Olaf Schmidt

Vermessung von Kristallstrukturen mit Methoden der Bildverarbeitung und Statistik

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Vermessung von Kristallstrukturen mit Methoden der Bildverarbeitung und Statistik

Diplomarbeit

Olaf Schmidt

Institut für Informatik III, Universität Bonn

Inhaltsverzeichnis

1	Ein	leitung		9
	1.1	Krista	llstrukturen	9
	1.2	Verme	essung der Strukturen	10
	1.3	Anwer	ndungen	13
	1.4		u dieser Arbeit	13
2	Phy	sikalis	che Grundlagen	15
	2.1	Krista	lle	15
		2.1.1	Grundlagen	15
		2.1.2	Kontrolliertes Kristallwachstum	18
		2.1.3	Quantum-Well-Strukturen	20
		2.1.4	Elastische Verzerrung	22
	2.2	Elektr	onenmikroskopie	23
		2.2.1	Auflösungsvermögen	24
		2.2.2	Aufbau des Transmissions-Elektronen-Mikroskops	24
		2.2.3	HREM-Bild als Interferenzmuster	25
		2.2.4	Bildakquisition	27
		2.2.5	Probenpräparation	28
	2.3	Simuli	ierte Bilder	29
		2.3.1	Theoretischer Hintergrund	29
		2.3.2	Parameter für die Simulation	31
		2.3.3	Der Einfluß von Rauschen auf das Verfahren	31
	2.4	Berech	nnung der physikalischen Größen	34
		2.4.1	AlGaN/GaN-Systeme	34
		2.4.2	SiGe/Si-Systeme	36

		2.4.3	Grenzen	7
		2.4.4	Anwendung	7
3	Нос	hgena	ue Positionsbestimmung 41	1
•	3.1	Ü	rarbeitung	
	9	3.1.1	Bildtransformation	
		3.1.2	Filterung	1
		3.1.3	Blob Extraktion	3
	3.2	Fittin	g	3
		3.2.1	Modellfunktionen	5
		3.2.2	Minimierung von χ^2	7
		3.2.3	Diskussion	3
		3.2.4	Startparameter)
	3.3	Globa	les Fitting)
		3.3.1	Schrittweise Reduzierung der Parameter)
		3.3.2	Komplexität der Berechnung	4
		3.3.3	Ergebnisse	4
	3.4	Nachb	earbeitung	ó
		3.4.1	Gitter	5
		3.4.2	Darstellung	5
	3.5	Validi	erung	3
		3.5.1	Konfidenzintervalle	3
		3.5.2	Test auf Normalverteilung	3
	3.6	Altern	native Verfahren)
		3.6.1	Größte Intensität)
		3.6.2	Schwerpunkt)
		3.6.3	Geometrisches Zentrum	2
		3.6.4	Vergleich der Verfahren	1
	3.7	Unsich	nerheiten	1
4	Exp	erime	ntelle Ergebnisse 67	7
	4.1		AlGaN	
	4.2		InGaN/AlGaN	3

	4.3	Si/SiC	fe	75
	4.4	Weiter	gehende Messungen	77
		4.4.1	Bestimmen von elastischen Konstanten	77
		4.4.2	Validierung mit EELS	77
5	Zus	ammei	nfassung und Ausblick	79
	5.1	Zusam	menfassung	79
		5.1.1	$Grundlagen \dots \dots$	79
		5.1.2	Ziel	79
		5.1.3	Verfahren	80
		5.1.4	Ergebnisse	81
		5.1.5	Fazit	81
	5.2	Ausbli	ck	81
\mathbf{A}	Per	iodens	ystem der Elemente	83
В	Syn	nholvei	zeichnis	84

Abbildungsverzeichnis

1.1	Hochauflösende, elektronenmikroskopische Aufnahme von GaN. Unten rechts ist eine Bildeinheitszelle markiert. Die Breite der Zelle wird mit c , die Höhe mit a bezeichnet	10
1.2	Profil einer GaN/AlGaN Heterostruktur. Es sind die durchschnittlichen Breiten \bar{c} der Bildeinheitszellen pro Spalte mit Varianz σ^2 als Fehlerbalken aufgetragen	11
1.3	(a) 20x20 Punkte eines Beispiel Blobs; auf der z-Achse ist die Intensität aufgetragen; (b) Schema der parametrisierten Modellfunktion "Kegel" mit den Parametern $\vec{p} = (p_a, p_b, p_c, p_x, p_y, p_z)$	11
2.1	(a) Schema eines einfachen Raumgitters; (b) dazugehörige Elementarzelle ($\alpha \triangleleft (b, \beta \triangleleft (c, a), \gamma \triangleleft (a, b))$ (aus [34] S.554)	c), 15
2.2	Die Gittervektoren von Kristallen werden nach Miller mit einem Zahlentripel $[u, v, w]$ bezeichnet (aus $[4]$)	16
2.3	Atome können auf verschiedene, energetisch günstige Weisen in einem Gitter angeordnet werden. Hier ist eine Übersicht über die 14 Bravaisgitter dargestellt. (P) primitives Gitter, (C) einseitige Flächenzentrierung, (I) innenzentriert, (F) flächenzentriert (aus [4])	17
2.4	Aufbau einer Kristallstruktur aus Gitter und Basis mit den Atomsorten A, B und C (Schema). Jede Gitterzelle besteht aus derselben Basisanordnung, die im Gitter fortgeführt wird (aus [4])	18
2.5	3D-Bild eines GaN-Gitters in Zentralprojektion	19
2.6	Schematische Darstellung eines (a) Si- und (b) GaN-Gitters mit Einheitszelle (aus [6])	19
2.7	Eine Quantum-Well-Struktur am Beispiel von Si/Ge. Der Kristall wächst von unten nach oben. Beim Aufwachsen wird kurzzeitig eine gewisse Menge Ge beigefügt, so daß dünne Mischkristallschichten entstehen	21
2.8	Quantum-Well-Struktur. GaN mit 5 Schichten $Al_xGa_{1-x}N$ mit von unten nach oben x=1.0, 0.75, 0.50, 0.25, 0.10 (aus [25])	21

2.9	Ge hat eine größere Gitterkonstante. So kommt es zu einer elastischen Verzerrung in Wachstumsrichtung.	22
2.10	Die elastische Spannung kann durch eine Stufenversetzung aufgelöst werden. Diese Art der Relaxation wird in dieser Arbeit nicht gewünscht (aus [4])	23
2.11	Aufbau eines Transmissions-Elektronen-Mikroskops (TEM). Der Elektronenstahl aus der Elektronenkanone durchstrahlt die Probe und wird von der Objektivlinse vergrößert. Auf dem Schirm wird das Interferenzbild sichtbar gemacht und hinterher auf einem Negativ bzw. mit einer CCD-Kamera festgehalten	25
2.12	Elektronenbeugung an Hülle und Kern. Der Beugungswinkel des Elektronenstrahls ist vom Abstand zum Atomkern abhängig. In dieser Arbeit werden nur Elektronen mit geringem Beugungswinkel betrachtet (aus [44])	26
2.13	Eine planare Elektronenwelle erzeugt eine Schar von Kugelwellen an den Atomen der Probe. Diese Wellen interferieren (aus [44])	26
2.14	Beispiel HREM-Bild von reinem GaN. Die Probe ist keilförmig und wird nach rechts (Kristalloberfläche) flacher	27
2.15	Eine Probe wird als Keil zugeschnitten. Man betrachtet einen Ausschnitt des Keils, der hier mit einem schwarzen Rahmen markiert ist	28
2.16	Eine Probe wird immer von einer ungeordneten Oberflächenschicht bedeckt (aus [26])	28
2.17	Multislice Methode als Sequenz von Streuung und Fortpflanzung (aus [39])	29
2.18	Schema der Bilderzeugung. Der Probenaustritt O wird in die hintere Focusebene S abgebildet. Die (gedachten) Kugelwellen interferieren in der Bildebene I (aus [39])	30
2.19	Karte von HREM-Mustern von GaN mit verschiedenen Dicken und Defoki; (110) Projektion; x-Achse: Dicke (Anzahl der Atomlagen); y-Achse: Defokus (Abstand der Probe zur Fokusebene des fokussierten Elektronenstrahls); siehe Text.	32
2.20	Messung an simulierten Bildern mit 2 mal 7 verschiedenen Rauschstufen. Der erwartete Gitterabstand von 25.6 Pixeln wird immer gemessen. Nur die Varianz steigt mit dem Grad des Rauschens.	33
2.21	(a) 3D-Projektion von GaN. Markiert ist eine Gittereinheitszelle der Breite c (in nm). Die rechts unten markierten Spalten von Atomen fallen im Interferenzbild zu einem Blob zusammen. (b) HREM-Aufnahme von GaN. Es ist diesmal die korrespondierende Bildeinheitszelle der Breite c (in Pixel) markiert.	20
ງງງ	HREM-Bild einer $GaN/Al_xGa_{1-x}N$ Heterostruktur	38 39
$\triangle \cdot \triangle \triangle$	THE DIED THE GAIN A And $a_1 = x$ in the constant x to x to x and x and x and x are x and x and x are x and x are x and x and x are x and x	ียย

2.23	Profil der $GaN/Al_xGa_{1-x}N$ Heterostruktur aus Abbildung 2.22. Dargestellt sind die durchschnittlichen Zellbreiten: (a) in Pixel, (b) in nm und (c) Konzentration von Al in Prozent. Die Fehlerbalken geben die Varianz wieder	40
3.1	(a) Schematische Darstellung der Fourierkomponenten des aufgenommenen Signals; (b) Histogramm der Intensitäten. Die "Outliers" entsprechen dem kristallinen Anteil (aus [21])	42
3.2	(a) 20x20 Punkte eines Beispiel Blobs; auf der z-Achse ist die Intensität aufgetragen; (b) Schema der parametrisierten Modellfunktion "Kegel" mit den Parametern $\vec{p} = (p_a, p_b, p_c, p_x, p_y, p_z)$	44
3.3	Verschiedene Modellfunktionen in 2D-Projektion	45
3.4	Schema eines globalen Gitters. Das globale Fitting bestimmt einen Gitterursprung (x_0,y_0) , einen Gitterabstand in y-Richtung $dy=\Delta y$, Kippwinkel zu den Achsen $a=\alpha$ und $b=\beta$ und die Abstände der einzelnen Spalten x_i	52
3.5	(a) Beispielbild GaAs mit einem Monolayer InAs; (b) Darstellung der Differenzvektoren; (c) bereinigte Darstellung von (b) (aus [3])	61
3.6	Messung der Verzerrung mit dem Verfahren von Jouneau; (a) HREM-Bild (b) Differenzvektoren (c) Ableitung (d) Verschiebungsprofil (aus [17])	61
3.7	Schema des Seitz-Verfahrens	62
3.8	von Seitz [36] verwendete Struktur	63
3.9	Messung der Verzerrung von Seitz [36]. Die Prozentzahlen geben die Indiumkonzentration in den entsprechenden Schichten wieder. Die 0% strain entspricht 52% Indium.	63
4.1	GaN/AlGaN Heterostruktur; TEM Aufnahme und Profil (aus [25])	68
4.2	GaN/AlGaN Heterostruktur; Ausschnitt I; 75% Al	69
4.3	GaN/AlGaN Heterostruktur; Ausschnitt II; 50% Al	70
4.4	GaN/AlGaN Heterostruktur; Ausschnitt III; 25% Al	71
4.5	GaN/AlGaN Heterostruktur; Ausschnitt (aus [25])	72
4.6	GaN/InGaN/AlGaN Struktur einer kommerziell erhältlichen blauen LED. Links ist eine Übersicht über die Struktur und rechts eine Vergrößerung der optisch aktiven InGaN-Schicht dargestellt (aus [22])	73
4.7	Auswertung von zwei InGaN/AlGaN/GaN Strukturen. Es sind eine blaue LED (Kreise) und grüne LED (Quadrate) dargestellt. Die gestrichelte Linie stellt zusätzlich die erwarteten Werte für eine blaue LED dar (aus [22])	74
4.8	Vergleich von mehreren optisch aktiven Schichten. Die Breite des Quantum-Well und die In-Konzentration bestimmen die Wellenlänge und Intensität (in eV) des abgestrahlten Lichts (aus [22])	74

4.9	Si/Ge _{0.25} Si _{0.75} /Si-Quantum-Well-Struktur; Oben: TEM-Bild; Unten: Profil der	
	Zellbreiten. Der hohe Rauschanteil kommt von der sehr geringen Ge-Konzentration	76
4.10	Messung der elastischen Konstanten (aus [22])	77
4.11	Vergleich mit EELS (aus [22])	78