Christoph Schmitt

Einsatz von Derivaten im Portfoliomanagement

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Inhaltsverzeichnis

Dar	stell	ungsv	verze	eichnis	6
Tab	eller	ıverze	eichi	nis	8
Abk	ürzı	ıngsv	erzei	ichnis	9
Sym	iboli	erzei	chni	·S	10
1.	Eı	NLEI	run(<u> </u>	11
1	.1	Ein	füh	rung in die Thematik	 11
1	.2	Bed	leut	ung von Derivaten in der Portfoliomanagement-Praxis	12
1	.3	Au	fbau	und Ziele der Arbeit	13
2.	Üı	BERBI	LICK	ÜBER DERIVATIVE FINANZINSTRUMENTE UND MÄRKTE	15
2	.1	Me	rkm	ale und Funktionen	15
2	2.2	Bed	ding	te und unbedingte Termingeschäfte	16
2	3	Böı	rsen	gehandelte und OTC-Termingeschäfte	16
3.	Cı	HARA	KTE	RISTIKA VON TERMINGESCHÄFTEN	19
3	.1	Ch	arak	teristika unbedingter Termingeschäfte	19
	3.	1.1	Ko	ntraktspezifikationen	19
	3.	1.2	Fut	ure-Positionen	19
		3.1.2	.1	Long-Future	19
		3.1.2	.2	Short-Future	20
	3.	1.3	Cle	aring	22
	3.	1.4	Ma	rgining	23
	3.	1.5	Fut	ures-Produkte der Eurex	24
3	3.2	Ch	arak	kteristika bedingter Termingeschäfte	25
	3.2	2.1	Ko	ntraktspezifikationen	25
	3.2	2.2	Op	tions-Positionen	26
		3.2.2	.1	Kauf einer Kaufoption	26
		3.2.2	2	Verkauf einer Kaufoption	27
		3.2.2	.3	Kauf einer Verkaufsoption	28
		3.2.2	.4	Verkauf einer Verkaufsoption	29
	3.2	2.3		rgining	
	3.2	2.4	Op	tionsprodukte der EUREX	31
		3.2.4	.1	Aktien-Optionen auf deutsche Basistitel an der EUREX	32
		3.2.4	.2	Aktienindex-Optionen an der EUREX	33

<u>4.</u>	BEWER	TUNG VON DERIVATEN	34
	4.1 Be	wertung unbedingter Termingeschäfte	34
	4.1.1	Cost-of-Carry-Ansatz	35
	4.1.2	Unbiased-futures-pricing-Ansatz	36
	4.2 Be	wertung bedingter Termingeschäfte	37
	4.2.1	Innerer Wert und Zeitwert	37
	4.2.2	Einflussfaktoren der Optionspreisberechnung	39
	4.2.3	Optionsbewertungsmodelle	42
	4.2.4	Black&Scholes-Modell	43
	4.2.5	Sensitivitätskennzahlen des Black&Scholes-Modells	45
	4.2.5	5.1 Delta	45
	4.2.4	1.2 Gamma	48
	4.2.4	1.3 Theta	50
	4.2.4	l.4 Vega	53
	4.2.4	1.5 Rho	55
	4.2.5	Zusammenfassung	56
	4.2.6	Binomialmodell	58
	4.2.7	Beurteilung der Optionspreismodelle	60
<u>5.</u>	Motiv	E DES EINSATZES VON DERIVATEN IM PORTFOLIOMANAG	<u>EMENT</u> .63
	5.1 He	dging	63
	5.1.1	Long-Hedge und Short-Hedge	64
	5.1.2	Mikro-Hedge und Makro-Hedge	64
	5.1.3	Perfect-Hedge und Cross-Hedge	65
	5.1.4	Hedge-Ratio	66
	5.1.4	Hedge-Ratio bei Futures	66
	5.1.4	Hedge-Ratio bei Optionen	67
	5.	1.4.2.1 Statisches Hedging	67
	5.	1.4.2.2 Dynamisches Hedging	67
	5.2 Spe	ekulation	68
	5.3 Ar	bitrage	69
<u>6.</u>	EINSAT	ZMÖGLICHKEITEN VON DERIVATEN IM AKTIVEN	
	Portfo	OLIOMANAGEMENT	71
	6.1 He	dging-Strategien	72
	611	Hedging-Strategien mit Futures	72

6	.1.2	Hed	ging-Strategien mit Optionen	76
	6.1.2	2.1	Protective Put	77
	6.1.2	2.2	Participating Forward	79
	6.1.2	2.3	Risk Reversal	80
	6.1.2	2.4	Covered Call Writing	82
6.2	Tra	ading	-Strategien	84
6	.2.1	Prei	s-Strategien	85
	6.2.1	.1	Price Spreads	86
	6.	2.1.1	.1 Bull Price Spread mit Calls	87
	6.	2.1.1	2 Bull Price Spread mit Puts	90
	6.	2.1.1	.3 Bull Price Spread mit Calls	91
	6.	2.1.1	.4 Bear Price Spread mit Puts	92
	6.2.1	.2	Time Spreads	93
	6.	2.1.2	.1 Neutraler Time Spread mit Calls oder Puts	93
	6.	2.1.2	2 Bull Time Spread mit Calls	95
	6.	2.1.2	.3 Bear Time Spread mit Puts	96
	6.2.1	.3	Diagonal Spreads	96
	6.	2.1.3	.1 Diagonal Bull Spread mit Calls	97
	6.	2.1.3	.2 Diagonal Bear Spread mit Puts	98
6	.2.2	Vola	atilitäts-Strategien	99
	6.2.2	2.1	Long Straddle	100
	6.2.2	2.2	Short Straddle	104
	6.2.2	2.3	Long Strangle	107
	6.2.2	2.4	Short Strangle	110
6	.2.3	Kon	nbinierte Preis- und Volatilitäts-Strategien	113
	6.2.3	5.1	Butterfly	113
	6.2.3	5.2	Condor	114
	6.2.3	5.3	Straps und Strips	114
6.3	Arbi	itrage	e-Strategien	115
6	.3.1	Con	version	116
6	.3.2	Rev	ersal	118
6	.3.3	Box		118
6	.3.4	Arbi	itrage-Strategien mit Futures	119

7. ZUSAMMENFASSUNG UND ABSCHLIESSENDE BEMERKUNGEN	121
Literaturverzeichnis	123
Anhang I	129
Anhang II	131

Darstellungsverzeichnis

Darstellung 2.1:	Übersicht Kassa- und Terminmarkt	18
Darstellung 3.1:	Gewinn-Verlust-Profil eines Long Futures	21
Darstellung 3.2:	Gewinn-Verlust-Profil eines Short Futures	22
Darstellung 3.3:	Gewinn-Verlust-Profil eines Long Call	27
Darstellung 3.4:	Gewinn-Verlust-Profil eines Short Call	28
Darstellung 3.5:	Gewinn-Verlust-Profil eines Long Put	29
Darstellung 3.6:	Gewinn-Verlust-Profil eines Short Put	30
Darstellung 4.1:	In-, At- und Out-of-the-money-Optionen	37
Darstellung 4.2:	Innerer Wert und Zeitwert einer Call-Option	38
Darstellung 4.3:	Zeitwert einer Call-Option	39
Darstellung 4.4:	Einflussfaktoren der Optionspreisberechnung	40
Darstellung 4.5:	Delta eines Calls in Abhängigkeit vom Aktienkurs	
	bei Variation der Volatilität	47
Darstellung 4.6:	Delta eines Calls in Abhängigkeit vom Aktienkurs	
	und Restlaufzeit	48
Darstellung 4.7:	Gamma eines Calls in Abhängigkeit vom Aktienkurs	
	bei Variation der Volatilität	49
Darstellung 4.8:	Gamma eines Calls in Abhängigkeit vom Aktienkurs	
	und Restlaufzeit	50
Darstellung 4.9:	Theta eines Calls in Abhängigkeit vom Aktienkurs	
	bei Variation der Volatilität	52
Darstellung 4.10:	Theta eines Calls in Abhängigkeit vom Aktienkurs	
	und Volatilität	53
Darstellung 4.11:	Vega eines Calls in Abhängigkeit von der Volatilität	
	bei Variation der Basispreise	54
Darstellung 4.12:	Vega eines Calls in Abhängigkeit von Volatilität	
	und Restlaufzeit	55
Darstellung 6.1:	Gewinn-Verlust-Profil eines Protective Put	78
Darstellung 6.2:	Gewinn-Verlust-Profil eines Participating Forward	80
Darstellung 6.3:	Gewinn-Verlust-Profil eines Risk Reversal	81
Darstellung 6.4:	Gewinn-Verlust-Profil eines Covered Call	83
Darstellung 6.5:	Gewinn-Verlust-Profile verschiedener Bull Call	
	Price Spreads bei Fälligkeit	90

Darstellung 6.6:	Gewinn-Verlust-Profil eines Time Spreads	95
Darstellung 6.7:	Gewinn-Verlust-Profil eines Diagonal Bull Spreads	98
Darstellung 6.8:	Gewinn-Verlust-Profil eines Long Straddle bei	
	Variation der Restlaufzeit	101
Darstellung 6.9:	Gewinn-Verlust-Profil eines Long Straddle bei	
	Variation der Volatilität	103
Darstellung 6.10:	Gewinn-Verlust-Profil eines Short Straddle bei	
	Variation der Restlaufzeit	105
Darstellung 6.11:	Gewinn-Verlust-Profil eines Short Straddle bei	
	Variation der Volatilität	106
Darstellung 6.12:	Gewinn-Verlust-Profil eines Long Strangle bei	
	Variation der Restlaufzeit	108
Darstellung 6.13:	Gewinn-Verlust-Profil eines Long Strangle bei	
	Variation der Volatilität	109
Darstellung 6.14:	Gewinn-Verlust-Profil eines Short Strangle bei	
	Variation der Restlaufzeit	111
Darstellung 6.15:	Gewinn-Verlust-Profil eines Short Strangle bei	
	Variation der Volatilität	112

Tabellenverzeichnis

Tabelle 6.1:	Portfolioentwicklung bei einer Umschichtung in	
	Bundesanleihen	74
Tabelle 6.2:	Portfolioentwicklung bei dem Verkauf von Futures	75
Tabelle 6.3:	Sensitivitätskennzahlen von Bull Call Price Spreads	88
Tabelle 6.4:	Übersicht der Gewinnzonen verschiedener Bull Call	
	Price Spreads	89
Tabelle 6.5:	Sensitivitätskennzahlen des Long Straddle	102
Tabelle 6.6:	Sensitivitätskennzahlen des Short Straddle	105
Tabelle 6.7:	Arbitrageerlös eines Conversion	117

Abkürzungsverzeichnis

DAX Deutscher Aktienindex

DCM Direkt-Clearing-Mitglied

DTB Deutsche Terminbörse

EUREX European Exchange Organization

GCM General-Clearing-Mitglied

HEX25 Helsinki Exchanges All-Share Index

NCM Non-Clearing-Mitglied

NEMAX Neuer Markt All-Share Index

OTC over the counter

SMI Swiss Market Index

SOFFEX Swiss Options and Financial Futures Exchange

STOXX Index-Familie des Dow Jones-Verlags

Symbolverzeichnis

$lpha_{PI}$	Alpha eines Portfolios in Relation zu einem Index
$oldsymbol{eta}_{PI}$	Beta eines Portfolios in Relation zu einem Index
Δ	Delta
γ	Gamma
ρ	Rho
σ	Standardabweichung
θ	Theta
v	Vega
e	Euler'sche Zahl, Basis des natürlichen Logarithmus
d	'downstep' = Größe von Kursabstiegen
ln	natürlicher Logarithmus
r	risikoloser stetiger Zinssatz
и	'upstep' = Größe von Kursanstiegen
C	Preis einer europäischen Kaufoption
D	erwartete Dividende
E	Ausübungspreis einer Option
$N(d_i)$	Funktionswert der kumulativen Normalverteilung an der Stelle $d_{\rm i}$
P	Preis einer europäischen Verkaufsoption
S	aktueller Preis eines Basiswertes
T	Restlaufzeit einer Option in Jahren
A	Terminkurs eines Future-Kontrakts

1. Einleitung

1.1 Einführung in die Thematik

In den ersten Jahren ihrer Existenz wurden die Derivatemärkte von individuellen Investoren dominiert, die auf die Bewegung einzelner Basiswerte spekuliert haben oder Arbitragegewinne erzielen wollten. Die Auswirkung von Derivaten auf die Renditecharakteristik von ganzen Portfolios wurde kaum in Erwägung gezogen. Ein großer Kreis der Öffentlichkeit steht Derivaten immer noch skeptisch gegenüber. So wird ein Future- oder Options-Kontrakt oft nur als eine Wette auf die Preisentwicklung des Basiswertes verstanden und eine Terminbörse damit als eine Art Kasino. Die volkswirtschaftliche Bedeutung wird nicht gesehen oder unterschätzt.²

Die zentrale ökonomische Funktion von Derivaten besteht in der Trennung der Risikoübernahme von der Bestandshaltung der zugrundeliegenden Finanztitel. Die isolierte Bewertung von Marktpreisrisiken, deren Bündelung und Weitergabe wird hierdurch möglich.³ Daher ist der Hauptnutzen von Derivaten in der Allokation systematischer Risiken zu sehen.⁴ Aufgrund dieser Eigenschaft ist es möglich, Risiken zu handeln und die Bewertung von Risiken transparent werden zu lassen. Da nicht der risikobehaftete Basiswert selbst Gegenstand des Risikotransfers ist, sondern ausschließlich als rechnerische Bezugsbasis dient, ist zudem ein geringerer Einsatz von finanziellen Mitteln erforderlich.⁵

Eine der faszinierendsten Eigenschaften von Derivaten ist die Tatsache, dass die Kombination von einfachen Strategien auf unkomplizierte Weise dazu genutzt werden kann, völlig neue Strategien mit anderen Schwerpunkten bezüglich der Reaktion auf Marktveränderungen zu kreieren. TOMPKINS vergleicht die einzelnen derivativen Instrumente mit Bausteinen, die von einem Investor auf beliebige Arten zusammengesetzt werden können, um die gewünschte Zielrichtung zu erreichen ⁶

Die Literatur nennt drei Typen von ökonomischen Einheiten, die sich auf den Futures- und Optionsmärkten bewegen. Spekulanten, welche die Verfügbarkeit

Vgl. BOOKSTABER (1985), S. 36.

² Vgl. USZCZAPOWSKI (1999), S. 1 und MÜLLER-MÖHL (1999), S. 17.

³ Vgl. BÖRNER (1997), S. 33.

⁴ Vgl. ZIMMERMANN (1996), S. 6.

⁵ Vgl. BÜSCHGEN (1998), S. 452.

⁶ Vgl. TOMPKINS (1994), S. 259.

und den Hebeleffekt von Optionen und Futures ausnutzen, um Risikopositionen einzunehmen, Hedger, welche sich die Liquidität von Futures- und Optionsmärkten zunutze machen, um Risiken, die sie in Kassapositionen zu tragen haben, zu reduzieren, und Arbitrageure, welche Preisungleichgewichte aufdecken und für Markteffizienz und -liquidität sorgen.⁷

1.2 Bedeutung von Derivaten in der Portfoliomanagement-Praxis

Dem Einsatz von derivativen Finanzinstrumenten muss jederzeit die Entscheidung vorangehen, wie das Gewinn- und Verlustpotential einer Position aufgebaut sein soll. Dieser Investment-Prozess verläuft in zwei Schritten. Zunächst bildet sich der Investor eine Meinung über den zukünftigen Verlauf der Marktbedingungen. In einem zweiten Schritt entscheidet sich der Investor für das Finanzinstrument, welches ihm bei Eintritt seiner Erwartungen einen Gewinn einbringen wird. Voraussetzung dafür ist das Vorhandensein eines idealen Finanzmarktes, der den Investoren zu jedem Zeitpunkt eine Alternative bietet, jedes erdenkliche Investmentziel optimal erreichen zu können.⁸

Obwohl jedes derivative Instrument theoretisch durch Kassatransaktionen repliziert werden kann, können in der Praxis aufgrund der wesentlich geringeren Transaktionskosten, des niedrigeren Kapitaleinsatzes und der höheren Marktliquidität nur Derivate diese Aufgabe wahrnehmen.

Für einen Portfoliomanager besteht damit eine wichtige Funktion von Derivaten darin, Gewinn- und Verlustcharakteristika von Gesamtpositionen zu kreieren, die seinen individuellen Bedürfnissen gerecht werden und bei Bedarf kurzfristig und unkompliziert modifiziert werden können. Für diesen gezielten Einsatz von derivativen Instrumenten ist eine solide Kenntnis ihrer Ertrags- und Risikoeigenschaften Voraussetzung.⁹ Letztendlich hängt aber, wie bei allen Finanzinstrumenten, Erfolg oder Mißerfolg einer Strategie allein vom Eintreffen der Markterwartungen ab. 10

Vgl. Luskin (1987), S. 255.

Vgl. BOOKSTABER (1991), S. 7-8.

Vgl. Eller (1999), S. 15.
 Vgl. Müller-Möhl (1999), S. 17

1.3 Aufbau und Ziele der Arbeit

Die vorliegende Arbeit beschäftigt sich mit dem Einsatz von Derivaten im Portfoliomanagement. Um den Rahmen dieser Arbeit nicht zu überschreiten, muss eine Einschränkung der Thematik vorgenommen werden.

Zum einen werden aus der großen Vielfalt von Derivaten nur diejenigen herausgegriffen, die sich auf Aktien oder Aktienindizes beziehen. Zudem sind mit Derivaten nur Futures und Optionen gemeint. Die Darstellung konzentriert sich aufgrund der hohen Anzahl von Anwendungsmöglichkeiten auf ausgewählte Strategien aus den drei Einsatzgebieten 'Hedging', 'Trading' und 'Arbitrage'.

Zum anderen wird aus dem umfangreichen Aufgabenbereich des aktiven Portfoliomanagements allein die Portfoliokonstruktion herausgegriffen. Die in der Prozesskette vor- und nachgelagerten Aktivitäten eines Portfoliomanagers können in dieser Arbeit nicht berücksichtigt werden. So bildet z.B. die korrekte Prognose von Renditen, Varianzen und Kovarianzen einen wesentlichen Beitrag zum Erfolg eines Portfolios. Die Erwartungen eines Investors¹¹ an bestimmte Marktbewegungen werden in dieser Arbeit als gegeben angesehen.

Der Einsatz von Derivaten als ein Baustein im Management eines Portfolios erfordert eine explizit festgelegte Anlagestrategie, welche die damit verbundenen Risiken reflektiert.

Ziel dieser Arbeit ist es, die Einsatzmöglichkeiten von derivativen Finanzinstrumenten in der strategischen und taktischen Portfoliokonstruktion darzustellen. Unter dem strategischen Einsatz wird die Formung eines angestrebten Risikoprofils eines Portfolios verstanden, wobei die derivativen Instrumente das vorhandene Kassaportfolio ergänzen.

Mit dem taktischen Einsatz ist die Renditesteigerung durch den gezielten Aufbau von Risikopositionen und Ausnutzen von Preisungleichgewichten gemeint.

Vor der Darstellung der Einsatzmöglichkeiten werden die wichtigsten Eigenschaften und Funktionsweisen von Derivaten thematisiert.

Zunächst wird in Kapitel 2 eine Übersicht über derivative Finanzinstrumente und die Märkte, an denen diese gehandelt werden, gegeben. Dabei wird eine Kategorisierung der in dieser Arbeit angesprochenen Derivate anhand ihrer Merkmale und Funktionen vorgenommen. Die Kategorisierung wird zum einen anhand der

_

¹¹ Die Begriffe 'Portfoliomanager' und 'Investor' werden in dieser Arbeit synonym verwendet.

Rechte und Pflichten der Vertragspartner und zum anderen anhand des Grades der Standardisierung des Vertrages vorgenommen.

Im anschließenden Kapitel 3 wird die grundlegende Einteilung von Termingeschäften in bedingte und unbedingte getroffen und deren Charakteristika spezifiziert. In den folgenden Kapiteln wird die jeweilige Untersuchung für die alternativen Vertragsausgestaltungen stets separat durchgeführt. Dieses Kapitel legt damit die Grundsteine für das Verständnis der Einsatzmöglichkeiten von Derivaten, soweit sie in dieser Arbeit angesprochen werden. Da die Darstellung in den Beispielen der folgenden Kapitel größtenteils ohne die explizite Benennung von konkreten Basiswerten vorgenommen wird, werden in diesem Teil beispielhaft die Produkte der Terminbörse EUREX vorgestellt.

Das vierte Kapitel widmet sich der Bewertung von Derivaten. Dieser Teil der Arbeit legt den Schwerpunkt auf die Diskussion der Sensitivitätskennzahlen von Optionen, die sich aus dem Black&Scholes-Modell ableiten lassen. Die Sensitivitätskennzahlen geben bei dem Aufbau von komplexen Optionsstrategien Auskunft darüber, wie die Gesamtposition auf Veränderungen bestimmter Marktbedingungen reagiert.

Im fünften Kapitel werden die drei Untersuchungsgebiete des Einsatzes von Derivaten im Portfoliomanagement vorgestellt und formal erläutert, um im sechsten Kapitel ausgewählte Strategien innerhalb dieser drei Einsatzmöglichkeiten detailliert zu beschreiben und zu vergleichen.

Aus dem Bereich der Hedging-Strategien wird zum einen der Einsatz von Short-Futures und zum anderen der alternative Einsatz von Optionen zur Absicherung eines Portfolios aufgezeigt. Anschließend werden Strategien zur Spekulation auf die Kurs- und Volatilitätsveränderung mit Optionen konkretisiert. Möglichkeiten für die Erzielung von Arbitragegewinnen unter Einbeziehung von Futures und Optionen werden im letzten Teil des sechsten Kapitels aufgezeigt.

Den Abschluss bildet eine Zusammenfassung und ergänzende Kommentare.