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The past decade has seen increased recognition of the important roles oligosaccharides 
play in an array of biological process including (but not limited to) protein folding, 
pathogen invasion, cell adhesion, and immune response. As a consequence, the field of 
glycoscience is undergoing rapid growth, with an ever‐increasing number of investiga-
tors turning their attention to it. Despite all of this, the field is still in its infancy, espe-
cially compared to other areas of biology such as genomics and proteomics. There are 
several reasons for this; chief among them is the fact that glycoscientists do not enjoy 
ready access to homogeneous material for study, an advantage that was critical for the 
advances in other areas of biomedical research. This is because, unlike the other major 
classes of biopolymers, cells produce carbohydrates as heterogeneous mixtures, which 
are often intractable. As a consequence, organic synthesis (including chemoenzymatic 
synthesis) remains the only avenue for the production of pure oligosaccharides for bio-
medical evaluation. The synthesis of most oligosaccharides is a nontrivial undertaking, 
however, owing to issues of regiochemistry and stereochemistry. Thus, while chemical 
glycosylation has been known for over a century, the construction of a new oligosac-
charide can still be a research project in and of itself.

Among the challenges facing the chemist who wishes to synthesize oligosaccharides, 
one of the most significant is controlling selectivity in the glycosylation reaction. Typical 
glycosylation reactions proceed through a mechanism somewhere along the SN1–SN2 
continuum, which renders controlling selectivity in the reaction immensely difficult. 
While several elegant solutions to this problem have been devised, a general approach 
to controlling selectivity in glycosylation reactions with a broad range of substrates 
remains to be developed. This has prompted calls for the development of new approaches 
to glycosylation from numerous sectors. Before embarking on developing a new 
approach to glycosylation, however, it is first necessary to understand the advances that 
currently constitute the state of the art. The purpose of this volume is to describe the 
principles of chemical glycosylation. Rather than break down the text into chapters 
focusing on activating different classes of leaving groups, the focus is instead largely on 
mechanistic aspects that are responsible for selectivity. Furthermore, technologies for 
automated and one‐pot synthesis have been extensively reviewed elsewhere and will 
only be covered when relevant.

This volume is organized into five parts. The first part deals with an introduction to 
the basic principles or carbohydrate synthesis. In Chapter 1, Codeé et al. outline the 
factors responsible for controlling additions to oxocarbenium cations. Next, Demchenko 
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and coworkers describe the roles protecting groups play in both attenuating glycan 
reactivity and controlling stereoselectivity in glycosylations in Chapter 2. This part con-
cludes with Chapter  3 from Mong, Nokami, and coworkers, which details the roles 
solvents play in controlling the stereochemical outcome of glycosylation.

Part II describes ways in which electrophilic glycosyl donors can be modified to 
undergo selective reactions. In Chapter 4, Ishiwata and Ito provide a detailed introduc-
tion to the use of Intramolecular Aglycone Delivery (IAD) for the stereoselective syn-
thesis of cis‐1,2‐glycans. This is followed by a discussion of the use of chiral auxiliaries 
in oligosaccharide synthesis by Brabham and Fascione in Chapter 5. Finally, Bohé and 
Crich describe how glycosyl sulfonates permit the construction of the so‐called difficult 
linkages through SN2‐like glycosylations in Chapter 6.

The development of methods for catalytic activation of glycosyl donors is the focus of 
Part III. This part begins with a description of methods for the construction C‐glycans, 
often through transition‐metal‐mediated processes, by Liu et al. in Chapter 7. This is 
followed by a comprehensive overview of recent approaches for catalytic activation of 
donors for O‐glycosylation by Benito‐Alfonso and Galan in Chapter 8. In Chapter 9, 
Nguyen and coworkers provide a case study in catalytic activation, focusing on their 
Ni‐catalyzed 1,2‐cis‐glycoside synthesis. This part concludes with an introduction to 
the increasingly popular field of photochemical glycosylation by Ragains in Chapter 10.

In addition to the challenges in controlling the stereochemical outcome of glycosyla-
tion reactions, regioselectivity is a problem the synthetic chemist must attend to when 
dealing with glycosides. Current state‐of‐the‐art approaches to addressing this issue are 
outlined in Part IV of the volume. In Chapter 11, Taylor provides us with a discussion of 
methods for regioselectively glycosylating unprotected glycosyl acceptors. This is fol-
lowed by a discussion of methods for one‐pot protection and functionalization of 
unprotected glycans by Kulkarni in Chapter 12.

The final part of the volume provides the reader with examples of classes of glycans 
where standard approaches to glycosylation do not always apply. This begins with an 
overview of recent advances in 2‐deoxy‐sugar synthesis by Bennett in Chapter  13. 
Gallo‐Rodriguez and Kashiwagi follow this up with an introduction to the challenging 
issue of controlling selectivity in glycosylations with furanoside donors (Chapter 14). 
Next, Shi and O’Doherty provide us with a description of how the de novo synthesis can 
permit the construction of a number of carbohydrate natural products in Chapter 15. 
Finally, Lih and Wu provide an overview of the state of the art in the synthesis of sialic 
acids in Chapter 16.

The goal of this volume is to try to provide a holistic view of chemical glycosylation. 
Our target audience is not limited to individuals who are currently engaged in carbohy-
drate chemistry but extends to the larger synthetic community, many of whom may be 
new to the field. Our hope is that this volume will inspire investigators to make new, and 
ideally unforeseen, contributions to the field. We do this because we believe that it will 
be necessary to engage as many investigators as possible if we are to achieve the long‐
term goal of developing technologies that will permit the routine and rapid construction 
of oligosaccharide libraries that are desperately needed for the study of glycobiology.

Medford, MA, USA Clay S. Bennett
Tufts University
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1

1.1  Introduction

Tremendous progress has been made in the construction of oligosaccharides, and many 
impressive examples of large and complex oligosaccharide total syntheses have appeared 
over the years [1]. At the same time, the exact mechanism underlying the union of two 
carbohydrate building blocks often remains obscure, and optimization of a glycosyla-
tion reaction can be a time- and labor-intensive process [2, 3]. This can be explained by 
the many variables that affect the outcome of a glycosylation reaction: the nature of 
both the donor and acceptor building blocks, solvent, activator and activation protocol, 
temperature, concentration, and even the presence and the type of molecular sieves. 
The large structural variety of carbohydrates leads to building blocks that differ signifi-
cantly in reactivity, with respect to both the nucleophilicity of the acceptor molecule 
and the reactivity of the donor species. The reactivity of a donor is generally related to 
the capacity of the donor to accommodate developing positive charge at the anomeric 
center, upon expulsion of the anomeric leaving group. This also determines the amount 
of carbocation character in the transition state leading to the products. Most glycosyla-
tion reactions will feature characteristics of both SN1- and SN2-type pathways in the 
transition states leading to the products. It is now commonly accepted that the exact 
mechanism through which a glycosidic linkage is formed can be found somewhere in 
the continuum of reaction mechanisms that spans from a completely dissociative SN1 
mechanism on one side to an associative SN2 pathway on the other side (Figure 1.1) 
[4–6]. On the SN1-side of the spectrum, glycosyl oxocarbenium ions are found as prod-
uct-forming intermediates. On this outer limit of the reaction pathway continuum, the 
oxocarbenium ions will be separated from their counterions by solvent molecules (sol-
vent-separated ion pairs, SSIPs), and there will be no influence of the counterion on the 
selectivity of the reaction. Moving toward the SN2 side of the spectrum contact (or 
close) ion pairs (CIPs) are encountered, and in reactions of these species, the counterion 
will have a role to play. Because glycosylation reactions generally occur in apolar sol-
vents (dichloromethane is by far the most used one), ionic intermediates have very 
limited lifetimes, and activated donor species will primarily be present as a pool of 

Stereoselective Glycosylations – Additions 
to Oxocarbenium Ions
Bas Hagen, Stefan van der Vorm, Thomas Hansen, Gijs A. van der Marel,  
and Jeroen D.C. Codée



1 Stereoselective Glycosylations – Additions to Oxocarbenium Ions4

covalent intermediates. The stability, lifetime, and reactivity of an oxocarbenium ion 
depend – besides the nature of the counterion – on the nature and orientation of the 
functional groups present on the carbohydrate ring. This chapter explores the role of 
oxocarbenium ions (and CIPs, featuring a glycosyl cation) in chemical glycosylation 
reactions. While it was previously often assumed that glycosylations, proceeding via an 
oxocarbenium ion intermediate, show poor stereoselectivity, it is now clear that oxocar-
benium ions can be at the basis of stereoselective glycosylation events. The first part of 
this chapter deals with the  stability, reactivity, and conformational behavior of glycosyl 
oxocarbenium ions, whereas the second part describes their intermediacy in the assem-
bly of (complex) oligosaccharides.

1.2  Stability, Reactivity, and Conformational Behavior 
of Glycosyl Oxocarbenium Ions

Amyes and Jencks have argued that glycosyl oxocarbenium ions have a short but signifi-
cant lifetime in aqueous solution [7]. They further argued that in the presence of prop-
erly positioned counterions (such as those derived of expulsion of an aglycon), CIPs will 
rapidly collapse back to provide the covalent species and that the “first stable intermedi-
ate for a significant fraction of the reaction” should be the solvent-separated oxocarbe-
nium ion. By extrapolation of these observations to apolar organic solvents, Sinnott 
reached the conclusion that intimate ion pairs have no real existence in an apolar envi-
ronment, such as used for glycosylation reactions [8]. Hosoya et al. have studied CIPs 
by quantum mechanical calculations in dichloromethane as a solvent [9]. In these cal-
culations, they have included four solvent molecules to accurately mimic the real-life 
situation. In many of the studied cases, CIPs turned out to be less stable than the cor-
responding solvent-separated ions, as will be described next [10]. Yoshida and cowork-
ers have described that activation of thioglucoside 1 with a sulfonium salt activator, 
featuring the bulky nonnucleophilic tetrakis(pentafluorophenyl) borate counterion, in a 
continuous-flow microreactor, provides a reactive species (2) that has a lifetime on the 
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order of a second (Scheme 1.1) [11]. They argued that this species was a glucosyl oxo-
carbenium ion, “somewhat stabilized” by the disulfide generated from the donor agly-
con and the activator.

The stability of a glycosyl oxocarbenium ion is largely influenced by the substituents 
on the carbohydrate ring. The electronegative substituents (primarily oxygen, but also 
nitrogen-based) have an overall destabilizing effect on the carbocation, and the desta-
bilizing effect can be further enhanced by the presence of electron-withdrawing pro-
tecting groups, such as acyl functions. The exact position of the substituent on the ring 
and its orientation influence the stability of the anomeric cation. The combined influ-
ence of all substituents on the ring determines the reactivity of a glycosyl donor, and the 
extensive relative reactivity value (RRV) charts, drawn up by the Ley and Wong groups 
for a large panel of thioglycosides, clearly illustrate these functional group effects 
[12–14]. From these RRV tables, it is clear that the donor reactivity spectrum spans at 
least eight orders of magnitude. To investigate the influence of the carbohydrate ring 
substituents on the stereochemical outcome of a glycosylation reaction, Woerpel and 
coworkers have systematically studied C-glycosylation reactions of a set of furanosides 
and pyranosides, featuring a limited amount of ring substituents [15–20]. Their studies 
in the furanose series are summarized in Scheme 1.2a [15, 17]. As can be seen, the 
alkoxy groups at C2 and C3 have a strong influence on the stereochemical outcome of 
the reaction, where the alkoxy group at C5 appears to have less effect on the reaction. 
The presence of an alkoxy or alkyl group at C3 leads to the formation of the allylglyco-
sides 11 and 12 with opposite stereoselectivity. Woerpel and coworkers have devised a 
model to account for these stereodirecting substituent effects that takes into account 
the equilibrium between two possible envelope oxocarbenium ion conformers (13 
and  14, Scheme 1.2b) [17]. Attack on these oxocarbenium ion conformers by the 
nucleophile occurs from the “inside” of the envelopes, because this trajectory avoids 
unfavorable eclipsing interactions with the substituent at C2, and it leads, upon rehy-
bridization of the anomeric carbon, to a fully staggered product (15 and 16), where 
attack on the “outside” would provide the furanose ring with an eclipsed C1─C2 con-
stellation. The spatial orientation of the alkoxy groups influences the stability of the 
oxocarbenium ions. An alkoxy group at C3 can provide some stabilization of the carbo-
cation when it takes up a pseudo-axial position. Stabilization of the oxocarbenium ion 
featuring a C2-alkoxy group is best achieved by placing the electronegative substitu-
ent  in a pseudo-equatorial position to allow for the hyperconjugative stabilization by 
the properly oriented C2─H2 bond. Alkyl substituents at C3 prefer to adopt a pseudo- 
equatorial position because of steric reasons. With these spatial substituent prefer-
ences, the stereochemical outcome of the C-allylation reactions in Scheme 1.2 can be 
explained. Activation of the C3-benzyloxyfuranosyl acetate with SnBr4 can provide an 
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Scheme 1.1 Generation of glucosyl oxocarbenium ions in a continuous-flow microreactor.
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oxocarbenium ion intermediate that preferentially adopts an E3 conformation, as in 14. 
Nucleophilic attack on this conformer takes place from the diastereotopic face that 
leads to the 1,3-cis product. In a similar vein, inside  nucleophilic attack on the 
C2-benzyloxy furanosyl oxocarbenium ion E3 conformer, derived from furanosyl ace-
tate 4, accounts for the stereochemical outcome of the C-allylation leading to product 9.

To accurately gauge the combined effect of multiple substituents on a furanosyl ring, 
van Rijssel et al. [21, 22] used a quantum mechanical calculation method, originally 
developed by Rhoad and coworkers [23], to map the energy of furanosyl oxocarbenium 
ions related to the complete conformational space they can occupy. Energy maps for all 
four possible diastereoisomeric, fully decorated furanosyl oxocarbenium ions were gen-
erated revealing the lowest energy conformers for the ribo-, arabino-, xylo-, and lyxo-
configured furanosyl oxocarbenium ions 17–21 (Scheme 1.3). It became apparent that 
the orientation of the C5-substituent, having a gg, gt, or tg relation to the substituents at 
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Scheme 1.2 (a) Diastereoselective C-allylations of furanosyl acetates. (b) “Inside” attack model.
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C4, was of profound influence on the stability of the oxocarbenium ions, and differences 
up to 4 kcal mol−1 were observed for structures only differing in their C4─C5 rotation. 
These stereoelectronic effects have also been described in the pyranose series, where a 
C4─C6 acetal can restrict the C6-oxygen in a tg position, for manno- and gluco-config-
ured systems, or in a gg position for galacto-configured constellations [24–26]. The tg 
orientation represents the most destabilizing orientation because in this situation, the 
O6 atom is farthest away from the electron-depleted anomeric center, not allowing for 
any electron density donation for stabilization. With the lowest energy furanosyl oxo-
carbenium ion conformers found by the free energy surface (FES) mapping method, the 
stereochemical outcome of reduction reactions at the anomeric center of the four dias-
tereoisomeric furanosyl acetates 22–25 could be explained (Scheme 1.3). Interestingly, 
all four furanosides reacted in a 1,2-cis selective manner with the incoming nucleophile 
(tri-ethylsilane-d). Only xylofuranosyl acetate 24 provided some of the 1,2-trans addi-
tion products, which could be related to the stability of the 3E gt oxocarbenium ion 
intermediate 20.

The stereoelectronic substituent effects found in the furanose series are paralleled in 
the pyranose system, where the following substituent effects have been delineated: the 
stability of pyranosyl oxocarbenium ions benefits from an equatorial orientation of the 
C2-alkoxy groups (allowing for hyperconjugative stabilization by the σC2─H2 bond) and 
an axial orientation of the C3 and C4 alkoxy groups [20]. The C5-alkoxymethylene 
group has a slight preference for an equatorial position because of steric reasons [18]. 
These substituent preferences have been used to explain the stereochemical outcome of 
a series of C-allylations, using a two-conformer model. Woerpel and coworkers rea-
soned that six-membered oxocarbenium ions preferentially adopt a half-chair structure 
to accommodate the flat [C1=O5]+ oxocarbenium ion moiety (Scheme 1.4a) [20]. These 
half-chair intermediates are attacked by incoming nucleophiles following a trajectory 
that leads to a chair-like transition state. Thus, attack of a 3H4 half chair 30 preferentially 
occurs form the β-face (in the case of a d-pyranoside), where attack on the opposite half 
chair 31 (the 4H3) leads to the α-product. With the described spatial substituent prefer-
ences and mode of nucleophilic attack, the stereoselectivities in the C-allylation reac-
tions shown in Scheme 1.4b can be accounted for: the C4─OBn is trans-directing, 
where the C3 and C2─O─Bn promote the formation of the cis-product. In the lyxo-
pyranosyl oxocarbenium ion, these three substituent preferences can be united, and the 
allylation of 2,3,4-tri-O-benzyl lyxopyranosyl acetate 35 proceeds in a highly stereose-
lective manner to provide the 1,2-cis product 40.

When a C5 benzyloxymethyl group is added to this system, as in a mannosyl cation, 
it can be reasoned that the 3H4 oxocarbenium ion is more stable than its 4H3 counter-
part (see Scheme 1.5): the C2, C3, and C4 groups are all positioned properly to provide 
maximal stabilization of the electron-depleted anomeric center, and only the C5 sub-
stituent, in itself not a powerful stereodirecting group, is not positioned favorably [18]. 
However, the axial orientation of this group does lead to a significant 1,3-diaxial inter-
action with the axially positioned C3-alkoxy group. The allylation of mannose proceeds 
with α-selectivity, indicating that nucleophilic attack on the β-face of the 3H4 oxocarbe-
nium is not a favorable reaction pathway. To account for this stereochemical outcome, 
Woerpel and coworkers have suggested a Curtin–Hammett kinetic scenario, in which 
the two half chairs 42 and 43 are in rapid equilibrium. Attack on the 3H4 conformer 
suffers from unfavorable steric interactions between the incoming nucleophile and the 
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substituents at C3 and C5, in addition to the destabilizing C3─C5 interaction, already 
present in the system. Attack on the α-face of the 4H3 oxocarbenium ion, on the other 
hand, is devoid of these unfavorable steric interactions, making this transition state 
overall more favorable.

With strong nucleophiles, the two-conformer oxocarbenium ion model falls short, 
and SN2-type pathways come into play [27, 28]. In a continuation of their efforts to 
understand the stereoselectivities of C-glycosylation reactions of (partially) substi-
tuted  pyranosyl donors, the Woerpel laboratory studied the addition reactions of a 
series of C-nucleophiles, ranging from weak nucleophiles (such as allyl trimethylsilane) 
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to relatively strong nucleophiles (such as silyl ketene acetals) [27, 28]. Table 1.1 sum-
marizes the stereochemical outcome of the reactions of 2-deoxy glucopyranosyl acetate 
donor 44 with these nucleophiles under the agency of TMSOTf as a Lewis acid catalyst 
[28], together with their relative nucleophilicity, as established by Mayr and coworkers 
[29]. The α-selectivity in the reaction with allyl trimethylsilane can be accounted for by 
invoking the 4H3 oxocarbenium ion (55, Scheme 1.6a) as most likely product-forming 
intermediate. Nucleophilic attack on the alternative 3H4 half chair 54 again suffers 
from prohibitively large steric interactions to be a reasonable pathway. With reactive 
nucleophiles, such as silyl ketene acetals 52 and 53 (Table 1.1, entries 4 and 5), the most 
likely product-forming pathway proceeds with significant SN2-character taking place 
on the α-triflate intermediate 56 (Scheme 1.6b) [28]. Of note, no attempts were under-
taken to characterize this triflate[30].

1.3  Computational Studies

To better understand the conformational behavior, reactivity, and stability of glycosyl 
oxocarbenium ions, several quantum mechanical studies have been undertaken (see 
Table 1.2) [9, 10, 31–35]. Whitfield and coworkers have reported many computational 

Table 1.1 Changing diastereoselectivity in the addition of C-nucleophiles of increasing reactivity.
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studies in which they investigated the conformational behavior of, among others, tetra-
O-methyl gluco- and mannopyranosyl triflates as well as their 4,6-O-benzylidene conge-
ners upon ionization (i.e., expulsion of the triflate leaving group) and the conformational 
behavior of the resulting oxocarbenium ions [32]. To prevent collapse of the initially 
formed ion pair, they used lithium cations to stabilize the departing anionic leaving 

Table 1.2 A selection of oxocarbenium ions and their calculated energies (determined by DFT 
calculations).
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group. These calculations revealed that ionization of the tetra-O-methyl gluco- and 
mannopyranosyl α-triflates initially provides 4H3 (58 and 60, respectively) or closely 
related 4E-like oxocarbenium ions 59 (see Stoddart’s hemisphere representation [36] for 
pseudo-rotational itineraries shown in Figure 1.2a). Expulsion of the anomeric triflate 
from the β-isomers requires a conformational change, where the glucose and mannose 
pyranosyl rings distort to an 1S3-like structure [32]. In this constellation, the anomeric 
leaving group can be expelled by assistance of one of the ring oxygen lone pairs leading 
to an 4E (for the glucose) or 4H3 half-chair (for the mannose) oxocarbenium ion. The 
stability of these ions is primarily governed by sterics, since they lack the electronic sta-
bilization described earlier. Interestingly, similar itineraries have been established to be 
operational in glycosyl hydrolases. Rovira and coworkers have determined that the 
hydrolysis of β-glucosides by retaining glucosyl hydrolases, belonging to the GH5, GH7, 
and GH16 families, proceeds via a trajectory, in which the substrate is first placed in a 
conformation that allows expulsion of the aglycon (Figure 1.2b) [37, 38]. Then passing 
through 4H3 transition state 80, which is close in conformational space to the starting 1S3 
geometry 79, the 4C1 product 81 (the covalent enzyme–glucose adduct) is obtained. 
This catalytic itinerary was visualized using a combination of X-ray crystallography, 
free-energy landscape mapping (to determine the intrinsically favorable ground-state 
conformations), and quantum mechanics/molecular mechanics reaction simulations. 
Further calculations of the Whitfield group showed that the 4,6-O-benzylidene glucose 
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Figure 1.2 (a) Stoddart’s hemisphere representation for conformational interconversions (only the 
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