B. I	4								
Na	ŤΠ	rv/	V١	55	er	۱۲	h	a	TT

Harald Führer

Numerische Berechnung der Energieeigenwerte und Eigenfunktionen in Potentialen und Supersymmetrischen Potentialen

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Numerische Berechnung der Energieeigenwerte und Eigenfunktionen in Potentialen und Supersymmetrischen Potentialen

Diplomarbeit

Fachhochschule Vorarlberg
Studiengang: Technisches Produktionsmanagement

vorgelegt von: Führer Harald

Dornbirn, Juni 2005

Kurzfassung

Anfang des letzten Jahrhunderts steckte die Physik in einer Krise. Die klassische Physik war im Grossen und Ganzen schon bewiesen und in der Praxis angewandt. Allerdings ergaben sich bei gewissen Experimenten und Forschungen zum Teil gravierende Unstimmigkeiten mit der klassischen Mechanik.

In der Welt der kleinsten Teilchen, der Elektronen, herrschen andere Gesetze als in der Welt der makroskopischen Körper. Ein Elektron verhält sich nicht wie ein aus dem Alltagsleben bekanntes Teilchen, sondern hat sowohl Wellen-, als auch Teilchencharakter.

Die Quantentheorie beschreibt den physikalischen Zustand eines Teilchens durch eine Differentialgleichung, die nach dem Physiker und Nobelpreisträger Erwin Schrödinger benannt ist. Abhängig von der Komplexität einer gegebenen Potentialfunktion ist diese Differentialgleichung analytisch schwer oder gar nicht mehr lösbar.

Die vorliegende Diplomarbeit beschäftigt sich mit der Quantenphysik an sich und der numerischen Berechnung der Eigenfunktionen und Eigenwerte von beliebigen Potentialfunktionen. Die Berechnung ist mit einem am Computer programmierten, ereignisgesteuerten und mit einer Benutzeroberfläche ausgestatteten Programm möglich, ebenso wie automatische Plotfunktionen. Im weiteren Teil der Arbeit wird dann zu Supersymmetrischen Potentialen und deren numerischer Behandlung mit programmtechnischer Umsetzung für genauere Analysen übergegangen.

Abstract

At the beginning of the last century, the science of physics was facing a crisis. Although matters of classical physics were more or less scientifically proven and applied in practice, the results of certain experiments achieved through physics showed great deviations from the results achieved through classical mechanics.

Engineering principles applicable to the smallest microscopic particles are not the same as those principles applicable to macroscopic particles. An electron does not act in the same way as an ordinary particle known from every day life mainly because an electron is identified by its wave and particle-dualism.

Quantum theory describes the physical condition of a particle by using a differential equation set up by the physicist and Nobel prize winner Erwin Schrödinger. Depending on the complexity of the potential function, the solution of this differential equation by analytical means is either very difficult or not possible at all.

This thesis approaches design engineering from the perspective of quantum physics with the main focus on numeric design engineering of eigenfunctions and eigenvalues of any potential function. Numeric design engineering is achieved by means of a computer controlled program equipped with a user interface for automatic plotting of curves. Finally, supersymmetric potentials and their numeric handling are dealt with as well. This thesis also concentrates on how to get more precise analyses by using computer programs.

Danksagung

An dieser Stelle möchte ich allen danken, die durch ihre fachliche und persönliche Unterstützung zum Gelingen dieser Diplomarbeit beigetragen haben.

Insbesondere Dr. Dipl. Ing. techn. Peter Pichler danke ich, der nicht nur die Grundidee zu dieser Arbeit lieferte, sondern mir auch immer hilfreich und mit viel Know-how zur Seite stand.

Vielen Dank auch an meine Freundin Birgit, die mir beim Korrekturlesen geholfen hat und mich auch moralisch unterstützte.

Gewidmet ist die Arbeit meinen Eltern, die mich immer selbstlos unterstützt und mir das Studium erst ermöglicht haben.

Inhaltsverzeichnis

1 Einleitung		1
2 Grundlagen		2
2.1 Numerische Verfahren zum Lö	sen von Differentialgleichungen	2
2.1.1 Allgemein		2
2.1.2 Streckenzugverfahren von I	Euler	2
2.1.3 Runge-Kutta		3
2.2 Numerisches Verfahren zur Di	ifferentiation	8
2.3 Numerisches Verfahren zur In	tegration	11
3 Schrödinger-Gleichung		16
3.1 Allgemein		16
3.2 Der Teilchen Welle Dualismus	;	16
3.2.1 Doppelspaltversuch mit klas	ssischem Teilchen	16
3.2.2 Doppelspaltversuch mit klas	ssischen Wellen	17
3.2.3 Doppelspaltversuch mit Ele	ktronen	18
3.2.4 Interpretation der Doppelsp	altexperimente	19
3.3 Das mathematische Gerüst de	er Quantentheorie	20
3.3.1 Das im unendlich hohen Po	tentialtopf eingesperrte Teilchen	20
3.3.2 Die Schrödinger-Gleichung		26
3.3.3 Interpretation der Wellenfur	ıktion	29
4 Numerische Berechnung von Energ	gieeigenwerten und Funktionen	33
4.1 Stetigkeitsbedingungen an de	n Potentialwänden	34
4.2 Unendlich hoher Potentialtopf		36
4.2.1 Analytische Lösung		37
4.2.2 Numerische Lösung		40
4.3 Potentialfunktion x^2 (quanten	mechanischer Oszillator)	44
4.3.1 Analytische Lösung		44
4.3.2 Numerische Lösung		51
4.4 Potentialfunktion $-\frac{1}{\cosh(x)^2}$	- 1	55
5 Supersymmetrische Potentiale		57
5.1 Allgemein		57
2	Grundlagen	2.1.1 Allgemein 2.1.2 Streckenzugverfahren von Euler 2.1.3 Runge-Kutta 2.2 Numerisches Verfahren zur Differentiation 2.3 Numerisches Verfahren zur Integration Schrödinger-Gleichung 3.1 Allgemein 3.2 Der Teilchen Welle Dualismus 3.2.1 Doppelspaltversuch mit klassischem Teilchen 3.2.2 Doppelspaltversuch mit klassischen Wellen 3.2.3 Doppelspaltversuch mit Elektronen 3.2.4 Interpretation der Doppelspaltexperimente 3.3 Das mathematische Gerüst der Quantentheorie 3.3.1 Das im unendlich hohen Potentialtopf eingesperrte Teilchen 3.3.2 Die Schrödinger-Gleichung 3.3.3 Interpretation der Wellenfunktion Numerische Berechnung von Energieeigenwerten und Funktionen 4.1 Stetigkeitsbedingungen an den Potentialwänden 4.2 Unendlich hoher Potentialtopf 4.2.1 Analytische Lösung 4.2.2 Numerische Lösung 4.3.3 Potentialfunktion x² (quantenmechanischer Oszillator) 4.3.4 Analytische Lösung 4.3.5 Numerische Lösung 4.4 Potentialfunktion — 1

5.2	Mathematische Behandlung der Supersymmetrischen Potentiale 57
5.2.1	Supersymmetrisches Potential im unendlich hohen Potentialtopf 58
5.2.2	Supersymmetrisches Potential zum Doppeltopfpotential 61
5.2.3	Aufsuchen der Energieeigenwerte aus höhergradigen Supersymmetrischen
Pote	ntialen 62
Resümee	und Ausblick 65
Literaturv	erzeichnis 67
Anhang -	68

Darstellungsverzeichnis

Dar	st. 2-1 numerische Differentiation einer Sinusfunktion	10
Dar	st. 2-2 Zerlegung der Fläche in 2n einfache Streifen	11
Dar	st. 2-3 Berechnung des ersten Doppelstreifens	12
Dar	st. 3-1 Doppelspaltversuch mit klassischem Teilchen	16
Dar	st. 3-2 Doppelspaltversuch mit klassischen Wellen	17
Dar	st. 3-3 Doppelspaltversuch mit Elektronen	18
Dar	st. 3-4 Elektroneneintritt durch eine Blende	30
Dar	st. 3-5 Aufenthaltswahrscheinlichkeitsdichte eines Elektrons im Intervall x bis x+dx	k. 30
Dar	st. 4-1 Potentialstufe	34
Dar	st. 4-2 Endlicher Potentialsprung	34
Dar	st. 4-3 Kräftefreier, pendelnder Massepunkt mit zugehöriger potentieller Energie U	J(x)
		36
Dar	st. 4-4 Bild links: Eigenfunktion des Elektrons zum Eigenwert=1 im unendlich hohe	en
	Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte des Elektrons zum	1
	Eigenwert=1 im unendlich hohen Potentialtopf	39
Dar	st. 4-5 Bild links: Eigenfunktion des Elektrons zum Eigenwert=4 im unendlich hohe	en
	Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte des Elektrons zum	1
	Eigenwert=4 im unendlich hohen Potentialtopf	40
Dar	st. 4-6 Bild links: Eigenfunktion des Elektrons zum Eigenwert=9 im unendlich hohe	en
	Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte des Elektrons zum	1
	Eigenwert=9 im unendlich hohen Potentialtopf	40
Dar	st. 4-7 Eingabemaske zur numerischen Berechnung der Energieeigenwerte und	
	Eigenfunktionen in symmetrischen Potentiale	41
Dar	st. 4-8 Bild links: Eigenfunktion des Elektrons zum Eigenwert=1 (rote Linie) im	
	unendlich hohen Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte	les
	Elektrons zum Eigenwert=1 (rote Linie) im unendlich hohen Potentialtopf	42
Dar	st. 4-9 Bild links: Eigenfunktion des Elektrons zum Eigenwert=2 (rote Linie) im	
	unendlich hohen Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte	les
	Elektrons zum Eigenwert=2 (rote Linie) im unendlich hohen Potentialtopf	42
Dar	st. 4-10 Bild links: Eigenfunktion des Elektrons zum Eigenwert=3 (rote Linie) im	
	unendlich hohen Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte	les
	Elektrons zum Eigenwert=3 (rote Linie) im unendlich hohen Potentialtopf	43
Dar	st. 4-11 relative Fehlerwerte bei numerischer Berechnung	43
Dar	st. 4-12 lineares harmonisches Pendel mit der Masse m	44
Dar	st. 4-13 potentielle Energie U(x) des harmonischen Oszillators	46

Darst. 4-14 Energieeigenwerte und zugehörige Eigenfunktionen des harmonischen Oszillators	50
Darst. 4-15 Harmonischer Oszillator u. Übergang zum klassischen Fall	
Darst. 4-16 Potentialfunktion x^2	
	52
Darst. 4-17 Bild links: Eigenfunktion des Elektrons zum Eigenwert=1 (rote Linie) im	_
unendlich hohen Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte	
Elektrons zum Eigenwert=1 (rote Linie) im quadratischen Potential	52
Darst. 4-18 Bild links: Eigenfunktion des Elektrons zum Eigenwert=2 (rote Linie) im	
unendlich hohen Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte	
Elektrons zum Eigenwert=2 (rote Linie) im quadratischen Potential	52
Darst. 4-19 Bild links: Eigenfunktion des Elektrons zum Eigenwert=3 (rote Linie) im	
unendlich hohen Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte	des
Elektrons zum Eigenwert=3 (rote Linie) im quadratischen Potential	53
Darst. 4-20 Bild links: Eigenfunktion des Elektrons zum Eigenwert=4 (rote Linie) im	
unendlich hohen Potentialtopf Bild rechts: Aufenthaltswahrscheinlichkeitsdichte	des
Elektrons zum Eigenwert=4 (rote Linie) im quadratischen Potential	53
Darst. 4-21 relative Fehlerwerte bei numerischer Berechnung	54
Darst. 4-22 Potentialfunktion $-\frac{1}{\cosh(x)^2} + 1$	55
Darst. 4-23 Eigenfunktion im $-\frac{1}{\cosh(x)^2} + 1$ Potential	56
Darst. 5-1 $\psi_{\scriptscriptstyle 0}$	58
Darst. 5-2 ψ_0' ; $\frac{\psi_0'}{\psi_0}$	59
$\overline{\psi_0}$	
Darst. 5-3 $\frac{d}{dx} \left(\frac{\psi'_0}{\psi_0} \right)$; $0 - 2 * \frac{d}{dx} \left(\frac{\psi'_0}{\psi_0} \right)$	59
Darst. 5-4 exaktes Supersymmetrisches Potential $V_{+}(x) = \frac{2}{\sin^{2}(x)}$	60
Darst. 5-5 relative Fehlerwerte bei numerischer Berechnung im Supersymmetrische	n
Potential	
Darst. 5-6 Potentialfunktion: $\frac{-2*((4*15+3)*\cosh^2(x)-15)}{(15+\cosh^2(x))^2} + 2.06719$	61
Darst. 5-7 Supersymmetrisches Potential: $\left[\frac{-2*((4*15+3)*\cosh^2(x)-15)}{(15+\cosh^2(x))^2} + 2.06719\right] - 2*\frac{d}{dx}\left(\frac{\psi_0'}{\psi_0}\right)$	61
Darst. 5-8 Erste Wellenfunktion $\psi(x)$ bei Energieniveau $E=1$	63
Darst. 5-9 Potential $V = \frac{2}{x^2} + x^2 + 2$	0-7

1 Einleitung Seite 1

"Wenn in einer Sintflut alle wissenschaftlichen Kenntnisse zerstört würden und nur ein Satz an die nächste Generation weitergereicht würde, welche Aussage würde dann die größte Aussage in den wenigsten Worten enthalten? Ich bin überzeugt, dass dies die Atomhypothese (oder welchen Namen sie auch immer hat) wäre" (Feynman, R. P: Vorlesungen über Physik. Bd. 1, Teil 1 München1974, S. 1-2.)

1 Einleitung

Anfang des letzten Jahrhunderts steckte die Physik in einer Krise. Die klassische Physik war im Grossen und Ganzen schon bewiesen und in der Praxis angewandt. Allerdings ergaben sich bei gewissen Experimenten und Forschungen zum Teil gravierende Unstimmigkeiten mit der klassischen Mechanik. Ein konkretes Beispiel ist zum Beispiel die Wärmestrahlung, die mit klassischen Konzepten nicht zu erklären war. Der deutsche Physiker Max Planck stellte dabei die revolutionierende Annahme einer Energiequantelung auf. Sie war für ihn zwar nicht streng beweisbar, klärte aber quantitativ korrekt den experimentellen Befund und muss als Geburtsstunde der modernen Physik angesehen werden.

Im Mittelpunkt dieser Diplomarbeit steht dabei die Schrödinger-Gleichung, die nach dem österreichischen Physiker und Nobelpreisträger Erwin Schrödinger benannt, die zentrale Bewegungsgleichung der Quantenmechanik darstellt. Sie tritt an die Stelle der klassischen Newtonschen Bewegungsgleichungen. Damit bei der in der Schrödinger-Gleichung auftretenden Potentialfunktion V(x) auch komplexere Ausdrücke berechnet werden können, bedient man sich numerischer Lösungsmethoden. Interessant hierbei ist auch die programmtechnische Umsetzung zur Erzielung der Eigenwerte und Eigenfunktionen dieser Differentialgleichung, um die Möglichkeiten der numerischen Mathematik auszuloten.

_

¹ Vgl. Nolting, Wolfgang: Grundkurs: Theoretische Physik. 3. Auflage. Ulmen: Zimmerman - Neufang 1996 ,S. 1