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1

Dielectric Properties of Materials

1.1 Energy Band in Crystals

In crystallography, a crystal structure is a unique arrangement of atoms, ions, or
molecules in a crystalline solid. It describes a highly ordered structure, occurring
due to the intrinsic nature of its constituents to form symmetric patterns. The
crystal lattice can be thought of as an array of “small boxes” infinitely repeating
in all three spatial directions. Such a unit cell is the smallest unit of volume that
contains all of the structural and symmetry information to build up the macro-
scopic structure of the lattice by translation. The crystal structure and symmetry
play a role in determining many of its physical properties, such as electronic band
structure and optical transparency.

To discuss the behavior of electrons in a crystal, we consider an isolated atom
of the crystal. If Z is the atomic number, the atomic nucleus has a positive charge
Ze. At a distance r from the nucleus, the electrostatic potential due to the nuclear
charge is (in SI units)

V (r) = Ze
4𝜋𝜀0r

(1.1)

where 𝜀0 is the permittivity of free space. Since an electron carries a negative
charge, the potential energy of an electron at a distance r from the nucleus is

Ep (r) = −eV (r) = − Ze2

4𝜋𝜀0r
(1.2)

V (r) is positive, while Ep(r) is negative. Both V (r) and Ep(r) are zero at an infinite
distance from the nucleus. Figure 1.1a,b shows the variation of V (r) and Ep(r),
respectively, with r.

We now consider two identical atoms placed close together. The net poten-
tial energy of an electron is obtained as the sum of the potential energies due to
the two individual nuclei. In the region between the two nuclei, the net poten-
tial energy is clearly smaller than the potential energy for an isolated nucleus
(Figure 1.2).

The potential energy along a line through a row of equispaced atomic nuclei,
as in a crystal, is diagrammatically shown in Figure 1.3. The potential energy
between the nuclei is found to consist of a series of humps. At the boundary AB
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Figure 1.1 Variation of (a) potential in the
field of a nucleus with distance and
(b) potential energy of an electron with its
distance from the nucleus.
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Figure 1.2 Potential energy variation
of an electron with distance between
two identical nuclei.
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Figure 1.3 Potential energy
of an electron along a row of
atoms in a crystal.

of the solid, the potential energy increases and approaches zero at infinity, there
being no atoms on the other side of the boundary to bring the curve down.

The total energy of an electron in an atom, kinetic plus potential, is negative and
has discrete values. These discrete energy levels in an isolated atom are shown
by horizontal lines in Figure 1.4a. When a number of atoms are brought close
together to form a crystal, each atom will exert an electric force on its neigh-
bors. As a result of this interatomic coupling, the crystal forms a single electronic
system obeying Pauli’s exclusion principle. Therefore, each energy level of the
isolated atom splits into as many energy levels as there are atoms in the crystal,
so that Pauli’s exclusion principle is satisfied. The separation between the split-off
energy levels is very small. A large number of discrete and closely spaced energy
levels form an energy band. Energy bands are represented schematically by the
shaded regions in Figure 1.4b.

The width of an energy band is determined by the parent energy level of the
isolated atom and the atomic spacing in the crystal. The lower energy levels
are not greatly affected by the interaction among the neighboring atoms and
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Figure 1.4 Splitting of energy levels of isolated atoms into energy bands as these atoms are
brought close together to produce a crystal.

hence form narrow bands. The higher energy levels are greatly affected by the
interatomic interactions and produce wide bands. The interatomic spacing,
although fixed for a given crystal, is different for different crystals. The width of
an energy band thus depends on the type of the crystal and is larger for a crystal
with a small interatomic spacing. The width of a band is independent of the
number of atoms in the crystal, but the number of energy levels in a band is equal
to the number of atoms in the solid. Consequently, as the number of atoms in the
crystal increases, the separation between the energy levels in a band decreases.
As the crystal contains a large number of atoms (≈1029 m−3), the spacing
between the discrete levels in a band is so small that the band can be treated as
continuous.

The lower energy bands are normally completely filled by the electrons since
the electrons always tend to occupy the lowest available energy states. The
higher energy bands may be completely empty or may be partly filled by the
electrons. Pauli’s exclusion principle restricts the number of electrons that a
band can accommodate. A partly filled band appears when a partly filled energy
level produces an energy band or when a totally filled band and a totally empty
band overlap.

As the allowed energy levels of a single atom expand into energy bands in a
crystal, the electrons in a crystal cannot have energies in the region between
two successive bands. In other words, the energy bands are separated by gaps
of forbidden energy.

The average energy of the electrons in the highest occupied band is usually
much less than the zero level marked in Figure 1.4b. The rise of the potential
energy near the surface of the crystal, as shown in Figure 1.4b, serves as a bar-
rier, preventing the electrons from escaping from the crystal. If sufficient energy
is imparted to the electrons by external means, they can overcome the surface
potential energy barrier and come out of the crystal surface.

1.2 Conductor, Insulator, and Semiconductor

On the basis of the band structure, crystals can be classified into conductors,
insulators, and semiconductors.
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Figure 1.5 Energy band structure of (a) a conductor, (b) an insulator, and
(c) a semiconductor.

1.2.1 Conductors

A crystalline solid is called a metal if the uppermost energy band is partly filled
or the uppermost filled band and the next unoccupied band overlap in energy as
shown in Figure 1.5a. Here, the electrons in the uppermost band find neighboring
vacant states to move in and thus behave as free particles. In the presence of an
applied electric field, these electrons gain energy from the field and produce an
electric current, so that a metal is a good conductor of electricity. The partly filled
band is called the conduction band. The electrons in the conduction band are
known as free electrons or conduction electrons.

1.2.2 Insulators

In some crystalline solids, the forbidden energy gap between the uppermost
filled band, called the valence band, and the lowermost empty band, called the
conduction band, is very large. In such solids, at ordinary temperatures, only
a few electrons can acquire enough thermal energy to move from the valence
band into the conduction band. Such solids are known as insulators. Since
only a few free electrons are available in the conduction band, an insulator
is a bad conductor of electricity. Diamond having a forbidden gap of 6 eV is
a good example of an insulator. The energy band structure of an insulator is
schematically shown in Figure 1.5b.

1.2.3 Semiconductors

A material for which the width of the forbidden energy gap between the
valence and the conduction band is relatively small (∼1 eV) is referred to as a
semiconductor. Germanium and silicon having forbidden gaps of 0.78 and 1.2 eV,
respectively, at 0 K are typical semiconductors. As the forbidden gap is not very
wide, some of the valence electrons acquire enough thermal energy to go into the
conduction band. These electrons then become free and can move about under
the action of an applied electric field. The absence of an electron in the valence
band is referred to as a hole. The holes also serve as carriers of electricity. The
electrical conductivity of a semiconductor is less than that of a metal but greater
than that of an insulator. The band diagram of a semiconductor is given in
Figure 1.5c.
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1.3 Fermi–Dirac Distribution Function

The free electrons are assumed to move in a field-free or equipotential space. Due
to their thermal energy, the free electrons move about at random just like gas par-
ticles. Hence these electrons are said to form an electron gas. Owing to the large
number of free electrons (∼1023 cm−3) in a metal, principles of statistical mechan-
ics are employed to determine their average behavior. A useful concept is the
distribution function that gives the probability of occupancy of a given state by the
electrons. The Fermi–Dirac (FD) distribution function can be used to determine
the energy distribution of free electrons in a metal. From statistical mechanics,
the FD distribution function is found to be

f (E) = 1

1 + exp
[

E−Ef
kBT

] (1.3)

where f (E) is the occupation probability of a state with energy E, EF is a char-
acteristic energy (chemical potential) for a particular solid and is referred to as
the Fermi level, T is the absolute temperature, and kB is Boltzmann’s constant
(kB = 1.38× 10−23 J K−1).

At the absolute zero of temperature, that is, at T = 0 K, Eq. (1.3) shows that
f (E)= 1 for E<EF and f (E)= 0 for E>EF. Thus all the energy states below EF
are occupied by the electrons, and all the energy states above EF are completely
empty. Hence the Fermi energy EF denotes the maximum energy that can be occu-
pied by the electrons at T= 0 K.

At temperatures greater than the absolute zero, f (E)> 0 for E>EF, as shown
in Figure 1.6. This means that at a finite temperature, some of the electrons in the
quantum states below EF acquire thermal energy to move into states above EF.

When E =EF, Eq. (1.3) shows that f (E)= 1/2 for T > 0. Thus the Fermi level is
the energy level for which the probability of occupancy is 1/2 for a finite nonzero
temperature. For most conductors, EF is less than 10 eV. For a pure semiconductor
and an insulator, the Fermi level lies near the middle of the forbidden energy
gap, whereas for a conductor, the Fermi level lies within the conduction band
(Figure 1.7a–c).

Figure 1.6 Plot of f (E) against E/EF for
T = 300 and 2000 K. 1

1/2

T = 0 K
T = 300 K
T = 2000 K

0 1 E/EF

f (E)–
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Figure 1.7 Schematic diagram
showing the position of the
Fermi level in (a) an insulator,
(b) a semiconductor, and (c) a
conductor.

1.4 Dielectrics

A dielectric material is a substance that is a poor conductor of electricity. On
the basis of band structure, the dielectric materials have an energy gap of 3 eV or
more. This large magnitude of energy gap precludes the possibility of electrons
being excited from the valence band to the conduction band by thermal means.
A dielectric is an electrical insulator that can be polarized by an applied electric
field. When a dielectric is placed in an electric field, electric charges slightly shift
from their average equilibrium positions, causing dielectric polarization. Because
of dielectric polarization, positive charges are displaced toward the field and neg-
ative charges shift in the opposite direction. This creates an internal electric field
that reduces the overall field within the dielectric itself. If a dielectric is composed
of weakly bonded molecules, those molecules not only become polarized but also
reorient so that their symmetry axis aligns to the field. The ideal dielectric mate-
rial does not exhibit electrical conductivity when an electric field is applied. In
practice, all dielectrics do exhibit some conductivity, which generally increases
with increase in temperature and applied field.

The study of dielectric properties is concerned with the storage and dissipation
of electric and magnetic energy in materials. In practice, most dielectric materi-
als are solid. Examples include porcelain (ceramic), mica, glass, plastics, and the
oxides of various metals. Dielectrics are employed as insulation for wires, cables,
and electrical equipment, as polarizable media for capacitors, in apparatus used
for the propagation or reflection of electromagnetic waves, and for a variety of
artifacts, such as rectifiers and semiconductor devices, piezoelectric transducers,
dielectric amplifiers, and memory elements.

Some liquids and gases can serve as good dielectric materials. Dry air is an
excellent dielectric and is used in variable capacitors. Distilled water is a fair
dielectric. A vacuum is an exceptionally efficient dielectric. Many of the tradi-
tional industrial dielectric materials are still in common use, and they compete
well in some applications with newer materials regarding their electrical and
mechanical properties, reliability, and cost. For example, oil-impregnated paper
is still used for high-voltage cables. Various types of pressboard and mica,
often as components of composite materials, are also in use. Elastomers and
press-molded resins are also of considerable industrial significance. However,
synthetic polymers such as polyethylene, polypropylene, polystyrene, poly-
tetrafluoroethylene, polyvinyl chloride, polymethyl methacrylate, polyamide,
and polyimide have become important, as has polycarbonate because it can be
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fabricated into very thin films. Generally, polymers have crystalline and amor-
phous regions, increasing crystallinity, causing increased density, hardness, and
resistance to chemical attack but often producing brittleness. Many commercial
plastics are amorphous copolymers, and often additives are incorporated in
polymers to achieve certain characteristics or to improve their workability.

1.4.1 Polarization of Dielectrics

The factors contribute to the polarization of dielectric molecules: the formation
of dipole moments and their orientation relatively to the electric field. If in a
dielectric the molecules forming elementary dipole moments are composed of
neutral particles such as atoms, the electric field shifts the electric charge of an
atomic shell against the direction of field and the nucleus is moved in with the
field. Thus the center of gravity of the positive and negative charges is displaced
from the center of the atom, and an “induced dipole moment” is produced, as
shown in Figure 1.8a. This part of polarization of molecules is called electronic
(Pe). The electronic polarization is independent of temperature, but it is directly
proportional to the field strength.

If the molecule producing an elementary dipole moment is made of ions of
opposite signs, the following process occurs when the dielectric is placed into an
electric field: the positive ions leave their equilibrium positions and move in the
direction of field, and the negative ions are displaced against the direction of field.
This displacement of ions or their groups in a dielectric initiates an ionic polar-
ization (Pi) of molecules, as shown in Figure 1.8b. The ionic polarization is also
independent of temperature, but it depends on the binding energy of particles in
the molecule and in the lattice of the dielectric.

The asymmetric distribution of charge between different atoms in a molecule
produces permanent dipole moments in the molecules of a dielectric. Under the
action of an electric field, these permanent dipoles are rotated into the direction
of the field and thus contribute to polarization. In this case, we speak about the
orientational polarization (Po), as shown in Figure 1.8c. The orientational polar-
ization is dependent on temperature. With increasing temperature, the thermal

Figure 1.8 Polarization processes:
(a) electronic polarization, (b) ionic
polarization, (c) orientational
polarization, and (d) space charge
polarization.
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energy tends to randomize the alignment of the permanent dipoles inside the
materials.

In real dielectrics, free charges may exist, which, under the action of an electric
field, move through the dielectric and are captured by various defects within the
dielectric without coming into contact with the electrodes. The free charges then
form regions with a surface or a space charge, which in turn produces a dipole
moment, also contributing to the polarization of dielectric. This mechanism ini-
tiates a space (surface) charge polarization (Ps) inside the dielectric, as shown in
Figure 1.8d. Like the orientational polarization, the space charge polarization is
also a function of temperature; in most cases it increases with temperature.

The total polarization of a dielectric may simultaneously involve all the four
mechanisms. If we assume that they are independent, we can write the total
polarization of a dielectric material as the sum of the contributions from the four
sources described earlier:

Ptotal = Pe + Pi + Po + Ps (1.4)

where the subscripts on the right refer to the four types: electronic, ionic, orien-
tational, and space charge polarization.

1.4.2 Dispersion of Dielectric Polarization

The dielectric polarization process can be expressed as a function of temperature:

P(t) = P
[

1 − exp
(
− t

tr

)]
(1.5)

where P is the maximum polarization attained upon application of the electric
field and tr is the relaxation time for a particular polarization process. The relax-
ation time tr is the time taken for a polarization process to reach 63% of the
maximum value.

The relaxation time varies widely with different polarization processes. There
are a number of polarization mechanisms as shown in Figure 1.9. The most com-
mon, starting from high frequencies, are given in the following.

Relaxations

Space charge

Dipoles

ε′

ε′
, ε

″

ε″

Resonances

Ions Electrons

Frequency (Hz)

10

1

104 108 1012 1016 1020

Figure 1.9 Frequency dependence of polarization dispersion.
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1.4.2.1 Electronic Polarization
This process occurs in an atom when the electric field displaces the electron
density relative to the nucleus it surrounds. Electronic polarization may be under-
stood by assuming an atom as a point nucleus surrounded by spherical electron
cloud of uniform charge density. Electrons have very small mass and are therefore
able to follow the high-frequency fields up to the optical range. It is an extremely
rapid process and is essentially complete at the instant the voltage is applied.
Even when the frequency of the applied voltage is very high in the optical range
(∼1015 Hz), the electronic polarization occurs during every cycle of the applied
voltage.

1.4.2.2 Ionic Polarization
This process is associated with the relative motions of cations and anions in an
electric field. Ionic polarization is slower than electronic polarization, as the dis-
placement involved here is that of much heavier ion, as compared with the elec-
tron cloud. The frequency with which ions can be displaced over a small fraction
of the interatomic distance will be of the same order as the lattice vibration fre-
quency (∼1013 Hz). If an electric field of frequency in the optical range (∼1015 Hz)
is applied, the ions do not respond at all, as the time required by an ion for one
vibration is 100 times longer than the period of the applied voltage. So, there is
no ionic polarization at optical frequencies.

1.4.2.3 Orientation Polarization
It is slower than ionic polarization. The orientation polarization arises from the
rotation of molecular dipoles in the field. It is easier for the polar molecules to
reorient themselves in a liquid as compared with a solid. Orientation polarization
occurs when the frequency of the applied voltage is in the audio range.

1.4.2.4 Space Charge Polarization
It is the slowest process, as it involves the diffusion of ions over several inter-
atomic distances. The relaxation time for this process is related to the frequency
of successful jumps of ions under the influence of the applied field. Space charge
polarizations are often occur in the kilohertz range or even lower.

1.4.3 Molecular Theory of Induced Charges in a Dielectric

A dielectric contains no free charges; then how it is possible for an induced charge
to appear on the surface of a dielectric when placed in an electric field? This can be
explained by the molecular viewpoint of dielectric. The dielectrics are classified
as polar and nonpolar. A nonpolar molecule is one in which the centers of grav-
ity of positive and negative charges normally coincide, while a polar molecule
is one where they do not coincide. Polar molecules therefore have permanent
dipole moments. In the absence of an external field, these dipoles are oriented at
random. But strong field orients more dipoles in the direction of the field. The
charges of a nonpolar molecule suffer a small displacement when placed in an
electric field.

The molecules are said to become polarized by the field and are called induced
dipoles. So, the dielectrics, both polar and nonpolar, behave in the same way
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under the influence of an external electric field. We can imagine that these dipoles
in the applied electric field can have excess negative charges on one surface and
positive charges on the opposite surface as shown in Figure 1.10.

These charges are not free, but each is bound to a molecule lying on or near the
surface. The net charge per unit volume within the rest of the dielectric medium is
zero. The electric fieldE1 set up by the induced charge always opposes the applied
field E0. The resultant field E is the vector sum of these two. That is,

E = E0 + E1 (1.6)

The field E1 is called the depolarization field, for within the body, it tends to
oppose the applied field E0 as shown in Figure 1.10. The resultant field E points
to the same direction as E0 but is smaller in magnitude. This leads to the conclu-
sion that if a dielectric is placed in an electric field, the induced surface charges
appear, which tend to weaken the original field within the dielectric. Thus we can
define the relative dielectric constant or relative permittivity 𝜀 as the ratio of the
magnitude of the applied field E0 to the resultant field E. Then,

E0

E
=

V0

V
= 𝜀 (1.7)

where V 0 is the potential difference without any medium and V is the same with
a dielectric medium in between the capacitor plates.

Therefore, for same charges Q, the ratio of capacitance with dielectric C and
capacitance without dielectric (for free space) C0 will be

C
C0

=
(Q∕V )
(Q∕V0)

=
V0

V
=

E0

E
= 𝜀 (1.8)

From the given definition of 𝜀, the dielectric constant or permittivity for free
space is unity. Obviously 𝜀 is a dimensionless quantity.

1.4.4 Capacitance of a Parallel Plate Capacitor

If a constant voltage V 0 is applied to a plane condenser with a vacuum capacity
C0, a charge Q of density 𝜎 =Q/A is set up on the condenser with area A and
distance of separation d between the plates (Figure 1.10). From the application
of Gauss’s law, we know that the electric field intensity between two plates with
a vacuum is E = 𝜎/𝜀0.

The potential difference V 0 is the work done in carrying a unit charge from one
plate to the other. Hence

V0 = Ed =
(
𝜎

𝜀0

)
d =

(
Qd
𝜀0A

)
(1.9)
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Rearranging the relation (1.9), we can write

Q
V0

=
(
𝜀0A

d

)
(1.10)

The capacitance C0 can be written as

C0 = Q
V0

=
(
𝜀0A

d

)
(1.11)

We already know that for same charges Q, the ratio of capacitance with dielec-
tric C and without dielectric (for free space) C0 is

C
C0

= 𝜀 (1.12)

Rearranging relations (1.11) and (1.12), we can write

C = 𝜀C0 = 𝜀𝜀0

(A
d

)
(1.13)

Relation (1.13) can be expressed in the rationalized form in the SI system by
the formula

C = 𝜀C0 = 𝜀𝜀0

(A
d

)
= 𝜀(8.854 × 10−12)

(A
d

)
F (1.14)

where d is in meters and A in square meters. Normalized units in the cgs electro-
static system can be expressed by the formula

C = 𝜀

( 1
4𝜋

)(A
d

)
cm (1.15)

where d is in centimeters and A in square centimeters.

1.4.5 Local Field in a Dielectric

We now develop an expression for the local field at a general lattice site, not neces-
sarily of cubic symmetry. To evaluate Eloc, we must calculate the total field acting
on a certain typical dipole, this field being due to the external field as well as all
other dipoles in the system. This was done by Lorentz as follows: the dipole is
imagined to be surrounded by a spherical cavity whose radius R is sufficiently
large that the matrix lying outside it may be treated as a continuous medium as
far as the dipole is concerned (Figure 1.11a). The interaction of our dipole with
the other dipoles lying inside the cavity is, however, to be treated microscopi-
cally, which is necessary since the discrete nature of the medium very close to the
dipoles should be taken into account. The local field, acting on the central dipole,
is thus given by the sum

Eloc = E0 + E1 + E2 + E3 (1.16)

where E0 is the external field; E1 is the depolarization field, that is, the field due
to the polarization charges lying at the external surfaces of the sample; E2 is the
field due to the polarization charges lying on the surface of the Lorentz sphere
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R

Central
dipole

(a) (b)

ε1

ε2

ε0

R
θ

Figure 1.11 (a) The procedure for computing the local field. (b) The procedure for calculating
E2, the field due to the polarization charge on the surface of the Lorentz sphere.

(Figure 1.11b), which is known as Lorentz field; and E3 is the field due to other
dipoles lying within the sphere.

It is important to note that the part of the medium between the sphere and
the external surface does not contribute anything since the volume polarization
charges compensate each other, resulting in a zero net charge in this region.
The contribution E1 +E2 +E3 to the local field is nothing but the total field at
one atom caused by the dipole moments of all the other atoms in the specimen.
Dipoles at distances greater than perhaps 10 lattice constants from the reference
site make a smoothly varying contribution. It is convenient to let the interior
surface be spherical.

1.4.5.1 Lorentz Field, E2
The polarization charges on the surface of the Lorentz cavity may be considered
as forming a continuous distribution. The field due to the charge at a point located
at the center of the sphere is, according to Coulomb’s law, given by

E2 = 4𝜋
3
P (1.17)

1.4.5.2 Field of Dipoles inside Cavity, E3
The field E3 due to the dipoles within the spherical cavity is the only term that
depends on the crystal structure. For a reference site with cubic surroundings in
a sphere, E3 = 0 if all the atoms may be replaced by point dipoles parallel to each
other. The total local field at a cubic site is then

Eloc = E0 + E1 +
4𝜋
3
P = E + 4𝜋

3
P (1.18)

This is known as the Lorentz relation: the field acting at an atom in a cubic site
is the macroscopic field E of plus 4𝜋P/3 from the polarization of the other atoms
in the specimen.

1.4.6 Molecular Description of Polarization

The interpretation of the polarization vector P describing the electric field inside
a dielectric as an electric dipole for unit volume enables us to progress from the
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macroscopic to a molecular description of the dielectric. In the molecular con-
cept, the resulting dipole moment p of a unit volume of a dielectric is set up by
composing the elementary dipole moments of the smallest aggregates forming
the elementary dipoles, which are called molecules of a dielectric.

The elementary dipole moment of a molecule p of a dielectric is thus propor-
tional to the intensity of the local field Eloc acting on the molecule:

p = 𝛼Eloc (1.19)

The constant of proportionality 𝛼 is called the molar polarizability. For a non-
spherical atom, 𝛼 will be a tensor. The polarization of a crystal may be expressed
approximately as the product of the polarizabilities of the atoms times the local
electric field:

P =
∑

i
Nipi =

∑
i

Ni𝛼iEloc(i) (1.20)

where Ni is the concentration, 𝛼i is the polarizability of atoms i, and Eloc(i) is the
local field at atom sites i.

We want to relate the dielectric constant to the polarizabilities; the result will
depend on the relation that holds between the macroscopic electric field and the
local electric field. If the local field is given by the Lorentz relation (1.18), then

P =

(∑
i

Ni𝛼i

)(
E + 4𝜋

3
P
)

(1.21)

The polarization is induced by electric field, and therefore it is a function of
electric field. The relationship is written in the following way:

P = 𝜒E (1.22)

where 𝜒 is called the dielectric susceptibility. In general 𝜒 is a tensor and depends
on the electric field. The dielectric constant 𝜀 of an isotropic or a cubic medium
relative to vacuum is defined in terms of the macroscopic field E:

𝜀 = E + 4𝜋P
E

= 1 + 4𝜋𝜒 (1.23)

We solve for P to find the susceptibility

𝜒 = P
E

=

∑
i
Ni𝛼i

1 − 4𝜋
3

∑
i
Ni𝛼i

(1.24)

Using relation (1.23), we can then write the expression in terms of the dielectric
constant:

𝜀 − 1
𝜀 + 2

= 4𝜋
3
∑

i
Ni𝛼i (1.25)

This is the Clausius–Mossotti relation. This relates the dielectric constant to
the electronic polarizability but only for crystal structures for which the Lorentz
local field (Eq. (1.18)) holds. Since 𝜀= n2, we can rewrite Eq. (1.25) in the form

n2 − 1
n2 + 2

= 4𝜋
3
∑

i
Ni𝛼i (1.26)
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This is the Lorentz–Lorenz equation. It connects the index of refraction with
the polarizability.

1.4.7 Dielectrics Losses

When an electric field acts on any matter, the latter dissipates a certain quantity
of electric energy that transforms into heat energy. This phenomenon is known as
the loss of power, meaning an average electric power dissipated in matter during a
certain interval of time. As a rule, the loss of power in a specimen of a material is
directly proportional to the square of the electric voltage applied to the specimen.

If a metal conductor is first connected to direct voltage and then to alternating
voltage, the acting magnitude of which is equal to direct voltage, the loss of power
P in watts will be the same in both cases in conformity with the Joule–Lenz law
and equal to

P = V 2

R
(1.27)

where V is the voltage in volts and R is the resistance of the conductor in ohms.
As distinct from conductors, most of the dielectrics display a characteristic fea-

ture: under a given voltage, the dissipation of power in the dielectrics depends on
the voltage frequency; the expense of power at an alternating voltage is markedly
higher than at a direct voltage, rapidly grows with an increase in frequency, volt-
age, and capacitance, and also depends on the material of the dielectric.

The power losses in a dielectric under the action of the voltage applied to it are
commonly known as dielectric losses. This is the general term determining the
loss of power in an electrical insulation both at a direct and an alternating volt-
age. Dielectric losses at a direct voltage can be found from relation (1.27) where
R stands for the resistance of the insulation, while the losses under the alternat-
ing voltage are determined by more intricate regularities. Actually the dielectric
losses mean the losses of power under an alternating voltage.

1.4.7.1 Dielectric Loss Angle
The phase diagram of currents and voltages in a capacitor energized by an alter-
nating voltage is shown in Figure 1.12. If the power were not dissipated at all in
the dielectric of the capacitor (ideal dielectric), the phase of current I through
the capacitor would be ahead of the phase of voltage V by 90∘ and the current

V

Ia

Ir

I, Z

O
δ

φ

Figure 1.12 Phase diagram of current and voltage in a
capacitor with a dielectric material.
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would be purely reactive. In actual fact, the phase angle 𝜑 is slightly less than
90∘. The total current I through the capacitor can be resolved into two compo-
nents – active Ia and reactive Ir currents.

Thus, the phase angle describes a capacitor from the viewpoint of losses in
a dielectric. Since the phase angle 𝜑 is very close to 90∘ in a capacitor with a
high-quality dielectric, the angle 𝛿 (i.e., 𝛿 = 90∘ −𝜑) is a more descriptive param-
eter, which is called the dielectric loss angle. The tangent of the angle is equal to
the ratio of the active currents to the reactive currents:

tan 𝛿 = Iq∕Ir (1.28)

or the ratio of active power P (power loss) to the reactive power Pr:

tan 𝛿 = P∕Pr (1.29)

The dielectric loss angle is an important parameter for the dielectric materi-
als. This parameter is usually described by the loss tangent tan 𝛿. Sometimes the
quality factor of an insulation portion is determined, that is, the value reciprocal
of the loss tangent:

Q = 1
tan 𝛿

= tan𝜑 (1.30)

The values of tan 𝛿 for the best electrical insulating materials employed
in high-frequency and high-voltage engineering practice are of the order of
thousands and even tenths of thousands of fractions.

1.4.7.2 Total and Specific Dielectric Losses
The value of dielectric losses P in an insulating material having a capacitance C
is described from relation (1.27) as

P = V Ia = V Ir tan 𝛿

Inserting the intensity of the capacitive current through an insulation portion
with a capacitance of C,

Ir = V𝜔C (1.31)

Since 𝜔= 2𝜋f , the angular frequency, the dielectric losses P can be expressed
as

P = V 2𝜔C tan 𝛿 = 2𝜋fCV 2 tan 𝛿 (1.32)

Inserting the value of effective length Λ = A∕d in Eq. (1.32) and replacing 𝜀0 by
its numerical value

𝜀0 ≈ 10−9

36𝜋
F∕m

the expression of dielectric losses can be formulated as

P = 5.56 × 10−11V 2f Λ𝜀 tan 𝛿 (1.33)

Formulas (1.32) and (1.33) have a broad field of application. They hold for any
size and shape of an insulated portion.
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Figure 1.13 Electric field pierces
a cube with edge dx in an
insulated portion.

The knowledge of total amount of dielectric losses in the insulated portion is
not enough, and it is necessary to study the distribution of dielectric losses at the
separate points of insulation. Let us consider a cube with edge dx inside the insu-
lated portion in which we are interested so that the lines of forces pierce the cube
entering and leaving it through two opposite faces in the direction perpendicular
to these faces (Figure 1.13).

The capacitance of the capacitor formed by the cube, according to relation
(1.13) with d = dx and A= (dx)2, is

C = 𝜀𝜀0

(A
d

)
= 𝜀𝜀0dx

and the voltage across the cube is V=E dx. Inserting these values into Eq. (1.32),
we get

dP = E2𝜔𝜀0𝜀 tan 𝛿 (dx)3 (1.34)

where the specific dielectric losses are the losses per unit volume of the dielectric:

p = dP
dV

= dP
(dx)3

where V= (dx)3 is the volume of the cube. So, the specific dielectric losses p are
expressed as

p = E2𝜔𝜀0𝜀 tan 𝛿 (1.35)

Now substituting 𝜔= 2𝜋f and replacing 𝜀0 by its numerical value in Eq. (1.35),

𝜀0 ≈ 10−9

36𝜋
F∕m

We have the following expression for specific dielectric losses:

p = 5.56 × 10−11E2f 𝜀 tan 𝛿 (1.36)

Formulas (1.35) and (1.36) are suitable for any pattern of field that possesses
unlike properties at different places. The product 𝜀 tan 𝛿 is called the dielectric
loss index (factor).
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1.4.8 Dielectrics Breakdown

At high electric fields, a material that is normally an electrical insulator may begin
to conduct electricity – that is, it ceases to act as a dielectric. This phenomenon
is known as dielectric breakdown. The mechanism behind dielectric breakdown
can best be understood using band theory.

Essentially, there are two “bands” in every material that the electrons within
the material may occupy – the valence band and the higher energy conduction
band (Figure 1.14). Electrons in the valence band can be conducted as being
bound in place, whereas electrons in the conduction band may act as mobile
charge carriers. In dielectrics, the two bands are separated by a certain energy
gap Eg, corresponding to the energies that are forbidden to the electrons. Since
the valence band is lower in energy, electrons will preferentially occupy this band.
Therefore, in a dielectric under normal conditions, the conduction band will be
empty. If an electron in the valence band is supplied with energy greater than or
equal to Eg, for example, from a high energy photon, it may be promoted to the
conduction band.

An electric field of sufficient strength can supply enough energy to promote
many electrons to the conduction band at once. Since electrons in the conduc-
tion band act as charge carriers, the material now conducts charge rather than
storing it. For each material, there is a characteristic field strength needed to
cause dielectric breakdown. This is referred to as the breakdown field or dielectric
strength. Typically values of the dielectric strength lie in the range 106–109 V m−1.
The exact value of the dielectric strength depends on many factors – most obvi-
ously, the size of the energy gap but also the geometry and microstructure of the
sample and the conditions it is subjected to.

The dielectric breakdown is associated with the formation in a dielectric crystal
of a conducting path in which the current density is substantially higher than the
average for the specimen. The Joule heat generated because of the high-density
current in the path leads to the destruction of the material, including melting;
the appearance of an air channel as a result of volatilization; and the extensive

Conduction band
(empty)

Conduction band
(occupied)

Valence band
(occupied)

Valence band
(occupied)

(a) Before break down (b) High electric field promotes
dielectric break down

Energy gap EgE
ne

rg
y
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e–
e–e– e– e– e– e–

e– e– e– e– e–

e– e– e– e–e– e– e–
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Figure 1.14 (a) Band structure before dielectric breakdown, and (b) band structure after
dielectric breakdown.
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formation of crystal defects or cracking. Thus, dielectric breakdown is an irre-
versible phenomenon. Dielectric breakdown is often associated with the failure
of solid or liquid insulating materials used inside high-voltage transformers or
capacitors in the electricity distribution grid, usually resulting in a short circuit
or a blown fuse. It can also occur across the insulators that suspend overhead
power lines, within underground power cables or lines arcing to nearby branches
of trees.
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2

Microscopic Properties of Materials

This chapter is an introduction to lattice vibrations – phonons – from a simple
microscopic point of view. The basic principles can be set out within a model of
a one-dimensional (1D) crystal.

2.1 Phonon

In condensed-matter physics, phonon is a unit of vibrational energy that arises
from oscillating atoms within a crystal. Any solid crystal, such as ordinary
table salt (sodium chloride), consists of atoms bound into a specific repeating
three-dimensional spatial pattern called a lattice. Because the atoms behave as if
they are connected by tiny springs, their own thermal energy or outside forces
make the lattice vibrate. This generates mechanical waves that carry heat and
sound through the material. A packet of these waves can travel throughout the
crystal with a definite energy and momentum, so in quantum mechanical terms
the waves can be treated as a particle, called a phonon. A phonon is a definite
discrete unit or quantum of vibrational mechanical energy, just as a photon is a
quantum of electromagnetic or light energy.

Phonons and electrons are the two main types of elementary particles or exci-
tations in solids. Whereas electrons are responsible for the electrical properties
of materials, phonons determine such parameters as the speed of sound within a
material and how much heat it takes to change its temperature.

2.1.1 One-Dimensional Monatomic Chain

Our model consists of identical atoms connected by springs, shown in Figure 2.1.
In equilibrium, the atoms are uniformly spaced at a distance a, and we now look
for oscillations about the equilibrium position. We assume that the crystal is har-
monic, so that the spring restoring force is linearly dependent upon the extension.
Then, if we denote the displacement of the nth atom (which is at the point rn = na)
to be un, its equation of motion is

m
𝜕2un

𝜕t2 = K(un+1 − un) + K(un−1 − un) (2.1)

Ferroelectrics: Principles and Applications, First Edition. Ashim Kumar Bain and Prem Chand.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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a

Displacement u

Figure 2.1 A one-dimensional linear chain. The atoms are shown in their equally spaced
equilibrium conditions in the top row and with a periodic distortion below. The bottom figure
plots the displacements un as arrows, and the curve shows how this is a sine wave of period 6a
in this case. (Reproduced with permission of PB Littlewood and Premi Chandra.)

We guess that the solution is a wave of the form

un(t) = u0 cos[qrn − 𝜔(q)t] (2.2)

Here the wavelength of the wave is 𝜆= 2𝜋/q, and the period is T = 2𝜋/𝜔(q); to
check that this is a solution and to determine the frequency, we substitute it in
the equation of motion. This is left as an exercise, and a few lines of algebra will
show that the solution Eq. (2.2) exists, provided that

m𝜔2(q) = 2K[1 − cos(qa)] = 4Ksin2
(

qa

2

)
(2.3)

so that

𝜔(q) = 2
√

K
m

sin
(

qa

2

)
(2.4)

Equation (2.3) is called a dispersion relation – the relation between the fre-
quency of the mode and its wave vector or equivalently the relationship between
the wavelength and the period. The wave vector q is inversely related to the wave-
length; note that for long-wavelength modes (i.e., q→ 0), the relationship is linear,
namely,

𝜔(q) =
√

K
m

(qa) (2.5)

which is the same as for a wire with tension K a and density m/a. In the
long-wavelength limit, we have compressive sound waves that travel with a
velocity v= a(K/m)1/2. Because this kind of wave behaves like a sound wave, it is
generally called an acoustic mode.

The dispersion is not linear for larger values of q and is in fact periodic
(Figure 2.2). The periodicity can easily be understood by reference to Eq. (2.2).
Suppose we choose q= 2𝜋/a. Note then that

qrn = 2𝜋
a

× na = 2𝜋n (2.6)


