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Preface

The first room-temperature organic molten salt was reported by Peter Walden
over 100 years ago in 1914 [1]. In the next decades, molten salts have been tested
as solvents for biomass processing (1920s), and later as electrolytes (1950s) for
the electrodeposition of aluminum. Interestingly it took again more than 20 years
until molten salts, now also called ionic liquids, were reported as solvents for
organic synthesis in the 1980s [2]. The first applications of ionic liquids (ILs)
in catalysis was reported just in 1990, when Yves Chauvin (Nobel laureate
2005; 1930–2015) published the first nickel-catalyzed olefin dimerization reac-
tion performed in water-sensitive organochloroaluminate molten salts under
biphasic reaction conditions [3]. Later, in the mid-1990s, two manuscripts were
submitted almost simultaneously (26 June 1995 and 18 August 1995) about
rhodium-catalyzed hydrogenation in biphasic systems using for the first time
air and water-stable ILs [4, 5]. Both Yves Chauvin and Jairton Dupont focused
on imidazolium-based ionic liquids for the immobilization of the catalysts.
Already these early works reported promising turnover numbers (15 000) and
good catalyst recyclability. The robustness of these systems in terms of air- and
moisture stability was a crucial factor for the later and wide spread application of
such ILs. However, it has taken some more years, until for the new millennium
more perspectives and future directions have been envisioned and propagated
especially in review articles [6–8].

Contrary to the advent of the ILs application, the use of colloidal metals,
hence solvated nanoparticles, goes back at least 2000 years and had been subject
of scientific researches early as in the nineteenth century by Michael Faraday
[9]. Nanoscale metals have been synthesized from chemical vapor in 1927 by
Roginsky and Schalnikoff, [10] and applied in catalysis in the 1940s by Nord and
coworkers [11]. Since then, the synthesis and uses of metal nanoparticles has
spread over all fields of chemistry. Again in the 1990s, Manfred Reetz reported
the synthesis of metal nanoparticles in zwitterionic surfactants [12] and the use of
palladium nanoclusters stabilized by propylene carbonate for their use as active
catalysts for the Mizoroki-Heck reaction [13]. At the same institute, already
in 1991 Helmut Bonnemann reported the synthesis of metal nanoparticles
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using tetraalkyl ammonium hydrotriorganoborates as reducing agent for metal
salts and the formed ammonium salts acted as stabilizing agent for the metal
nanoparticles [14]. At about the same time, Bradley, Chaudret and colleagues
turned their attention from synthesis of organometallic complexes to a novel
approach toward the controlled decomposition of organometallics for the defined
synthesis of metal nanoparticles for industrial application [15].

These early observations and applications about “laboratory curiosities”
such as the use of molten salts in organic synthesis and the decomposition of
metal precursors obviously have not fully revealed their potential. The above-
mentioned contributions are examples of the vivid research activities toward
the end of the last century and of course many other researchers were active
as well.

It was only in the early 2000s that the above mentioned aspects of (i) multi-
phase catalysis in ionic liquids and (ii) controlled decomposition of metal precur-
sors for metal nanoparticle formation started to merge into a single application:
nanocatalysis in ionic liquids. These nanocatalysts revealed properties between
single-site catalysts in homogeneous catalysis and multisite catalysts in hetero-
geneous catalysis. It was again Dupont et al. who presented a pioneering work
about the use of ionic liquids as template for the synthesis of nanomaterials in
ionic liquids and hybrid systems consisting of nanoparticles as catalysts and ionic
liquids for multiphase catalysis [16]. In the next years, this new field started to
take full ride and the field of application of those nanocatalysts in ILs broadened
its diversity. Nowadays there are many examples in literature for different reaction
types including hydrogenation, dehydrogenation, cross-coupling, C–H activation,
and applications such as in organic synthesis (drug design, fine chemicals), new
materials, biomass conversion, hydrogen storage, energy conversion, industrial
implementation, flow processes, and so on.

This book presents a collection of selected topics about the progress of
nanocatalysis in ionic liquids. The individual chapters are divided into two
sections: (i) metals and (ii) specific applications. The chapters cover pioneer-
ing works, recent achievements, and discussion for future advancements in
sustainable synthetic methods, technologies, and energy research. Besides hydro-
genation and cross-coupling reactions, that is, hydrogen storage, water-splitting,
biomass processing are subject to discussion as well as bottom-up and top-down
synthetic methods for the preparation of metal nanoparticles.

It has been a pleasure and an inspiration to act as editor in this book. I am grate-
ful to all the authors for their efforts in the production of this informative collec-
tion about nanocatalysis in ionic liquids. Thirty authors working in eight different
countries contributed to 13 chapters reflect international diversity. Nanocatalysis
and ionic liquids have become promising research fields in the last 20 years and
there are many interesting things to investigate in the future.

Moreover, I am thankful to Dr Claudia Ley who has taken the initiative to discuss
with me the adventure and idea for this book project in March 2014. Moreover,
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I thank Mrs Samanaa Srinivas as supportive project editor along the project. Last
but not least, I am grateful to all my current and former collaboration partners,
coauthors, students, mentors, family, and friends over the years.

March 2016 Martin H. G. Prechtl
Köln
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Foreword

Metal nanoparticles are only kinetically stable and consequently nanoparticles
that are freely dissolved in solution must be stabilized in order to prevent their
agglomeration. Unchecked, they can diffuse together and coalesce, eventually
leading to the formation of the thermodynamically favored bulk metal. Indeed,
since Faraday, various capping agents have been used to stabilize metal nanopar-
ticles in aqueous or organic solvent solutions, rendering the investigation of
the properties of freely dissolved metal nanoparticles a complex challenge. The
advent of low-volatility ionic liquids as “liquid” support for the formation and
stabilization of metal nanoparticles has opened not only a new avenue for the
preparation of soluble “naked” metal nanoparticles but also the possibility to
investigate the properties of these materials in situ employing techniques once
almost restricted to solid state such as TEM and XPS. Moreover, ionic liquid is
proved to be the ideal medium for multiphase catalytic systems, allowing not
only the preparation and stabilization of transition-metal nanoparticles but also
easy catalyst recycling and product separation, thus avoiding the environmental
problems associated with the related aqueous and organic biphasic regimes.
Doubtless ionic liquids are the most versatile liquid platform for the design and
preparation of a new generation of modular soluble metal nanoparticle materials
for catalytic transformations.

The field defined by Nanocatalysis in Ionic Liquids has had a transformative
effect upon “soluble” metal nanoparticle catalysts and has given rise to an immense
and exponentially growing field of literature: from fundamental understanding
of the transformations occurring in a metal surface to applied advanced cataly-
sis such as biomass transformation and water splitting. The editor Dr Prechtl has
captured the essence of such a fast-moving field and has assembled an outstand-
ing team of authors with many pioneering and leading contributions on the field.
The end product is not only a state-of-the art collection of reports on the field,
but constitutes an instructive guide for both experienced practitioners and new-
comers, detailing new ways to approach soluble metal nanoparticle catalysis. Vir-
tually all the areas of nanocatalysis are covered in this monograph encompassing
the synthesis (bottom-up and top-down approaches), classical biphasic catalytic
reactions (including reductions, oxidations, and coupling), and more advanced
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subjects such as supported ionic liquid phase catalysis and photocatalytic trans-
formations.

This monograph provides new information and will certainly inspire and foster
new avenues in the fascinating field of soluble metal nanoparticle catalysis in ionic
liquids.

Nottingham, 18 April 2016 Jairton Dupont
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Symbols and Abbreviations

Selected and Common Ionic Liquid Abbreviations

Cations

[Hmim]+ 1-Methylimidazolium
C1, C2, C4, etc. Methyl, ethyl, butyl, and so on
[CnCn′ Im]+ 1,3 functionalized imidazolium
[CnCn′Cn′′ Im]+ 1,2,3 functionalized imidazolium
[C2mim]+/Emim 1-Ethyl-3-methylimidazolium
[C3mim]+ 1-Propyl-3-methylimidazolium
[C4mim]+/Bmim 1-Butyl-3-methylimidazolium
[C4mmim]+ 1,2-Dimethyl-3-butylimidazolium
[C5mim]+ 1-Pentyl-3-methylimidazolium
[C6mim]+ 1-Hexyl-3-methylimidazolium
[(C3CN)C1Im]+ 1-Butyronitrile-3-methylimidazolium
[C1C1(EG)Im]+ 1-(2,3-Dihydroxypropyl)-2,3-dimethylimidazolium
[C2OHmim]+ 1-(2-hydroxyethyl)-3-methylimidazolium
[Cmmim]+ 1-Carboxymethyl-3-methylimidazolium
[ammim]+ 1-(3-Aminopropyl)-2,3-dimethylimidazolium
[C4mPyr]+/[C4mp]+ 1-Butyl-1-methylpyrrolidinium
[C2C6Pip]+ 1-Ethyl-1-hexylpiperidinium
[P6,6,6,14]+ Trihexyl(tetradecyl)phosphonium
[N6,6,6,14]+ Trihexyl(tetradecyl)ammonium
[C4mPy]+ 1-Butyl-3-methylpyridinium
[C4CNpy]+ N-Butyronitrile pyridinium
[C4mmimDPA]+ 2,3-Dimethyl-1-[3-N ,N-bis(2-

pyridyl)propylamido]imidazolium
[TMG]+ 1,1,3,3-Tetramethylguanidinium

Anions

[OAc]− Acetate
[TFA]− Trifluoroacetate
[DBS]− Dodecylbenzene sulfonate



XXII Symbols and Abbreviations

[OTf]− Trifluoromethanesulfonate
[N(Tf)2]− Bis(trifluoromethylsulfonyl)imide
[N(CN)2]−/DCA Dicyanamide
[EtSO4]− Ethyl sulfate
[HCO2]− Formate
[PF6]− Hexafluorophosphate
[NO3]− Nitrate
[BF4]− Tetrafluoroborate
[SCN]− Thiocyanate
[CF3CO2]− Trifluoroacetate
[CF3SO3]− Trifluoromethanesulfonate
[FAP]−/[FEP]− Trifluorotris(pentafluoroethyl)phosphate
tppts Triphenylphosphine-3,3′,3′′-trisulfonic acid trisodium

salt
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1
Fe, Ru, and Os Nanoparticles

Madhu Kaushik, Yuting Feng, Nathaniel Boyce, and Audrey Moores

1.1
Introduction

Although Fe, Ru, and Os are transition metals all belonging to Group 8 of the
periodic table, their prevalence, chemistry, and applications differ greatly. Iron is
an earth abundant element, playing a key role in life with implications in some
of the most difficult biological processes [1]. Iron is a current topic of interest in
the context of catalysis, both in its homogeneous [2, 3] and heterogeneous forms
[4, 5], as a means to replace more toxic and less abundant transition metals.
Iron has interesting properties in this context, including magnetic properties, a
rich redox chemistry, with implications both in molecular and material sciences,
an affordable price and nontoxicity. Iron complexes, oxides, and metal-based
materials have been applied to a wide array of chemical processes, including
oxidation processes, hydrogenation, C–C coupling, and aromatic substitutions [3,
6–9]. Ruthenium belongs to the platinum series and is obtained as a by-product
to platinum or nickel mining. Within the platinum series, ruthenium is compa-
rably cheaper than its counterparts and thus desirable as a replacement to more
expensive, catalytically active transition metals. Compared to iron, it is less prone
to oxidation when in its reduced form. Ruthenium has established itself as an
important and industrially relevant catalyst, in both its homogeneous and hetero-
geneous forms for a number of important processes including the Haber-Bosch
process (dinitrogen to ammonia) [10, 11], the Fischer-Tropsch process (syngas
to hydrocarbons) [12, 13], hydrogenation reactions [14], including the partial
and selective hydrogenation of benzene and phenol, olefin metathesis [15], CH
activation [16], and organic oxidations just to name a few. Osmium has been
comparatively less explored. Osmium tetroxide and related compounds have
demonstrated early on their ability to catalyze the oxidative cleavage of olefins
with molecular oxygen [17]. Other osmium complexes have now been developed
for a number of reactions including complete and partial hydrogenation, dehydro-
genation, and hydroformylation [18, 19]. Nanoparticulate osmium counterparts
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have been studied for their catalytic properties toward Fischer–Tropsch reaction,
the homologation of alkenes under H2 and the hydrogenolysis of alkanes [20],
and electrocatalytic activity useful in fuel cell research [21].

Ionic liquids (ILs) are defined as salts with melting points below 100 ∘C. Over
the last two decades, research on ILs has developed with a focus on liquid ones
at or near room temperature [22, 23]. Typically such systems are constituted of
flexible organic ion pairs with delocalized charges and tunable lipophilic domains
[24]. Because of their liquid nature and specific properties, ILs are used as sol-
vents to substitute volatile molecular liquids and specialty materials for a number
of important applications, including synthesis, catalysis and biocatalysis, separa-
tion technology, biomass processing and transformation, electrochemical devices
including capacitors, fuel cells and solar cells, nanotechnology, sensing, lubricants,
hypergolic materials, and pharmaceutics [22, 25–30]. ILs rapidly emerged as a
privileged environment for catalysis because of their unique intrinsic properties.
ILs are attractive as potential solvents for a number of reasons: (i) they are non-
volatile under ambient conditions; (ii) they are colorless and little viscous; (iii)
they possess good solvation properties for a large number of species; (iv) they are
immiscible with many conventional solvents; (v) The properties of ILs can be easily
tuned by a careful choice of the cation and anion entities, making them “designer
solvents” [31]; and (vi) they are commercially available [30]. The combination of
properties (i), (iii), (iv), and (v) explain that they are perfectly suited as catalyst
stabilizers in biphasic systems [32, 33]. ILs have also been developed in supported
versions to afford heterogenized systems of interest in catalysis [27].

Metal nanoparticles (NPs) have been intensely researched in the context
of catalysis [34, 35]. Their high surface-over-volume ratio and unique effects
linked to their nano size (role of defects, photon, and electron-linked properties)
explain unique activities at the crossroads of homogeneous and heterogeneous
catalysis [36–38]. They are appealing as highly active catalysts and materials
easily amenable to recovery and recycling strategies [37]. Metal NPs and ILs, as
privileged catalysts and catalysis media respectively, have thus been naturally
explored in partnership and have opened a unique and rich research field, which
has already been largely reviewed. Among the papers published over the last
10 years, the reader is directed to reviews on ILs in catalysis [25, 39], function-
alized ionic liquids (FILs) [40, 41], FILs in catalysis [42], NPs in ILs [36, 43–46],
NPs in ILs for catalysis [26, 47–55], and Ru NPs in IL [56]. In this chapter, we
focused on the synthesis, stabilization properties, and catalytic applications of Fe,
Ru, and Os NPs in ILs. For Fe, we extended the review to iron oxide NPs as well,
as under aerobic condition, reduced iron NPs lead to such species.

1.2
Synthesis of Fe, Ru, and Os NPs in ILs

In general, the synthetic methods to access metal and metal oxide NPs in ILs
have focused on providing materials with key features relevant for catalysis,
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that is, small sizes, good monodispersity, and high purity [26]. These properties
are achieved using bottom-up synthetic approaches, either by reduction of
metal salts, by the direct use of zero-valent molecular species, which can be
freed from their ligands via hydrogenation, or simply decomposed (Scheme
1.1). The use of additional stabilizers [46] or functional ILs [42] has been
reported to improve the properties of the end product. Top-down approaches
are known for the synthesis of Au, Rh, Pd, and Pt NPs in ILs but are not a classic
approach to access NPs of metals of Group 8 [26]. Also, although synthetic
routes via phase transfer [57] from another organic or aqueous medium have
been reported for other metals such as gold [58] and rhodium [59], Group 8
NPs are typically prepared directly in neat ILs. Because of the preorganized
structure of ILs via electrostatic, hydrogen bonding, and van der Waals interac-
tions, especially those with imidazolium and phosphonium functionalities, the
IL medium is described as made of polar and nonpolar nanodomains. Those
tunable domains act as nanoreactors and stabilizing chambers via noncovalent
interactions [44, 46]. Thanks to the polarity, thermal stability, and preorganized
supermolecular structure of ILs, the synthesis of Ru, Fe, and Os NPs could be
attained in ambient conditions [44, 60]. In ILs, such strategies have unlocked
access to metal NPs with precise size control and narrow size distributions [56].
Further comments on the stabilization properties of ILs for NPs are provided in
Section 1.3.

M0(CO)n
M = Fe, Ru, Os

M0(diene)2

MCl3

RuO2 Metal reduction

Thermal decomposition

M(allyl)2(diene)

M0

IL

IL
IL

IL

IL

IL

IL

IL

Ligand hydrogenation

IL

Scheme 1.1 Summary of the synthetic schemes for accessing Fe, Ru, and Os NPs in ILs.

A complete list of Ru NPs synthesis in ILs was established by Campbell et al. in
2013 [56]. In the following sections, we focused on the most distinctive and recent
examples for synthesis of Fe, Ru, and Os NPs. One of the specifics of the synthesis
of metal NPs directly within an IL is the difficulty in washing the resulting mate-
rial from any salt by-product generated during the reaction. Hence it is important
to select “salt-free” precursors or organometallic precursors decomposing into
easily washable organic species or volatile [61, 62] ones, such as [Ru(COD)(2-
methylallyl)2], [Ru(COD)(COT)], or carbonyl compounds such as (COD= 1,5-
cyclooctadiene and COT= 1,3,5-cyclooctatriene) [63], as discussed below.
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1.2.1
Synthesis via Reduction of Metal Precursors or Ligands

Despite the long list of reducers used with this metal, Ru precursors in ILs are
reduced by H2 in reported procedures [36, 48, 56, 64]. In a common scheme, a Ru
precursor, such as [Ru(COD)(2-methylallyl)2] or [Ru(COD)(COT)] is dissolved
or suspended into a specific IL under argon and exposed to mild H2 pressure
and heating (<90 ∘C) from a few hours to days to obtain a black suspension. The
size of the resulting Ru NPs – usually between 1.0 and 3.0 nm – and their size
distribution may be tuned depending on reaction conditions, namely, stirring,
temperature, and IL cations/anions (Figure 1.1) [56, 65–70]. From a formal stand-
point, [Ru(COD)(2-methylallyl)2] and [Ru(COD)(COT)] precursors differ in that
the latter is a Ru(0) complex which should not necessitate the use of a reducer.
Under H2 pressure, however, the COD and COT ligands are hydrogenated to
release atomic Ru(0) and allow the growth of Ru NPs [61, 62]. RuCl3 and RuO2
have also been reported as precursors being easily reduced by H2 to access the
desired NPs. In some ILs, precursor solubility may be a limitation that has been
circumvented via the use of an auxiliary solvent. Our group showed that tetrahy-
drofuran (THF) could be successfully used to mix [Ru(COD)(2-methylallyl)2]
with phosphonium and imidazolium ILs, before being easily removed in vacuo.
Subsequent reduction under H2 pressure afforded small Ru NPs (between 1.5
and 2.5 nm) [71]. Although not necessarily required for subsequent catalytic
applications, the separation of the obtained NPs from imidazolium ILs may be
performed and depends on the anion in the IL [65]. Prechtl et al. also showed that
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Figure 1.1 In situ transmission electron
microscopy (TEM) images of Ru NPs gen-
erated from the reduction of [Ru(COD)(2-
methylallyl)2] by H2 in (a) [C4C1Im][NTf2],

(b) [C10C1Im][NTf2], (c) [C4C1Im][BF4], and
(d) [C10C1Im][BF4]. (Prechtl et al. [65].
Reproduced with the permission of American
Chemical Society.)
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imidazolium ILs containing NTf2 (bis(trifluoromethylsulfonyl)imide) anions such
as [C4Im][NTf2] and [C6C1Im][NTf2] could be used directly as reducing agents
toward [Ru(COD)(2-methylallyl)2] [72]. Small and monodisperse 2.0± 0.3 nm
Ru NPs were obtained at low temperature and atmospheric pressure without
the participation of classical reducing agents such as H2, LiAlH4, or hydrazine.
The −NTf2 anion was shown to have a key role in the reduction mechanism;
imidazolium ring decomposition was also observed.

On the other hand, the use of Grignard reagents with FeCl3 successfully afforded
catalytically active Fe(0) NPs of 4–5 nm diameter [73].

Upon intensive use in catalysis or through simple aging, IL-stabilized NPs have
been shown to grow, coalesce, or leach. A study by Scott and coworkers showed
that tetraalkylphosphonium ILs were a good environment to produce metal NPs
of Au, Pd, Pt, Ru, Rh, Ni, Co, Fe, Ag, and Cu from halide salts, using appropriate
reducers, for example, LiBH4 for Ru and Fe [74]. These NPs could be oxidized back
into salts in the presence of oxygen for oxidizable metals such as Fe or tert-butyl
hydroperoxide for Ru. Further addition of reducer allowed recovery of the metal
NPs within the IL.

1.2.2
Synthesis via Decomposition of Metal Precursors

The decomposition of metal complexes in IL involves various energy forms such
as heat, microwave, and light irradiation [46]. The Thomann and Janiak groups
[75] reported successful synthesis of Fe, Ru, and Os NPs by the decomposition of
their respective di- and trinuclear metal carbonyls in n-butyl-methylimidazolium
tetrafluoroborate [C4C1Im][BF4]. Under argon, the deoxygenized dry IL with
dissolved or suspended metal carbonyl was heated to 250 ∘C for several hours;
alternatively, the mixture was irradiated with UV light at 200–450 nm for
15 min. The products are in the range of several nanometers and with a uniform,
monodisperse, and narrow size distribution. By varying the metal loading, the NP
size could be varied as well. For Fe, Fe(0) and Fe2O3 NPs were produced under
inert and aerobic conditions respectively, with sizes of 5.2± 1.6 and 4.2± 1.1 nm,
respectively. For Ru and Os, the sizes achieved were smaller, between 1.6± 0.4
and 2.0± 0.5 nm for Ru and 2.5± 0.4 nm for Os. Under inert atmosphere, the
products could be retained for months. This procedure was updated later so
that the reaction is finished in 3 min (for 0.48 g IL in a 1 ml vial) by microwave
irradiation (10 W) [76]. The same group also synthesized chemically derived
graphene (CDG)-supported Ru NPs from Ru3(CO)12 in [C4C1Im][BF4] [77].
Ru3(CO)12 was added into preformed CDG/IL slurry (0.2 wt%) and stirred for
18 h under argon. The whole mixture then went through a 6-min microwave
irradiation (20 W). The dried flakes after centrifugation and decantation were
analyzed and proved to be Ru NPs attached to mini CDG sheets (Ru NP/CDG)
with 17.4 wt% Ru content. In another example, Lee et al. synthesized Fe2O3 nano-
bars and nanowires in [C8C1Im][BF4]/dimethylformamide mixture by thermal
decomposition of Fe(CO)5 followed by oxidation [78]. The IL [C8C1Im][BF4]
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played an important role in stabilizing NPs, directing crystal growth to obtain
high aspect ratio particles as well as boosting thermal decomposition of the
precursor. The resulting high aspect ratio NPs showed good superparamagnetic
properties, useful for contrast enhancement applications.

1.2.3
The Use of Additional Stabilizers and Functional ILs

ILs are privileged media used to generate and maintain small metal NPs useful in
catalysis. However, upon using and reusing IL-stabilized metal NPs, it has been
noted that the NPs could aggregate and lose their catalytic activity [55]. Also, for
specialty applications, highly monodisperse metal NPs may be needed, which
are difficult to achieve with straight IL. To overcome these hurdles, additional
stabilizers have been used, either in the form of small molecules [46] or in the
form of FILs [40–42]. In the context of NP stabilization, FILs are defined as an
IL featuring a metal-binding moiety such as a phosphine, an amine, or a thiol.
A few examples of such strategies have been reported with Fe and Ru metals.
Highly monodispersed, iron oxide NPs of 10.6± 1.6 nm were made in 1-butyl-
3-methylimidazolium bis(triflylmethyl-sulfonyl) imide ([C4C1Im][NTf2]) by
thermal decomposition of Fe(CO)5 in the presence of oleic acid as an additional
stabilizer, followed by oxidation (Figure 1.2a) [79]. The control over the particle
size was attributed to the oversaturation of oleic acid in the system.

The resulting particles could be allowed to settle and be separated from
the IL, which was recycled and reused for another synthesis. In this example,
Fourier-transform infrared (FTIR) spectroscopy was used to establish that
the oleic acid alone was responsible for the NP stabilization. The size of these
iron oxide NPs could be tuned by using a mixture of stabilizers composed of
oleic acid, oleylamine, and 1,2-hexadecanediol [79]. Using a similar procedure,
the same group synthesized iron oxide NPs in [C4C1Im][NTf2] with different

50 nm

(a) (b) (c)

25 nm 100 nm

Figure 1.2 TEM images of iron oxide
(a) nanospheres, (b) nanocubes, and (c)
nanorods synthesized in [C4C1Im][NTf2] by
thermal decomposition of Fe(CO)5 using
oleic acid and/oleylamine as capping agent.

(Panel (a) Wang et al. [79]. Reproduced with
the permission of Royal Society of Chem-
istry. Panels (b) and (c) Wang and Yang [80].
Reproduced with the permission of Elsevier.)
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morphologies, such as nanorods and nanocubes, by playing on the reaction
temperature, the nature of the stabilizer (oleic acid and oleylamine), as well as the
concentration of these stabilizers (Figures 1.2b and c) [80].

Besides small molecules, FILs were also shown to provide improved stabiliza-
tion compared to classic ILs. A few examples of Group 8 NPs produced in FILs
were recently reported. With Ru, phosphine-functionalized imidazolium-based
ILs were used as stabilizers to access catalytically active 2.2 nm Ru NPs [81]. Nitrile
[82] and hydroxy [83]-functionalized imidazolium IL were also used to access Ru
NPs, which proved particularly appealing as selective catalysts for partial hydro-
genation of nitriles, hydrogenation of C==O, and hydrogenation of C==C bonds.
Interestingly, the 1-butyronitrile-3-methylimidazolium bis(trifluoromethane-
sulfonyl)imidate IL ([(C3CN)C1Im][NTf2]) afforded small Ru NPs (2.2± 0.5 nm),
comparable to the ones obtained in nonfunctionalized ILs, while 1-(2,3-
dihydroxypropyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonimide)
[C1C1(EG)Im][NTf2] gave larger NPs (6.9± 1.3 nm) [82, 83]. With Fe, polymer-
based ILs, namely, an imidazolium-modified poly(ethylene glycol) was used as
the medium to access ferrite NPs. The resulting system functioned as a ferrofluid
and served as electrolyte in an AC circuit [84]. Jacobi von Wangelin and cowork-
ers reported the synthesis of Fe(0) NPs stabilized with nitrile-functionalized
imidazolium generated within an imidazolium-based IL. This system was
used for the selective hydrogenation of alkynes into alkene, as further detailed
in Section 1.4.2 [73].

1.3
Ionic Liquid Stabilization of Metal Nanoparticles

1.3.1
Ionic Liquid Properties

Metal NPs are intrinsically unstable materials that easily grow into bulk metal by
particle coalescence. In the liquid phase, they thus require the use of stabilizers
in the form of small molecules or polymeric materials to ensure that they remain
stable as a suspension. ILs are quite unique in this context, as they provide an
environment that has the intrinsic ability to stabilize NPs extensively without the
use of a stabilizer. ILs have thus been termed “nanosynthetic templates” [75, 85].
The origin of this stabilization has been studied using a number of techniques and
remains an active area of research with open questions and debates. The structure
of free, pure ILs is complex and has been explored using experimental and theo-
retical approaches [22]. Neutron scattering experiments have allowed to establish
that structural order in imidazolium-based ILs extends over a longer range than
conventional liquids, although this effect is dependent upon the nature of the
counter anion [86–88]. ILs also differ from convention solvents in that they fea-
ture mesoscopic organizations. The surfactant properties of ILs originating from
the presence of hydrophilic and hydrophobic functionalities translate in the liquid
phase into the presence of polar and nonpolar mesodomains.


