Flüstergalerieresonatoren aus Lithiumniobat: lineare und nichtlineare Verlustkanäle und zeitliche Frequenzstabilität

Markus Leidinger

Flüstergalerieresonatoren aus Lithiumniobat: lineare und nichtlineare Verlustkanäle und zeitliche Frequenzstabilität

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau

> vorgelegt von Markus Leidinger

aus Saarbrücken

August 2016

Dekan: Prof. Dr. Oliver Paul

Prof. Dr. Karsten Buse
Prof. Dr. Hans Zappe
Prof. DrIng. Ulrike Wallrabe
Prof. Dr. Alexander Rohrbach

Datum der Promotion: 18. November 2016

Bibliographische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliographische Daten sind im Internet über www.dnb.de abrufbar.

© Markus Leidinger 2017

Herstellung und Verlag: BoD – Books on Demand, Norderstedt

ISBN: 978-3-7431-4996-0

INHALTSVERZEICHNIS

1	Einl	eitung		1		
2	Flüs	Flüstergalerieresonatoren				
	2.1	Mode	n in Flüstergalerieresonatoren	5		
		2.1.1	Geometrie und Feldverteilung	5		
		2.1.2	Resonanzen	7		
		2.1.3	Kopplung	8		
	2.2	Güte v	von Flüstergalerieresonatoren	10		
3	Line	eare Ve	rlustkanäle	13		
	3.1	Extink	tion in dielektrischen Materialien	13		
	3.2 Lithiumniobat			15		
		3.2.1	Struktur	16		
		3.2.2	Kompositionen und Herstellung	17		
		3.2.3	Extrinsische Defekte	17		
		3.2.4	Wärmebehandlung	20		
	3.3	Messu	ng der Güte von Flüstergalerieresonatoren	22		
		3.3.1	Methoden zur Gütemessung	22		
		3.3.2	Probenpräparation	25		
		3.3.3	Ergebnisse der wellenlängenabhängigen Gütemessung	26		
		3.3.4	Diskussion	27		
	3.4	4 Thermische Behandlung von Lithiumniobat				

INHALTSVERZEICHNIS

		3.4.1	Methoden zur thermischen Behandlung	36
		3.4.2	Verwendete Kristalle	39
		3.4.3	Experimentelle Ergebnisse der thermischen Behandlung	39
		3.4.4	Diskussion	43
	3.5	Zusan	nmenfassung	45
4	Nicl	htlinea	re Verlustkanäle	47
	4.1	Releva	ante nichtlinear-optische Prozesse	47
		4.1.1	Mehrphotonen- und lichtinduzierte Absorption	47
		4.1.2	Frequenzkonversion zweiter Ordnung	48
		4.1.3	Raman-Streuung	52
	4.2	Exper	imentelle Methoden zur Untersuchung nichtlinearer Verlustkanäle	55
	4.3	Ergeb	nisse der Untersuchung	56
		4.3.1	Außerordentlich polarisiertes Pumplicht	56
		4.3.2	Ordentlich polarisiertes Pumplicht	62
	4.4	Identi	fikation und Diskussion der Prozesse	63
		4.4.1	Außerordentlich polarisiertes Pumplicht	63
		4.4.2	Ordentlich polarisiertes Pumplicht	70
	4.5	Zusan	nmenfassung	75
5	Frec	quenzst	abilität	77
	5.1	Ursacl	hen der Verschiebung der Resonanzfrequenz	77
		5.1.1	Extern angelegte, elektrische Spannung	79
		5.1.2	Extern induzierte Temperaturänderung	80
		5.1.3	Lichtinduzierte Effekte	82
	5.2	Exper	imentelle Methoden zur Isolierung der Effekte	85
	5.3	Ergeb	nisse der Untersuchung der Stabilität	88
		5.3.1	Photorefraktiver Effekt	88
		5.3.2	Elektrooptischer Effekt	90
		5.3.3	Pyroelektrischer Effekt	92
	5.4	Disku	ssion der Einflüsse einzelner Effekte	93
		5.4.1	Photorefraktiver Effekt	93
		5.4.2	Elektrooptischer Effekt	94

		5.4.3 Pyroelektrischer Effekt		96			
	5.5	Zusammenfassung		96			
6	Zusa	ammenfassung		99			
Fo	Formelzeichen 1						
Li	teratu	urverzeichnis	1	105			
Ve	Veröffentlichungen						

Kapitel 1

Einleitung

Unser tägliches Leben wird beeinflusst durch Innovation, Fortschritt und Technologie. Als 1960 MAIMAN den Laser realisierte [1], war dies gewiss eine unsere Gesellschaft nachhaltig prägende Innovation. Zum 50. Geburtstag des Lasers im Jahr 2010 gab es weltweit eine Vielzahl von Veranstaltungen und letztes Jahr, 2015, wurde gar ein "Internationales Jahr des Lichts", initiiert von internationalen wissenschaftlichen und industriellen Optik-Verbünden, ausgerufen.

Viele Wissenschaften, wie beispielsweise Physik, Chemie, Biologie, Medizin und Informatik, profitieren von Lasern, was man an der Zahl der Nobelpreise, für die die Verwendung eines Lasers Grundvoraussetzung war, ablesen kann - alleine in der Physik zählt man mehr als zehn. Getrieben von Erfolgen in Wirtschaft und Wissenschaft ergeben sich immer neue Herausforderungen an Laserquellen was Leistungsfähigkeit, Preis, Kompaktheit und Wellenlängen angeht.

Obwohl Diodenlaser einen weiten Bereich des optischen Spektrums abdecken, gibt es immer noch Lücken, welche weder durch diese noch durch andere Laser geschlossen werden können. Die nichtlineare Optik hat es geschafft, in diese Wellenlängenbereiche durch Wellenlängenmischprozesse vorzudringen. Sowohl die Frequenzverdopplung (SHG) [2], als auch die optisch-parametrische Oszillation (OPO) [3] gehören mittlerweile zu den Standardmethoden zur Erschließung von durch Laser nicht abgedeckten Spektralbereichen. Gerade die OPO bietet den Vorteil der Durchstimmbarkeit der erzeugten Wellenlänge über weite Bereiche [4].

Eines der treibenden Materialien der nichtlinearen Optik und darüber hinaus ist Lithiumniobat (LiNbO₃). Es ist eines der meistgenutzten kristallinen Dielektrika. Diesen Rang hat es aufgrund seiner guten Herstellbar- und Bearbeitbarkeit in Kombination mit einer Vielzahl an nützlichen physikalischen Effekten [5, 6]. Akustooptische und piezoelektrische Effekte machen es z.B. interessant für die Erzeugung von Oberflächenwellen und der elektrooptische Effekt wird benutzt, um LiNbO₃-basierte elektrooptische Modulatoren zu realisieren. Der volumenphotovoltaische Effekt wiederum

KAPITEL 1. EINLEITUNG

machte das Material zu einem der Pioniermaterialien der Volumenholographie.

Entscheidend für die weite Verwendung von LiNbO₃ in der nichtlinearen Optik sind drei Eigenschaften: vergleichsweise hohe optisch nichtlineare Koeffizienten [7], die Möglichkeit, die ferroelektrischen Domänen periodisch zu invertieren [8,9] und die hohe Transparenz in einem weiten spektralen Fenster vom sichtbaren in den nahen Infrarotbereich [10, 11].

Standardmäßig wird das nichtlinear-optische Material zur Frequenzkonversion in optische Resonatoren eingebaut. In diesen wird die Intensität des eingestrahlten Lichts vervielfacht und die Effizienz für den nichtlinearen Prozess erhöht. Damit diese Vorteile jedoch nutzbar sind, müssen die Verluste im Resonator gering sein. Ein Maß dafür ist die Güte Q des Resonators, die angibt, wie viele Schwingungen das elektrische Feld des Lichts im Resonator vollzieht, bevor es abgeklungen ist. Die Finesse \mathcal{F} wiederum gibt an, wie viele Umläufe das Licht dabei im Resonator vollzieht. Sie ist ein Maß für die erreichbare Leistungsüberhöhung und ist umso größer, je kompakter der Resonator ist. Kompakte Resonatoren hoher Güte sind somit ideal für optisch nichtlineare Prozesse.

Eine Konfiguration, die beides vereint, ist der Flüstergalerieresonator (FGR) [12]. In diesem monolithischen Resonatortyp wird Licht durch totale interne Reflexion geführt und lediglich durch Absorption und Streuung des Wirtsmaterials gedämpft. Güten von 10⁹ und Finessen von 10⁵ sind dabei in optisch nichtlinearen Materialien bereits demonstriert worden [13]. Aufgrund des Prinzips der totalen internen Reflexion führt der meist millimetergroße FGR breitbandig Licht und macht somit teure Beschichtungen überflüssig. Das Licht selbst propagiert in Moden mit einem Querschnitt im Mikrometerbereich am Rand des Resonators und ist dabei stets automatisch fokussiert. Also erhält man hohe Intensitäten auch bei der Verwendung geringer optischer Leistungen. In den letzten zwanzig Jahren wurden konsequenterweise FGR, auch aus LiNbO₃, als optische Frequenzkonverter erprobt [14–19].

In LiNbO₃ wurden dabei Güten von 10^8 und Finessen von 10^3 bei einzelnen Wellenlängen demonstriert, wobei eine theoretische Grenze der Güte von 10^9 bei der Wellenlänge 2 µm vorausgesagt wurde [13]. Aus vorherigen Untersuchungen an LiNbO₃ ist bekannt, dass Verunreinigungen die lineare Absorption und somit die Güte des FGR im sichtbaren und infraroten Spektralbereich, also an den Rändern des Transparenzbereichs dominieren [10, 11]. Eine systematische Untersuchung der Güte in FGR aus LiNbO₃ im gesamten und vor allem im hoch transparenten Bereich fand bisher allerdings noch nicht statt. Für die Ränder des Transparenzfensters wurde demonstriert, dass die Absorption durch thermische Nachbehandlungen reduziert werden kann [11, 20, 21]. Inwiefern solche Behandlungen sich auf den Bereich höchster Transparenz und damit das Gütelimit in FGR auswirken, ist unbekannt.

Neben den linearen Verlustmechanismen treten bei hohen Lichtintensitäten in op-

tischen Materialien auch nichtlinear-optische Verluste auf. In FGR wurde beispielsweise die RAMAN-Streuung als weiterer, die Güte beschränkender Prozess identifiziert [22]. Neben diesem könnten auch Mehrphotonenanregungen oder parasitäre OPO-Prozesse eine Rolle spielen. Auf nichtlineare Verlustkanäle hin wurden FGR aus LiNbO₃ bisher ebenfalls noch nicht analysiert.

Obwohl FGR wissenschaftlich bereits seit über zwanzig Jahren eine Rolle spielen, haben sie es bislang kaum aus dem Labor hin zu einer wirtschaftlichen Anwendung geschafft. So gibt es nach Wissen des Autors lediglich eine Firma (OEwaves), die Produkte basierend auf FGR anbietet. Dies liegt vor allem an der schwierigen Kontrollierbarkeit der Prozesse und Effekte. Hohe Intensitäten in optischen Materialien bergen auch das Risiko von Instabilitäten und parasitären Effekten. So zeigen Untersuchungen in FGR aus LiNbO₃, dass verschiedene Prozesse, beispielsweise der photorefraktive Effekt, zur zeitlichen Verschiebung der Resonanzen des Resonators führen [23–25]. Bei der Vielzahl an Effekten, die LiNbO₃ birgt, ist es jedoch unwahrscheinlich, dass der photorefraktive Effekt alleine für Instabilitäten verantwortlich ist. Eine systematische Untersuchung der Instabilitäten ist angebracht.

Insgesamt besteht also noch Handlungsbedarf bei der Charakterisierung von FGR aus LiNbO₃ hinsichtlich ihrer Güte und zeitlichen Frequenzstabilität. Genau diesen beiden Themen widmet sich die vorliegende Arbeit. Dazu werden nach einer Einführung in das Konzept des FGR (Kapitel 2) die linearen Verlustkanäle in FGR aus LiNbO₃ untersucht. Dabei wird die Grenze der Güte ausgelotet, und Veredelungsverfahren werden erprobt (Kapitel 3). Anschließend rücken die nichtlinear-optischen Verlustkanäle in den Fokus der Betrachtung (Kapitel 4). Im Mittelpunkt stehen dabei die RAMAN-Streuung und parasitäre OPO-Prozesse. Welche physikalischen Effekte Einfluss auf die zeitliche Stabilität der Resonanzen eines FGR nehmen, wird in Kapitel 5 untersucht. Dazu werden zunächst die möglichen Ursachen einer Frequenzverschiebung herausgearbeitet, bevor die Effekte selbst getrennt voneinander untersucht werden. Abschließend werden die Ergebnisse dieser Arbeit in Kapitel 6 zusammengefasst.