), R2 = a (−1∕2,
√

3∕2, 0), R3 = c (0, 0, 1) (2.8)

The lattice vectors R1, R2, R3 span a six-faced polyhedron (so-called paral-
lelepiped), defining the morphological unit cell, often referred to as the unit
cell, whose edges are parallel to R1, R2, R3 and whose volume Vel is given by

Vel = |(R1 × R2) R3| (2.9)

The unit cell is called a primitive unit cell if its volume is the smallest of all possi-
ble unit cells in the crystal. This is equivalent to requiring that there is no additional
lattice point, described by vector R′ with

R′ = κ1 R1 + κ2 R2 + κ3 R3, 0 ≤ κ i < 1 (2.10)

inside the morphological unit cell of the lattice. Otherwise, the cell is non-
primitive and there must be one or more additional lattice points R′ inside the
unit cell. Analogously, lattice vectors R1, R2, R3 whose morphological unit cell is
primitive are called primitive lattice vectors, otherwise non-primitive. As an
example, the cubic unit cell of CsCl as well as the corresponding lattice vectors,
shown in Figure 2.2, are primitive. On the other hand, replacing all cesium
and chlorine atoms in Figure 2.2 by one atom type, for example, iron, yields a
body-centered cubic (bcc) crystal. Here, the lattice vectors R1, R2, R3, shown in
the figure, are non-primitive, since vector r2 now becomes a lattice vector inside
the morphological unit cell.

In a crystal, the morphological unit cell contains, in general, p atoms at positions
given by vectors r1, … , rp (lattice basis vectors), which form the basis of the
crystal structure (the basis is sometimes also called the structure). Each atom at ri
carries a label characterizing its properties, such as its nuclear charge or element
name. These labels, usually omitted in the following, will be attached to each lattice
basis vector if needed. For example, a definition rCl

3 would refer to a chlorine atom
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placed at a position given by the third lattice basis vector. All lattice basis vectors
ri inside the morphological unit cell can be written as linear combinations of the
lattice vectors R1, R2, R3 according to

ri = xi R1 + yi R2 + zi R3, i = 1 … p (2.11)

where xi, yi, and zi are real-valued coefficients with |xi|< 1, |yi|< 1, |zi|< 1. This
use of relative coordinates xi, yi, zi to describe atoms inside the unit cell is com-
mon practice in the crystallographic literature [28–33]. Note that, according to
definition (2.11) the coefficients xi, yi, zi are generally not connected with the
Cartesian coordinate system but with coordinate axes given by the lattice vectors
R1, R2, R3.

The origin of the morphological unit cell inside a crystal can always be chosen
freely since the complete infinite crystal consists of a periodic arrangement of unit
cells in three dimensions. In particular, the origin does not need to coincide with
a specific atom position, as considered in the example of CsCl discussed above.
However, it is usually chosen to coincide with the location of the largest number
of point symmetry elements, such as inversion points or origins of mirror planes
and rotation axes, which are given by the lattice vectors R1, R2, R3 together with
the lattice basis vectors r1, … , rp. This will be discussed in greater detail in Section
2.4.

Altogether, a crystal is characterized uniquely by its lattice defined by lattice
vectors R1, R2, R3 and its basis defined by lattice basis vectors r1, … , rp. Thus,
general atom positions inside the crystal can be given by

r = n1 R1 + n2 R2 + n3 R3 + ri (2.12)

where the coefficients n1, n2, n3 can assume any integer value and index
i= 1, … , p counts the number of atoms in the unit cell. Here, the lattice and the
basis can be treated as separate elements of a crystal structure (which are only
connected by the symmetry elements as will be discussed in Section 2.4).

2.2
Representation of Bulk Crystals

There is one important aspect that characterizes all formal descriptions of crys-
tal structures, the fact that mathematical descriptions of crystals are not unique.
This means that, for a given definition of a crystal, one can always find an infinite
number of alternatives that describe the same crystal. While this ambiguity may
be considered a drawback at first glance, it allows choosing crystal representa-
tions according to additional constraints, for example, those given by symmetry,
physical, or chemical properties. Here, one can distinguish between alternative
descriptions that affect the crystal basis but not its lattice representation and those
where both the lattice representation and the basis are affected.
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2.2.1
Alternative Descriptions Conserving the Lattice Representation

Examples of alternative crystal descriptions that do not affect the crystal lattice are
given by elemental or compound decompositions of a crystal. Here, the basic idea
is to decompose the basis inside the unit cell of a complex crystal into components
and consider (fictitious) crystals of these components with the same periodicity as
that of the initial crystal, given by its lattice. This decomposition is of didactic value
but may also help to understand details of chemical binding inside the crystal, for
example, discriminating between intra- and inter-molecular binding in molecular
crystals. In the simplest case, a crystal with p atoms in its primitive unit cell can
be considered alternatively as a combination of p crystals with the same lattice but
with only one atom in their primitive unit cells. The origins of the corresponding p
crystals can be set at positions given by the lattice basis vectors ri of the complete
non-primitive crystal.

As a very simple example, the cubic cesium chloride, CsCl, crystal, shown in
Figure 2.2, is defined by a simple cubic (sc) lattice with lattice vectors R1, R2, R3
given by Eq. (2.7). Further, its basis includes two atoms, Cs and Cl, which can be
positioned at

r1 = a (0, 0, 0) for Cs, r2 = a (1∕2, 1∕2, 1∕2) for Cl (2.13)

with a denoting the lattice constant of CsCl. Thus, the crystal can be considered as
a combination of two sc monoatomic crystals, one for cesium and one for chlorine,
where their origins are shifted by ro = r2 − r1 = a (1∕2, 1∕2, 1∕2) with respect to
each other.

A more complex example is the tetragonal YBa2Cu3O7 crystal, shown in
Figure 2.1. Here, the lattice vectors can be written in Cartesian coordinates as

R1 = a (1, 0, 0), R2 = a (0, 1, 0), R3 = c (0, 0, 1) (2.14a)

and the morphological unit cell contains 13 atoms resulting in 13 lattice basis vec-
tors ri with

Y atom ∶ r1 = (1∕2, 1∕2, 5∕6)
Ba atoms ∶ r2 = (1∕2, 1∕2, 1∕6), r3 = (1∕2, 1∕2, 1∕2)
Cu atoms ∶ r4 = (0, 0, 0), r5 = (0, 0, 1∕3), r6 = (0, 0, 2∕3)
O atoms ∶ r7 = (1∕2, 0,−ε), r8 = (0, 1∕2,−ε), r9 = (0, 0, 1∕6)

r10 = (0, 1∕2, 1∕3), r11 = (0, 0, 1∕2)
r12 = (1∕2, 0, 2∕3 + ε), r13 = (0, 1∕2, 2∕3 + ε) (2.14b)

using relative coordinates (2.11) where experiments yield a relative position shift
ε= 0.026 of four oxygen atoms. This crystal can be decomposed conceptually into
13 monoatomic (tetragonal) crystals, one yttrium, two barium, three copper, and
seven oxygen crystals.

Alternatively, one can decompose the YBa2Cu3O7 crystal into physically more
meaningful subunits that include several of the atoms of the initial unit cell. As an
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Y

Ba

Cu

O

(a) (b) (c)

Figure 2.4 Decomposition of the YBa2Cu3O7 crystal (a) into its copper oxide, Cu3O7 (b) and
heavy metal, YBa2, components (c). Atoms are shown as colored balls and labeled accord-
ingly. In addition, the lattice vectors R1, R2, R3 are indicated by arrows.

example, Figure 2.4 illustrates a decomposition of the YBa2Cu3O7 crystal into its
copper oxide and its heavy metal components, namely, Cu3O7 and YBa2, respec-
tively. Here, the unit cells of the component crystals contain 10 and 3 atoms each,
where the Cu3O7 component is believed to contribute to the high-temperature
superconductivity of YBa2Cu3O7.

A very illustrative example of crystal decomposition is given by the diamond
crystal, shown in Figure 2.5. Its lattice can be defined as a cubic lattice where the
lattice vectors are given by Eq. (2.7). The basis of the crystal includes eight carbon
atoms in tetrahedral arrangements resulting in eight lattice basis vectors ri with

fcc1

fcc2

Figure 2.5 Decomposition of the diamond crystal into two (shifted) face-centered cubic
crystals, denoted fcc1 (gray balls, black lines) and fcc2 (red balls and red lines). The crystal is
shown in a stereo view where the visual three-dimensional impression is obtained by cross-
eyed viewing.
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r1 = (0, 0, 0), r2 = (0, 1∕2, 1∕2), r3 = (1∕2, 0, 1∕2)
r4 = (1∕2, 1∕2, 0), r5 = (1∕4, 1∕4, 1∕4), r6 = (1∕4, 3∕4, 3∕4)
r7 = (3∕4, 1∕4, 3∕4), r8 = (3∕4, 3∕4, 1∕4) (2.15)

in relative coordinates (2.11). This shows, first, that the diamond crystal can be
decomposed into eight sc crystals, each with one carbon in the primitive unit cell.
Further, the lattice basis vectors r5, r6, r7, r8 arise from r1, r2, r3, r4 by identical
shifts with

ri+4 = ri + 1∕4 (1, 1, 1), i = 1, 2, 3, 4 (2.16)

This suggests that the diamond crystal can also be decomposed into two identi-
cal cubic crystals, each with four atoms in their unit cells, where the origins of
the two crystals are shifted by a vector a/4 (1, 1, 1) with respect to each other.
The lattices of the two component crystals will be shown in Section 2.2.2.1 to be
identical to face-centered cubic (fcc) lattices. Thus, the diamond crystal can be
alternatively described by a superposition of two fcc crystals which becomes clear
by an inspection of Figure 2.5.

2.2.2
Alternative Descriptions Affecting the Lattice Representation

There are many possibilities of providing alternative descriptions of crystals
where their lattices are represented differently. These alternatives may be pre-
ferred because of conceptual convenience but may also be required due to
computational necessity. Examples are symmetry-adapted lattices combin-
ing translational with point symmetry properties or surface-adapted lattices
facilitating the definition of atom coordinates in surface studies.

Crystallographers have defined a set of constraints on lattice vectors R1, R2, R3
to yield a unique description of a lattice according to Niggli [41], which allows
an easy distinction between the different types of three-dimensional Bravais lat-
tices discussed in Section 2.4. First, the lattice vectors are chosen such that they
form a right-handed vector triplet, which can be expressed mathematically by the
constraint

(R1 × R2) R3 > 0 (2.17)

Further, they are assumed to reflect three smallest periodicity lengths along dif-
ferent directions in the crystal and are arranged such that|R1| ≤ |R2| ≤ |R3| (2.18)

In addition, all lattices are grouped according to their scalar products sij = (Ri Rj)
into two classes,

s12 ≥ 0, s13 ≥ 0, s23 ≥ 0 (type 1, acute) (2.19a)

s12 ≤ 0, s13 ≤ 0, s23 ≤ 0, with at least one sij < 0 (type 2, obtuse) (2.19b)
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where lattices with other sij combinations can be easily converted to one of the two
classes by inverting two of the lattice vectors Ri, Rj to yield −Ri, −Rj. Further, sim-
ple iterative algorithms have been developed [42, 43] to reduce a general vector set
R1, R2, R3 of type 1 or 2 to a unique description with R1, R2, R3 referring to vectors
of smallest length in the lattice. This reduced lattice vector set fulfills, apart from
Eqs. (2.17) and (2.18), the inequalities

− min(R2
i ,R2

j ) ≤ 2 (Ri Rj) < min(R2
i ,R2

j ), i ≠ j, i, j = 1, 2, 3 (2.20)

which can be used to identify and classify reduced unique vector sets R1, R2, R3.
Type 2 lattices require an additional constraint which reads

2 (|R1 R2| + |R1 R3| + |R2 R3|) ≤ R2
1 + R2

2 (2.21)

to yield a unique description [42].
The application of the above constraints to two-dimensional lattices described

by lattice vectors R1, R2 is straightforward. Here, the two vectors are required to
yield the smallest periodicity lengths along different directions in the lattice and
are ordered according to

|R1| ≤ |R2| (2.22)

This allows, as in the three-dimensional case, two lattice classes differing by the
scalar product s12 = (R1 R2),

s12 ≥ 0 (type 1, acute) and s12 < 0 (type 2, obtuse) (2.23)

The Minkowski reduction, see Section 3.3 and Appendix D, can be used to reduce a
general vector set R1, R2 of type 1 or 2 to a unique description referring to vectors
of smallest length in the lattice. This reduced vector set fulfills, apart from Eq.
(2.22), the inequality

− min(R2
1,R2

2) ≤ 2 (R1 R2) < min(R2
1,R2

2) (2.24)

which can be used to test whether a vector set R1, R2 is reduced or not. The
constraints (2.22) and (2.24) yield a unique description that allows a simple dis-
tinction between the different types of two-dimensional Bravais lattices discussed
in Section 3.7. They can also serve as a basis for a more general classification
scheme proposed in the literature [44]. In two dimensions, obtuse lattice descrip-
tions can always be converted to acute descriptions, which is preferred by many
surface scientists, by swapping the lattice vectors and replacing one of the two, for
example, R1, by its negative, −R1, where, however, one of the two representations
may violate constraint (2.22).

Many researchers in the surface science community (and not only there) find
it convenient to think in Cartesian coordinates, using orthogonal unit vectors in
three-dimensional space. Therefore, they prefer to characterize lattices, if possible,
by orthogonal lattice vectors R1, R2, R3 even at the expense of having to consider
corresponding crystal bases with a larger number of atoms. This will be discussed
for face- and body-centered cubic lattices in Section 2.2.2.1.
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Theoretical studies on extended geometric perturbations inside a crystal, such
as those originating from periodic imperfections or distortions, often require con-
sidering unit cells with lattice vectors R′

1, R′
2, R′

3 which are larger than those given
by R1, R2, R3 of the unperturbed crystal. Here, a direct computational compari-
son of results for the perturbed crystal with those for the unperturbed crystal is
often facilitated by applying the same (enlarged) lattice vectors R′

1, R′
2, R′

3 to both
systems. As a result, the unperturbed crystal is described by a lattice with a larger
than primitive unit cell and an appropriately increased number of atoms. This is
the basic idea behind so-called superlattice methods, which will be discussed in
Section 2.2.2.2.

Ideal single crystal surfaces that originate from bulk truncation yielding two-
dimensional periodicity at the surface, will be treated in great detail in Chapter 4.
Here, the analysis of structural properties at the surface can be facilitated greatly
by using so-called netplane-adapted lattice vectors R′

1, R′
2, R′

3. These are given
by linear transformations of the initial bulk lattice vectors, where the shape of the
morphological unit cell may change but not its volume nor the number of atoms
inside the cell. Differently oriented surfaces require different sets of netplane-
adapted lattice vectors leading to many alternative descriptions of the bulk lattice,
as discussed in Section 2.2.2.3.

2.2.2.1 Cubic, Hexagonal, and Trigonal Lattices
The family of cubic lattices, simple, body-, and face-centered, are closely con-
nected with each other, which is why many scientists use the simplest of the three,
the simple cubic lattice as their reference. This lattice, also called cubic-P and
often abbreviated by sc is described in Cartesian coordinates by lattice vectors

Rsc
1 = a (1, 0, 0), Rsc

2 = a (0, 1, 0), Rsc
3 = a (0, 0, 1) (2.25)

which are three mutually orthogonal vectors of equal length, given by the lattice
constant a.

The body-centered cubic lattice, also called I-centered or cubic-I and often
abbreviated by bcc, see Figure 2.6, can be defined in Cartesian coordinates by lat-
tice vectors

R1 = a∕2 (−1, 1, 1), R2 = a∕2 (1,−1, 1), R3 = a∕2 (1, 1,−1) (2.26)

Here, the three vectors are of the same length

|R1| = |R2| = |R3| = (
√

3∕2)a (2.27)

but they are not orthogonal to each other, forming angles α= β= γ= 109.47∘
(cos α=−1/3) according to Eq. (2.3). General lattice points of the bcc lattice are
given in Cartesian coordinates by vectors

R = n1 R1 + n2 R2 + n3 R3

= a∕2 (−n1 + n2 + n3,n1 − n2 + n3,n1 + n2 − n3)
= a∕2 (N1,N2,N3), n1,n2,n3,N1,N2,N3 integer (2.28)
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R3

R2
R1

x y

z

Figure 2.6 Lattice vectors R1, R2, R3 of the body-centered cubic (bcc) lattice sketched inside
a cubic frame with Cartesian coordinates, x, y, and z, indicated. Atoms of the corresponding
bcc crystal are shown as balls.

where the integers n1, n2, n3 and N1, N2, N3 are connected by

N1 = −n1 + n2 + n3, N2 = n1 − n2 + n3, N3 = n1 + n2 − n3 (2.29)

Relation (2.28) together with the definition of the sc lattice vectors can be
written as

R = n1 R1 + n2 R2 + n3 R3 = 1∕2 (N1 Rsc
1 + N2 Rsc

2 + N3 Rsc
3 ) (2.30)

which demonstrates the connection between the bcc and the sc lattices. While
the integer coefficients n1, n2, n3 can be chosen freely the integer coefficients
N1, N2, N3 are not independent. Relations (2.29) yield

N2 = N1 + 2 (n1 − n2), N3 = N1 + 2 (n1 − n3) (2.31)

Hence, the integers N1, N2, N3 can only be all odd or all even for any choice of
n1, n2, n3.

If N1, N2, N3 in Eq. (2.28) are all even, that is, they can be represented by

Ni = 2mi, i = 1, 2, 3 for any integer mi (2.32)

then relation (2.30) together with Eq. (2.32) leads to

R = m1 Rsc
1 + m2 Rsc

2 + m3 Rsc
3 m1,m2,m3 integer (2.33)

which describes an sc lattice as one subset of the bcc lattice.
If, on the other hand, N1, N2, N3 in Eq. (2.28) are all odd, that is, they can be

represented by

Ni = 2mi + 1, i = 1, 2, 3 for any integer mi (2.34)
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then relation (2.30) together with Eq. (2.34) leads to

R = m1 Rsc
1 + m2 Rsc

2 + m3 Rsc
3 + v m1,m2,m3 integer (2.35)

with

v = 1∕2 (Rsc
1 + Rsc

2 + Rsc
3 ) (2.36)

This also describes an sc lattice as the second subset of the bcc lattice, where the
second sc lattice is, however, shifted by a vector v with respect to the first. Thus,
the constraints for N1, N2, N3 in Eq. (2.29) yield a decomposition of the bcc lattice
into two identical sc lattices that are shifted with respect to each other by vector
v given by Eq. (2.36). The two sc lattices are sketched in Figure 2.7 and denoted
“sc1”, “sc2” in the figure.

As a consequence, any crystal with a bcc lattice given by lattice vectors (2.26)
can be alternatively described by a crystal with an sc lattice with lattice vectors
(2.25), where the unit cell of the sc lattice contains twice as many atoms with atom
pairs separated by vector v. Further, the lattice vectors Rsc

1 , Rsc
2 , Rsc

3 of the sc lattice
representation are non-primitive since vector

v = 1∕2 (Rsc
1 + Rsc

2 + Rsc
3 ) = R1 + R2 + R3 (2.37)

according to Eq. (2.26) is a true lattice vector.
The face-centered cubic lattice, also called F-centered or cubic-F and often

abbreviated by fcc, see Figure 2.8, can be defined in Cartesian coordinates by lat-
tice vectors

R1 = a∕2 (0, 1, 1), R2 = a∕2 (1, 0, 1), R3 = a∕2 (1, 1, 0) (2.38)

As for the bcc lattice, the three vectors are of the same length|R1| = |R2| = |R3| = a∕
√

2 (2.39)

sc1

sc2

Figure 2.7 Visual decomposition of the bcc crystal into two (shifted) sc crystals, denoted sc1
(gray balls, black lines) and sc2 (red balls and lines). The crystal is shown in a stereo view
where the visual three-dimensional impression is obtained by cross-eyed viewing.
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R3

R1

R2

x
y

z

Figure 2.8 Lattice vectors R1, R2, R3 of the fcc lattice sketched inside a cubic frame and
labeled accordingly. Atoms of the corresponding fcc crystal are shown as balls. The dashed
lines are meant to assist the visual orientation inside the figure.

but are not orthogonal to each other, forming angles α=β= γ= 60∘ (cos α= 1/2)
according to Eq. (2.3). General lattice points of the fcc lattice are given in Carte-
sian coordinates by vectors

R = n1 R1 + n2 R2 + n3 R3 = a∕2
(
n2 + n3,n1 + n3,n1 + n2

)
= a∕2

(
N1,N2,N3

)
, n1,n2,n3,N1,N2,N3 integer (2.40)

where the integers n1, n2, n3 and N1, N2, N3 are connected by

N1 = n2 + n3, N2 = n1 + n3, N3 = n1 + n2 (2.41)

Relation (2.40) together with the definition of the sc lattice vectors can be
written as

R = n1 R1 + n2 R2 + n3 R3 = 1∕2
(
N1 Rsc

1 + N2 Rsc
2 + N3 Rsc

3
)

(2.42)

which shows the connection between the fcc and the sc lattice. As in the bcc case,
the integer coefficients N1, N2, N3 are not independent. Even- and odd-valued
combinations of the initial coefficients n1, n2, n3 yield eight cases as shown in
Table 2.1.

As a result, integers N1, N2, N3 reduce to four different types of even/odd com-
binations,

1) Ni = 2mi, i= 1, 2, 3, (cases 1, 2 in Table 2.1) which results, according to
Eq. (2.42), in

R = a∕2
(
N1,N2,N3

)
= a

(
m1,m2,m3

)
, m1,m2,m3 integer (2.43a)
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Table 2.1 List of all possible even/odd integer combinations N1, N2, N3 following from
even/odd integer combinations n1, n2, n3 according to Eq. (2.41).

Case n1 n2 n3 N1 N2 N3

1 e e e e e e
2 o o o e e e
3 o e e e o o
4 e o o e o o
5 e o e o e o
6 o e o o e o
7 e e o o o e
8 o o e o o e

Characters “e” and “o” stand for even and odd integers, respectively.

describing the sc lattice given by Eq. (2.25) with its origin coinciding with that
of the fcc lattice, corresponding to an origin shift v1 = 0, see below.

2) N1 = 2 m1, N2 = 2 m2 + 1, N3 = 2 m3 + 1, (cases 3, 4) resulting in

R = a∕2
(
N1,N2,N3

)
= a

(
m1,m2,m3

)
+ v2

v2 = 1∕2
(
Rsc

2 + Rsc
3
)

(2.43b)

describing the sc lattice with an origin shift v2.
3) N1 = 2 m1 + 1, N2 = 2 m2, N3 = 2 m3 + 1, (cases 5, 6) resulting in

R = a∕2
(
N1,N2,N3

)
= a

(
m1,m2,m3

)
+ v3

v3 = 1∕2
(
Rsc

1 + Rsc
3
)

(2.43c)

describing the sc lattice with an origin shift v3.
4) N1 = 2 m1 + 1, N2 = 2 m2 + 1, N3 = 2 m3, (cases 7, 8) resulting in

R = a∕2
(
N1,N2,N3

)
= a

(
m1,m2,m3

)
+ v4

v4 = 1∕2
(
Rsc

1 + Rsc
2
)

(2.43d)

describing the sc lattice with an origin shift v4.

Therefore, the constraints for N1, N2, N3 in Eq. (2.41) yield a decomposition of
the fcc lattice into four identical sc lattices that are shifted with respect to each
other according to their origins at v1, v2, v3, v4, given by Eqs. (2.43a–2.43d). The
four sc lattices are sketched in Figure 2.9 and denoted “sc1” to “sc4” in the figure.

As a consequence, any crystal with an fcc lattice given by lattice vectors Eq.
(2.38) can be alternatively described by a crystal with an sc lattice with lattice vec-
tors Eq. (2.25), where the unit cell of the sc lattice contains four times as many
atoms with atom pairs separated by vectors vi − vj, i, j= 1, … , 4. Further, the lat-
tice vectors Rsc

1 , Rsc
2 , Rsc

3 of the sc lattice representation are non-primitive since
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sc1

sc2

sc3

sc4

Figure 2.9 Visual decomposition of the fcc crystal into four (shifted) sc crystals, denoted sc1
(dark gray balls, black lines), sc2 (dark red balls and lines), sc3 (light gray balls and lines),
and sc4 (light red balls and lines). The crystal is shown in a stereo view where the visual
three-dimensional impression is obtained by cross-eyed viewing.

the four vectors vi

v1 = 0 v2 = 1∕2
(
Rsc

2 + Rsc
3
)
= R1

v3 = 1∕2
(
Rsc

1 + Rsc
3
)
= R2 v4 = 1∕2

(
Rsc

1 + Rsc
2
)
= R3 (2.44)

according to Eq. (2.38) are true lattice vectors.
The hexagonal lattice, also called hexagonal-P and often abbreviated by hex,

is described by two lattice vectors Rhex
1 , Rhex

2 of equal length a, forming an angle
of either 120∘ (obtuse representation) or 60∘ (acute representation) between
them. A third lattice vector Rhex

3 of length c, is perpendicular to both Rhex
1 and

Rhex
2 . Thus, the vectors of the obtuse representation can be described in Cartesian

coordinates by

Rhex
1 = a (1, 0, 0), Rhex

2 = a (−1∕2,
√

3∕2, 0), Rhex
3 = c (0, 0, 1) (2.45a)

and those of the acute representation by

Rhex
1 = a (1, 0, 0), Rhex

2 = a (1∕2,
√

3∕2, 0), Rhex
3 = c (0, 0, 1) (2.45b)

where a and c are the lattice constants of the hexagonal lattice. While the two rep-
resentations are equivalent, the obtuse representation of crystal lattices is often
preferred over the acute one and will be used in the following discussions.

There is a special type of crystal structure with hexagonal lattice, the so-called
hexagonal close-packed (hcp) crystal structure, illustrated by Figure 2.10 and
called hex (hcp) in the following it is defined by a hexagonal lattice, given in obtuse
representation by Eq. (2.45a) with a lattice constant ratio c/a of

√
(8∕3) = 1.63299.
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(a) (b)

R1
R2

R3

Figure 2.10 (a) Section of a hexagonal crystal with close-packed geometry (hcp). Sticks con-
nect atoms with nearest and second nearest neighbors to indicate the crystal structure.
(b) Primitive morphological unit cell with two atoms inside. The lattice vectors R1, R2, R3
(obtuse representation) are labeled accordingly. The unit cell is embedded in a hexagonal
environment (dashed lines) to indicate its symmetry.

Further, the hexagonal unit cell contains two identical atoms at positions

rhcp
1 = a (0, 0, 0), rhcp

2 = (a∕2, a∕
√

12, c∕2) = a (1∕2, 1∕
√

12,
√
(2∕3)) (2.45c)

see Figure 2.10b. The c/a ratio and the atom positions are chosen such that each
atom is surrounded by 12 nearest neighbor atoms at equal distance (equal to lat-
tice constant a), achieving the same atom density as crystals with a corresponding
fcc lattice. While hcp crystals in their rigorous mathematical definition do not
exist in nature, they occur, to a good approximation, that is, with ratios c/a close
to

√
(8∕3), for many single crystals of metals, such as beryllium, magnesium, tita-

nium, cobalt, ruthenium, and cadmium, see Table B.3.
Analogous to the family of cubic lattices, there is also a close connection

between trigonal and hexagonal lattices, where scientists often prefer hexagonal
over trigonal lattice descriptions. The trigonal lattice, also called trigonal-R or
rhombohedral, is described by three lattice vectors R1, R2, R3 of equal length
a, which form identical angles α= β= γ. Thus, the lattice vectors can be thought
of as arising from each other by a 120∘ rotation about a common axis given
by (R1 +R2 +R3), see Figure 2.11a. Assuming the rotation axis as the z axis
of a Cartesian coordinate system, the vectors can be described in Cartesian
coordinates by

R1 = a (c1, 0, c2), R2 = a (−1∕2 c1,
√

3∕2 c1, c2),

R3 = a (−1∕2 c1,−
√

3∕2 c1, c2), c1 = cos(φ), c2 = sin(φ)
(2.46)

where φ denotes the angle between each of the three lattice vectors and the xy
plane, see Figure 2.11a, and is determined by
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TrigonalHexagonal

α

x

y

z

R1

R2

R3

φ

(a) (b)

Figure 2.11 (a) Lattice vectors R1, R2, R3 of the trigonal (rhombohedral) lattice with defi-
nitions of the Cartesian coordinate system and of angles φ, α, see text. (b) Three trigonal
lattices combining to form a non-primitive hexagonal lattice. Lattice vectors are shown by
arrows, black for trigonal and red for hexagonal. The visual correlation between the two lat-
tices is indicated by thin gray sticks connecting hexagonal lattice points.

cos(α) = cos(β) = cos(γ) = 1∕4 {1 − 3 cos(2φ)} (2.47)

Thus, the three vectors R′
1, R′

2, R′
3 with

R′
1 = R1 − R2 =

√
3c1a (

√
3∕2,−1∕2, 0)

R′
2 = R2 − R3 =

√
3c1a (0, 1, 0)

R′
3 = R1 + R2 + R3 = 3c2a (0, 0, 1) (2.48)

form a hexagonal sublattice (obtuse representation) of the trigonal lattice
since |R′

1|2 = |R′
2|2 = 3a2 cos2(φ), |R′

3| = 9a2 sin2(φ)

∠(R′
1,R′

2) = 120∘, ∠(R′
1,R′

3) = ∠(R′
2,R′

3) = 90∘ (2.49)

(Actually, lattice vectors (2.48) can be easily shown to coincide with definition
(2.45a) of a hexagonal lattice by applying a rotation by 30∘ about the axis through
R′

3 and a scaling of the lattice constants where constants a and c in Eq. (2.45a)
correspond to (

√
3 c1 a) and (3 c2 a) in Eq. (2.48).)

General lattice points of the hexagonal sublattice are given according to
Eqs. (2.46) and (2.48) by vectors

R = n1 R′
1 + n2 R′

2 + n3 R′
3

= (n1 + n3) R1 + (n2 − n1 + n3) R2 + (n3 − n2) R3

= m1 R1 + m2 R2 + m3 R3 (2.50)
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where the coefficients mi and ni are connected by linear transformations written
in matrix form as⎛⎜⎜⎝

m1
m2
m3

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1 0 1
−1 1 1
0 −1 1

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝
n1
n2
n3

⎞⎟⎟⎠ (2.51a)

and ⎛⎜⎜⎝
n1
n2
n3

⎞⎟⎟⎠ = 1
3

⎛⎜⎜⎝
2 −1 −1
1 1 −2
1 1 1

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝
m1
m2
m3

⎞⎟⎟⎠ (2.51b)

According to Eq. (2.51b), the hexagonal sublattice is described by integer values
n1, n2, n3 only if the corresponding trigonal coefficients m1, m2, m3 fulfill the
three conditions

2 m1 − m2 − m3 = 3g, m1 + m2 − 2 m3 = 3g′, m1 + m2 + m3 = 3g′′ (2.52)

where g, g′, g′′ are integers. Since

m1 + m2 + m3 = (m1 + m2 − 2 m3) + 3 m3 = −(2 m1 − m2 − m3) + 3 m1

(2.53)

fulfilling one of the three conditions (2.52) will automatically satisfy the other two.
Considering the complete trigonal lattice, all sets of coefficients m1, m2, m3 can
be grouped according to one of the three categories,

m1 + m2 + m3 = 3 g (2.54a)

m1 + m2 + m3 = 3 g + 1 or (m1 − 1) + m2 + m3 = 3 g (2.54b)

m1 + m2 + m3 = 3 g + 2 or (m1 − 2) + m2 + m3 = 3 g (2.54c)

Here the condition (2.54a) was shown to result in a hexagonal lattice whose origin
coincides with that of the trigonal lattice. The conditions of Eq. (2.54b) also lead to
a hexagonal lattice. However, its origin is shifted with respect to that of the trigo-
nal lattice by a trigonal lattice vector R1 (or R2 or R3). Analogously, the conditions
of Eq. (2.54c) lead to an identical hexagonal lattice with its origin shifted by a trig-
onal lattice vector 2R1 (or any combination of two trigonal lattice vectors). Since
all lattice points of the trigonal lattice satisfy one of the three conditions (2.54)
the trigonal lattice can be decomposed into three identical hexagonal lattices
that are shifted with respect to each other as sketched by the thinner arrows in
Figure 2.11b.

Altogether, any crystal with a trigonal lattice, given by lattice vectors (2.46),
can be alternatively described by a crystal with a non-primitive hexagonal lattice,
with lattice vectors (2.48), where the unit cell of the hexagonal lattice contains
three times as many atoms compared with that of the trigonal lattice. Further,
the lattice vectors Rhex

1 , Rhex
2 , Rhex

3 of the hexagonal lattice representation are
non-primitive.



2.2 Representation of Bulk Crystals 25

2.2.2.2 Superlattices and Repeated Slabs
As mentioned earlier, theoretical studies on the physical or chemical param-
eters inside a crystal often require considering a unit cell with lattice vectors
R1, R2, R3, which is larger than the primitive cell of the lattice given by
Ro1, Ro2, Ro3. Examples of this so-called supercell or superlattice concept
include spin alignment in antiferromagnetic crystals [45], where the magnetic
lattice, defined by positions of the different spins, differs from the geometric
lattice of the crystal. In addition, local perturbations, such as vacancies, added
atoms, or substituted atoms in alloy formation [46], of otherwise perfect crystals
have been examined theoretically [47] applying supercell concepts. Here, single
perturbations are simulated by those in an artificial crystal with large supercells
such that distances between periodic copies of the perturbations are large enough
to avoid physical coupling. Further, small distortions of lattice positions, which
can result in periodicity with large supercells have been considered in so-called
frozen phonon calculations [48]. Finally, we mention the use of supercell geome-
try in calculations of physical and chemical properties of single crystal surfaces.
These calculations are often based on the so-called repeated slab geometry
[48], where the surface region is approximated by a slab of finite thickness
and a vacuum gap repeated periodically such that overall a three-dimensional
periodicity with a large supercell is achieved.

The basic mathematical idea behind conventional supercell descriptions relies
on the fact that any crystal with a lattice described by primitive lattice vectors
Ro1, Ro2, Ro3 and an atom basis can be represented by an alternative (non-
primitive) lattice with (larger) lattice vectors R1, R2, R3 and an appropriately
modified basis. The alternative vectors are connected with those of the initial
lattice by a linear transformation that must be integer-valued if the global three-
dimensional periodicity is to be conserved. This can be expressed mathematically
by a transformation matrix T with

⎛⎜⎜⎝
R1
R2
R3

⎞⎟⎟⎠ =
⎛⎜⎜⎝
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝
Ro1
Ro2
Ro3

⎞⎟⎟⎠ = T ⋅
⎛⎜⎜⎝

Ro1
Ro 2
Ro3

⎞⎟⎟⎠ (2.55)

where the elements tij of matrix T are integers. As a consequence, the volumes
Vel and Vo

el of the unit cells of the two lattices, defined by Eq. (2.9), are connected
by

Vel = |(R1 × R2) R3|= | det(T) | |(Ro1 × Ro2)Ro3|=| det(T) | Vo
el (2.56)

where Eq. (2.55) together with vector relation (F.9) of Appendix F is applied. This
means, in particular, that the volume Vel of the supercell must be an integer mul-
tiple of volume Vo

el of the initial unit cell.
In the simplest case, the superlattice description results from simple scaling of

the initial lattice vectors, corresponding to a transformation

R1 = m1 Ro1, R2 = m2 Ro2, R3 = m3 Ro3 (2.57)
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with integer-valued m1, m2, m3. Thus, the transformation matrix T becomes diag-
onal, that is,

T =
⎛⎜⎜⎝
m1 0 0
0 m2 0
0 0 m3

⎞⎟⎟⎠ (2.58)

As an illustration, we consider a fictitious sc crystal with ferromagnetic and anti-
ferromagnetic ordering of its atoms, where the antiferromagnetism introduces a
doubling of the lattice vectors in two dimensions, as sketched in Figure 2.12. Thus,
the lattice vectors of the antiferromagnetic crystal, R1, R2, R3, can be connected
with those of the ferromagnetic crystal, Ro1, Ro2, Ro3, by

R1 = 2 Ro1, R2 = 2 Ro2, R3 = Ro3 (2.59)

Theoretical studies of the antiferromagnetic crystal must be based on a lattice
description given by R1, R2, R3 while studies of the ferromagnetic crystal allow
the use of the smaller lattice vectors Ro1, Ro2, Ro3. However, a direct compari-
son of physical properties of the two crystals with different spin alignments can
be simplified by using identical lattice parameters, which suggests applying the
superlattice vectors R1, R2, R3 also for the ferromagnetic crystal.

Incidentally, Figure 2.12 shows that, for the present sc crystal with its antiferro-
magnetic spin alignment, alternative lattice vectors R′

1, R′
2, R′

3 with

R′
1 = 1∕2 (R1 + R2), R′

2 = 1∕2 (R2 − R1), R′
3 = R3 (2.60)

R1

R3

R2

Ro1
Ro2

Ro3

Ferromagnetic
Anti-ferromagnetic

Figure 2.12 Fictitious sc crystal with ferromagnetic (left) and anti-ferromagnetic ordering
(right). Atoms are shown as dark (spin up) and light (spin down) balls with their spin orien-
tation indicated by black and red arrows. The superlattice vectors R1, R2, R3 and primitive
lattice vectors Ro1, Ro2, Ro3 are labeled accordingly.
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could also be chosen, yielding a smaller morphological unit cell than that given
by Eq. (2.59). This vector set can also be used to describe a superlattice of the
ferromagnetic crystal.

As mentioned earlier, computational studies of the physical and chemical prop-
erties of single crystal surfaces are often based on the so-called repeated slab
geometry [48], which can be considered a modified supercell concept. Within
this concept a single crystal with a confining planar surface of given orientation
and periodicity is described approximately by a two-dimensionally periodic solid
layer of finite thickness (slab) cut out of the bulk crystal. Here, two bulk lattice
vectors, R1 and R2, characterize the two-dimensional periodicity of the surface
(and that of the slab). In addition, the slab is repeated periodically along the
direction of its surface normal with a vacuum gap between adjacent slabs where
the periodicity vector R3 is chosen appropriately. This procedure creates an alto-
gether three-dimensionally periodic crystal system with a fictitious superlattice

R3

R1

R2

O

Mg

Figure 2.13 Structure of MgO substrate confined by (1 0 0) and (−1 0 0) oriented surfaces
in repeated slab geometry (three slabs). The superlattice vectors R1, R2, R3 are labeled
accordingly.
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R1, R2, R3, which is connected with the initial crystal lattice only by vectors
R1 and R2. As a result, matrix T of Eq. (2.55) contains integer-valued elements
in its first and second rows while its third row may be real-valued. Within the
repeated slab concept, the physical and chemical parameters of crystalline
surfaces can be evaluated by well-established computational methods developed
a long time ago for three-dimensionally periodic bulk crystals in solid state
physics. For this approach to be meaningful the slabs must be sufficiently thick
so that the surfaces of their upper and lower sides are electronically decoupled.
Further, the vacuum distance between neighboring slabs must be sufficiently
large such that they do not influence each other electronically.

As an illustration, Figure 2.13 shows three slabs of a magnesium oxide crystal
confined by (1 0 0) and (−1 0 0) oriented surfaces at their tops and bottoms con-
sisting of four MgO layers each with a vacuum separation of about three times
the slab thickness. The appropriate superlattice vectors R1, R2, R3, referring to a
2× 2 supercell laterally, that is, along R1 and R2, are sketched and labeled accord-
ingly. The size of the supercell is much larger than that of the bulk crystal and the
number of atoms in the cell, 4× 8= 32 in the present model structure, is rather
large compared with that of the primitive bulk containing two atoms. Therefore,
computational studies applying the repeated slab geometry are usually much more
demanding than those of the corresponding bulk crystal.

As another illustration, Figure 2.14 shows a more complicated structure of three
slabs of an fcc silver crystal confined by kinked surfaces (denoted (12 11 7) and
(−12 −11 −7), respectively) at their top and bottom with a vacuum separation
corresponding to four times the slab thickness. Again, the appropriate superlattice
vectors R1, R2, R3 show that the size of the supercell with 25 atoms is much larger
than the primitive cell of the bulk crystal with one atom only, demonstrating the
difference in computational effort between slab and bulk calculations.

R3

R2

R1

Ag

Figure 2.14 Structure of silver substrate confined by (12 11 7) and (−12 −11 −7) oriented
surfaces in repeated slab geometry (three slabs). The superlattice vectors R1, R2, R3 are
labeled accordingly.
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2.2.2.3 Linear Transformations of Lattice Vectors
One group of alternative descriptions of crystal lattices is given by those where
the alternative lattice vectors R1, R2, R3 are linear combinations of their initial
counterparts Ro1, Ro2, Ro3 with integer coefficients. This was already discussed
in connection with the superlattice concept, and the basic linear transformation
was defined by Eq. (2.55). Among these alternatives, there are lattice descriptions,
whose morphological unit cells change their shape but not their volume, when
compared with those of the initial lattice.

The latter alternatives can be used in practical cases to adapt the lattice descrip-
tion of a single crystal to additional geometric constraints, in particular those
introduced by the existence of a single crystal surface. Therefore, these alternative
descriptions are important for a crystallographic characterization of single crystal
surfaces, as will become more evident in Chapters 4 and 5. In addition, they can
be used to adapt lattice descriptions such that symmetry elements of the lattice
become easily visible. As a simple example in two dimensions, Figure 2.15 shows
two alternative descriptions of the square lattice by lattice vectors Ro1, Ro2 and
R1, R2, respectively, where the two sets are connected by a linear
transformation

R1 = −Ro1 − Ro2, R2 = 2 Ro1 + Ro2 (2.61)

Both vector sets, Ro1, Ro2 and R1, R2, provide mathematically exact descriptions of
the square lattice and form morphological unit cells of the same volume. However,
lattice vectors Ro1, Ro2 are of the same length and perpendicular to each other.
Thus, their unit cell reveals additional symmetry properties of the lattice, such as
mirror and rotational symmetry.

Ro1

Ro2

R1

R2

Figure 2.15 Alternative description of the square lattice by lattice vectors Ro1, Ro2 and R1,
R2, respectively. The morphological unit cells of the two descriptions are emphasized by
gray painting.
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In the general case, we consider lattice vectors R1, R2, R3 of an alternative lattice
description as a result of a linear transformation applied to an initial set of lat-
tice vectors Ro1, Ro2, Ro3, which according to Eq. (2.55) can be written in matrix
form as⎛⎜⎜⎝

R1
R2
R3

⎞⎟⎟⎠ =
⎛⎜⎜⎝
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝
Ro1
Ro2
Ro3

⎞⎟⎟⎠ = T ⋅
⎛⎜⎜⎝
Ro1
Ro2
Ro3

⎞⎟⎟⎠ (2.62)

If the lattice vectors R1, R2, R3 are to describe the same set of lattice points as
vectors Ro1, Ro2, Ro3, then a general lattice point at R must be representable by an
integer-valued linear combination of both sets of lattice vectors, that is,

R = no1 Ro1 + no2 Ro2 + no3 Ro3 = n1 R1 + n2 R2 + n3 R3, noi,ni integer (2.63)

Thus, any triplet of integers n1, n2, n3 corresponds to another integer triplet
no1, no2, no3 and vice versa. This means, in particular, that the transformation
matrix T= (tij) in Eq. (2.62) must be integer-valued. Further, transformation
(2.62) can be inverted to yield

⎛⎜⎜⎝
Ro1
Ro2
Ro3

⎞⎟⎟⎠ =
⎛⎜⎜⎝
t′11 t′12 t′13
t′21 t′22 t′23
t′31 t′32 t′33

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝
R1
R2
R3

⎞⎟⎟⎠ = T−1 ⋅
⎛⎜⎜⎝
R1
R2
R3

⎞⎟⎟⎠ (2.64)

where the matrix elements t′ij of the inverse matrix T− 1 also must be integers.
Since all elements of T are integers the determinant of matrix T, given by

det(T) = t11
(
t22 t33 − t23t32

)
+ t12

(
t23 t31 − t21t33

)
+ t13

(
t21 t32 − t22t31

)
(2.65)

must be integer-valued. The same must be true for the inverse matrix T−1. From
linear algebra, we know that

det
(
T−1) = 1∕det(T) (2.66)

Thus, both determinant values must be non-zero integers, that is, | det(T)| ≥ 1
and | det(T−1)| ≥ 1, which according to Eq. (2.66) can only be possible if

det(T) = det
(
T−1) = ±1 (2.67)

Here the determinant value −1 can be safely ignored since it affects only
the sequence in which the lattice vectors appear in the transformation (con-
nected with handedness of the vector set). Any transformation Eq. (2.62) with
det(T)=−1 can be modified to yield det(T)= 1 by exchanging one vector pair
Ri, Rj in the transformation.

Relation (2.67) imposes a constraint to possible transformation matrices T.
Combining Eq. (2.67) with Eq. (2.65) one can write

det(T) = a1 t11 + a2 t12 + a3 t13 = 1 (2.68)



2.2 Representation of Bulk Crystals 31

with integer-valued coefficients ai where

a1 = t22t33 − t23t32

a2 = t23t31 − t21t33

a3 = t21t32 − t22t31 (2.69)

Equation (2.68) represents a linear Diophantine equation containing only
integers as parameters and variables. As shown in Appendix E.3, this equation
has integer solutions a1, a2, a3 for given t11, t12, t13 only if the latter three
numbers have no common divisor greater than 1. Thus, the transformed lattice
vector

R1 = t11 Ro1 + t12 Ro2 + t13 Ro3 (2.70)

is of smallest length along its direction in the lattice. Rearranging the components
in the determinant (2.65) we can easily derive analogous relations

det(T) = b1t21 + b2t22 + b3t23 = 1 (2.71)

det(T) = c1t31 + c2t32 + c3t33 = 1 (2.72)

with integer-valued coefficients bi, ci, where

b1 = t32t13 − t12t33, c1 = t12t23 − t13t22

b2 = t33t11 − t13t31, c2 = t13t21 − t11t23

b3 = t31t12 − t11t32, c3 = t11t22 − t12t21 (2.73)

Then the corresponding linear Diophantine equations (2.71) and (2.72) have inte-
ger solutions b1, b2, b3 for given t21, t22, t23 (and c1, c2, c3 for given t31, t32, t33)
only if the latter three numbers have no common divisor greater than 1. Thus, the
transformed lattice vectors

R2 = t21 Ro1 + t22 Ro2 + t23 Ro3 (2.74)

R3 = t31 Ro1 + t32 Ro2 + t33 Ro3 (2.75)

are also of smallest length along their direction in the lattice.

2.2.3
Centered Lattices

In Section 2.2.2.1 it was shown that the bcc lattice, characterizing, for example,
iron single crystals, see Figure 2.16a, can be described by non-primitive lattice
vectors R1, R2, R3 that form an sc lattice. However, there is an additional lattice
vector R′ inside the morphological unit cell, spanned by R1, R2, R3, which points to
the center of the cubic unit cell, as illustrated in Figure 2.16b. This is an example
of a more general property of non-primitive lattice representations, commonly
denoted as centering and discussed in the following.


