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Preface

Microfluidics, or the so-called lab-on-a-chip, has emerged as a distinct new
technology since the beginning of the 1990s. The dimensions of the microfluidic
channels and components are tens to hundreds of micrometers.Themicrofluidic
devices can be used to flexibly manipulate the flow of microvolume fluids in
microchannels, which are considered putting the lab on a chip. Due to the
trend of miniaturization and integration of modern scientific and technological
development, microfluidic technology has been widely concerned and valued
by the international scientific and industrial communities. Since microflu-
idic technology can accurately manipulate small-volume fluids, it is rapidly
extending from the original analytical chemistry platform for microanalysis and
microdetection to high-throughput drug screening, micromixing, microreac-
tion, microseparation, and so on. Due to its excellent ability to control fluid
interfaces as well as excellent heat and mass transfer performances, microfluidic
technology has become a novel and promising material preparation technology
platform. Microfluidic technology has emerged in the construction of precisely
controllable microstructured new functional materials with high performances
and especially shows incomparable creativity and superiority compared with
traditional technology in the design and preparation of some new functional
materials with high added values.
This book, entitled Microfluidics for Advanced Functional Polymeric Mate-

rials, comprehensively and systematically treats modern understanding of
the microfluidic technique and its great power in controllable fabrication of
advanced functional polymeric materials. The contents range from the design
and fabrication of microfluidic devices, the fundamentals and strategies for
controllable microfluidic generation of multiphase liquid systems (e.g., discrete
multiple emulsions and continuous laminar multiflow systems), and the use
of these liquid systems with elaborate combination of their structures and
compositions for controllable fabrication of advanced functional polymeric
materials (e.g., solid microparticles, porous microparticles, hollow microcap-
sules, core–shell microcapsules, hole–shell microcapsules, multicompartmental
microcapsules, microfibers, in-chip membranes, and microvalves). All the
chapters together clearly describe the design concepts and fabrication strategies
of advanced functional polymeric materials with microfluidics by combining
the structures with the compositions of multiphase liquid systems to achieve
advanced and novel functions. Vivid schematics and illustrations throughout
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the book enhance the accessibility to the relevant theory and technologies.
This book aims to be a definitive reference book for a wide general readership
including chemists, chemical engineers, materials researchers, pharmaceutical
scientists, biomedical researchers, and students in the related fields.
The book is composed of 14 chapters. In Chapter 1, a brief introduction of the

superiority and potential of microfluidics in the construction ofmicroscale phase
interfaces and preparation of novel functional materials are briefly introduced. In
Chapters 2 and 3, microfluidic strategies for shear-induced and wetting-induced
generations of controllable multiple emulsions are introduced, respectively. In
Chapters 4–6, microfluidic strategies for controllable fabrication of monodis-
perse hydrogel microparticles, porous microparticles, and hierarchical porous
microparticles are introduced, respectively. In Chapters 7 and 8, microfluidic
strategies for controllable fabrication of monodisperse hollow microcapsules
and core–shell microcapsules with an oil core and a stimuli-responsive hydrogel
shell are introduced, respectively. In Chapter 9, the microfluidic strategies for
fabrication of controllable hole–shell microparticles from double emulsions
are introduced. In Chapter 10, a microfluidic strategy for template synthesis of
multicompartmental microparticles, with accurate control over the structures
of their inner compartments and the encapsulation characteristics of their
loaded contents, is introduced. In Chapter 11, simple and versatile microfluidic
strategies for controllable fabrication of functional microfibers with tubular,
peapod-like, and spindle-knot-like internals are introduced. In Chapter 12,
a microfluidic strategy for in situ fabrication of nanogel-containing smart
membranes in the microchannel of microchips is introduced. In Chapter 13,
fabrication and performance of microchips incorporated with smart hydro-
gel microvalves for thermostatic control and trace analytes detection are
introduced. Finally, perspectives on the microfluidic fabrication of advanced
functional polymeric materials are given in Chapter 14.
The authors’ group at Sichuan University (group website: http://teacher.scu

.edu.cn/ftp_teacher0/cly/) has been devoted to the microfluidic fabrications of
polymeric functional materials since 2006. In the past decade, they have made
significant contributions to the development of this field. Most of the contents in
this book are the fresh achievements of the authors’ group on advanced functional
materials fabricated with microfluidics. Prof. Liang-Yin Chu wrote Chapters 1,
4, 5, 7, 12, and 14, and Prof. Wei Wang wrote Chapters 2, 3, 6, 8–11, and 13.
The authors are very grateful to Prof. David A. Weitz at Harvard University who
helped the authors a lot to carry out investigations in the field of microfluidics.
The authors would like to thank all the current and former group members who
contributed to the investigations on microfluidics, especially Prof. Rui Xie, Prof.
Xiao-Jie Ju, Prof. Zhuang Liu, Dr Li Liu, Dr Nan-Nan Deng, Dr Mao-Jie Zhang,
Dr Zhi-Jun Meng, Dr Ya-Lan Yu, Dr Jie Wei, Dr Lei Zhang, Dr Chuan-Lin Mou,
Dr Li-Li Yue, Dr Gang Chen, Dr Ying-Mei Liu, Dr Hai-Rong Yu, Dr Xiao-Heng
He, Dr Ming-Yue Jiang, Dr Shuo Lin, Dr Fang Wu, Dr Xiao-Yi Zou, Jian Sun,
Hao Zhang, Ping-Wei Ren, Jian-Ping Yang, Shuo-Wei Pi, Xi Lin, Guo-QingWen,
Yi-Meng Sun, Chao Yang, Wei-Chao Zheng, Mei Yuan, Xiu-Lan Yang, and Ming
Li, for their creative researches onmicrofluidics.The authors gratefully acknowl-
edge all the professors, friends, and colleagues who helped the authors’ group

http://teacher.scu.edu.cn/ftp_teacher0/cly/
http://teacher.scu.edu.cn/ftp_teacher0/cly/
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to carry out investigations on microfluidics, and thank all the organizations who
financially supported the authors’ group for the continuous study in the field of
microfluidics.
Finally, the authors would like to acknowledge the kind help of Dr Lifen Yang

and the editorial staff at Wiley during the preparation and publication of this
book.

September 2016 Liang-Yin Chu
Sichuan University Chengdu, China
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1

Introduction

1.1 Microfluidics and Its Superiority in Controllable
Fabrication of Functional Materials

Microfluidics, or the so-called lab-on-a-chip, has emerged as a distinct new
technology since the beginning of 1990s [1]. The dimensions of the microfluidic
channels and components are tens to hundreds of micrometers.Themicrofluidic
devices can be used to flexibly manipulate the flow of microvolume fluids in
microchannels, which are considered putting the lab on a chip (Figure 1.1).
Due to the trend of miniaturization and integration of modern scientific and
technological civilization development, microfluidic technology has been widely
concerned and valued by the international scientific and industrial communities.
In 2006, Nature magazine published a special issue on the topic of “Insight:
lab on a chip,” including seven related review papers [1, 2], where the editorial
says that it might have the potential to become “a technology for this century.”
In 2010, Chemical Society Reviews published a special issue on the topic of
“From microfluidic applications to nanofluidic phenomena,” including 20 related
review papers [3], which shows the promising momentum of development of
microfluidic technologies. Since microfluidic technology can accurately manip-
ulate small-volume fluids, it is rapidly extending from the original analytical
chemistry platform for microanalysis and microdetection, to high-throughput
drug screening, micromixing, microreaction, microseparation, and so on. Due
to its excellent ability to control fluid interfaces as well as excellent heat and
mass transfer performances, microfluidic technology has become a novel and
promising material preparation technology platform (Figure 1.2). Microflu-
idic technology has emerged in the construction of precisely controllable
microstructured new functional materials with high performances, such as
microcapsules and microspheres, membranes in microchannels, and superfine
fiber materials, and especially shows incomparable creativity and superiority
compared with traditional technology in design and preparation of some new
functional materials with high added values [4–35].
To sum up, stable phase interface structures of immiscible liquid phase

systems that are constructed by the microfluidic technology can be mainly
divided into two systems [4]: one is the emulsion droplet system with closed
liquid–liquid interfaces, and the second is the laminar flow system with closed

Microfluidics for Advanced Functional Polymeric Materials, First Edition. Liang-Yin Chu and Wei Wang.
© 2017Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 byWiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 Microfluidics: putting
the lab on a chip.

Excellent control
over the interfaces

of microfluids,
as well as the heat
and mass transfer  

Micro
Analysis

Micro
separation

Micro
mixing Micro

reaction

Anal Chem, 2005, 77: 96A 

Science, 2005, 310: 1793 

Chem Soc Rev, 2009, 38: 2161

Soft Matter, 2010, 6: 3489

Appl Phys Lett, 2003, 83: 4664

Material
fabrication

Figure 1.2 Microfluidic technology is becoming a novel technology platform for materials
preparation because of its excellent control over the microfluid interfaces as well as the heat
and mass transfer.

liquid–liquid interfaces (Figure 1.3). These two microfluidic-constructed stable
phase interface structure systems can be used to prepare three categories
of high-performance functional materials with accurate and controllable
microstructures as follows [4–35]: (i) controllable fabrication of novel micro-
spheres and microcapsules with precise microstructures by using emulsion
droplet systems with closed phase interfaces as templates [4, 5, 7–32]; (ii)
controllable fabrication of membranes in microchannels by using laminar
flow systems with nonclosed layered phase interfaces [6, 33, 36, 37]; and (iii)
controllable fabrication of novel microfiber materials by using laminar flow
systems with nonclosed annular phase interfaces [4, 10, 34, 38]. As illustrated
in Figure 1.3, microfluidic technology shows superior controllability and great
potential in the construction of these three kinds of functional materials, and
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Construction of stable microscale phase interfaces
with controllable structures 

Microfluidic technology

Emulsion systems with
closed phase interfaces

Laminar flow systems with
nonclosed phase interfaces

Micro
channel
wall

For controllable fabrication of
membranes in microchannels 

For controllable fabrication
of novel microspheres and
microcapsules with precise
microstructures

For controllable fabrication of
novel microfiber materials 

A A B B C C
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Micro
channel
wall

D D E E F F

D – D E – E F – F

Annular interfaces

Layered interfaces

Figure 1.3 The system diagram of microfluidic method for the construction of stable
microscale phase interfaces and for controllable preparation of novel functional materials.

can play its unique advantages in controllable construction of new functional
materials with new structures, new functions, and high-performance features.

1.2 Microfluidic Fabrication of Microspheres
and Microcapsules from Microscale Closed Liquid–Liquid
Interfaces

Due to the small size and controllable internal structure, microspheres and
microcapsules can be used as microcarriers, microreactors, microseparators,
and microstructural units in drug delivery, substance encapsulation, chemical
catalysis, biochemical separation, artificial cells, and enzyme immobilization,
and have very broad application prospects. Microspheres and microcapsules are
generally fabricated by using emulsion droplets with stable closed liquid–liquid
interfaces (e.g., single water-in-oil (W/O) or oil-in-water (O/W) emulsions,
W/O/W or O/W/O double emulsions, or evenmore complicated multiple emul-
sions) as templates, through subsequent polymerization, cross-linking, solvent
evaporation, curing, and assembling in emulsion droplets or at interfaces.
Traditional methods for the preparation of emulsion droplets are mainly
achieved by mechanical stirring or fluid shear; thus, the sizes and the internal
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structures of the droplets and the resultant template-fabricated microspheres
and microcapsules are difficult to be controlled precisely, which greatly affect
the performances and applications of the microspheres and microcapsules.
Microfluidic technology, which can generate emulsion droplets by emulsifying

disperse phase to continuous phase through microchannels with co-flow,
flow-focusing, or T-junction geometries, can achieve continuous and precise
control of the microstructures of emulsion droplets, exhibiting significant supe-
riority in the fabrication of microspheres and microcapsules with controllable
size distributions and microstructures.
Researchers from all over the world have made a lot of important progress

in the use of microfluidics to construct microscale closed liquid–liquid inter-
faces and then fabricate monodisperse microspheres and microcapsules [4, 5,
7–32]. In the preparations of microspheres and microcapsules with microflu-
idic approaches, most of them are focused on the use of microfluidic-generated
W/O or O/W single emulsions (as shown in the first row in the upper left cor-
ner of Figure 1.3) as templates for preparing monodisperse microspheres, or the
use of W/O/W or O/W/O double emulsions (as shown in the second row in
the first column of the upper left corner of Figure 1.3) as templates for prepar-
ing monodisperse core–shell microcapsules. Some studies have also attempted
to prepare some materials with new structures such as multicore microspheres,
Janus microspheres, and nonspherical particles by microfluidic technology.
The authors’ group controllably constructed multiple emulsion systems with

complex microscale multiphase multicomponent liquid–liquid interfaces by
building series and parallel microchannels [31]. These emulsions are used as
templates for controllably preparing multiphase multicomponent microspheres
and microcapsules for the encapsulation of substances [29], as well as new mul-
tifunctional microspheres and microcapsules with complex structures [28, 30].

1.3 Microfluidic Fabrication of Membranes
in Microchannels from Microscale Nonclosed Layered
Laminar Interfaces

Because of the excellent performances in catalysis, separations, purifications,
analysis and detection, controlled release, emulsification, and so on, functional
membrane materials are considered as one of the important supporting tech-
nologies for sustainable development. If the combination of membranematerials
and microfluidic technology is obtained, it will play the synergy of the two to
achieve the integration of functional materials and components. In this way, it
can not only promote the application of membrane materials in microsepara-
tion and microanalysis but also provide new catalysis- or reaction-separation
coupling technologies for microchemical or microreaction processes, showing
very broad application prospects [6]. Therefore, as a new technology platform,
membrane-in-microchannel technology is increasingly subject to different
disciplines of international attention [6].
In a co-flow microchannel, when immiscible multiphase fluids flows into the

same microchannel, stable layered laminar flow patterns can be formed through
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microfluidic laminar flow technology [36] (“Layered interfaces” in Figure 1.3).
In each phase, the fluid can maintain its flow pattern unchanged; chemical reac-
tions such as polymerization and cross-linking only occur at the liquid–liquid
interfaces, forming monolayer or multilayer parallel ultrathin membranes in the
microchannels.
The microchannels can be divided into several independent channels by the

membranes in microchannels. Due to the selective permeability or adsorption
ability of functional membrane materials, selective separation, extraction,
detection, and analysis can be realized with the membranes in the microchan-
nels. Catalysts can also be effectively deposited on the membrane surfaces,
thereby increasing the specific surface area of the catalytic material within a
microchannel, to accelerate the rate of catalytic reaction in the microchannel.
In addition, environmental stimuli-responsive smart membranes, which can
regulate the effective membrane pore size and permeability in response to the
change in physical or chemical signals in the environment, show incomparable
superiority over traditional membranes [39]. If the smart membranes can be
combined with microfluidics, it will undoubtedly provide efficient technology
platform for the intensification of microseparation, microanalysis and detection,
microreaction processed, and the enhancement of membrane performances.
Since the fabrication processes of membranes in microchannels are different

from traditional membrane preparation processes, so far there are only a
few reports on the fabrications of membranes with limited materials such as
polyamide and chitosan in microchannels by using microfluidic laminar flow
technology [6, 33, 36, 37, 40, 41].

1.4 Microfluidic Fabrication of Microfiber Materials
from Microscale Nonclosed Annular Laminar Interfaces

Microfiber materials have a wide range of applications in optoelectronics,
biomedicine, chemical industry, light industry, and other fields, wherein the
hollow fiber membranes play an important role in the chemical separation
processes. Currently, the preparations of microfiber materials are mainly
achieved by using melt spinning method, electrospinning method, and other
methods, while these methods are still difficult to achieve precise control of
the microstructures of microfiber materials or impart multifunctional char-
acteristics. Therefore, it is still necessary to seek new preparation processes
and methods for the preparation of microfiber materials, and the microfluidic
laminar flow technology is a very promising new method.
With microfluidic laminar flow technology, stable annular laminar flow

patterns of immiscible multiphase fluids can be formed in the microchannels [4]
(“Annular interfaces” in Figure 1.3). With these stable annular multiphase lam-
inar interface systems as templates, microfiber materials including linear solid
microfibers, hollow tubular microfibers, and core–shell composite microfibers
can be fabricated by reaction or curing at the liquid–liquid interfaces or
inside phases.
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Since microfluidic technology enables continuous and accurate control over
the annular liquid–liquid interfaces of laminar flows, it can provide optimal
design of fibrous material synthesis systems. Therefore, compared with tradi-
tional spinning techniques, microfluidic technology has significant advantages
in precise regulation and design of microfiber microstructures: it improves per-
formances and imparts multifunctional characteristics of microfiber materials
[4, 34, 36, 38, 42–47].
Microfluidic technology has been used to successfully prepare calciumalginate,

polyvinyl alcohol, poly(lactic-co-glycolic acid), liposomes, chitosan, poly(ether
sulfone), and polyacrylonitrile microfibers [34, 38, 42–47], which show excellent
flexibility and extraordinary potential in the construction of microscale annular
liquid–liquid interfaces and preparation of microfiber materials.
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2

Shear-Induced Generation of Controllable Multiple
Emulsions in Microfluidic Devices

2.1 Introduction

Multiple emulsions are complex nested liquid systems, containing liquid droplets
of decreasing sizes placed one inside another. They are widely used as encapsu-
lation systems in myriad applications, including drug delivery [1–3], foods [4, 5],
cosmetics [6, 7], chemical separations [8, 9], and as templates for syntheses of
microspheres and microcapsules [10–16]. Accurate control of the size monodis-
persity and internal structure ofmultiple emulsions are critical for their versatility
because these features enable precise manipulation of the loading levels and the
release and transport kinetics of the encapsulated substances [10–21]. Although
there have been several reports on the preparation of monodisperse multiple
emulsions [13–23], accurate control of both the size and structure of the emul-
sions remains difficult to achieve, and current techniques are not scalable for
fabricating higher order multiple emulsions.
Typically, multiple emulsions can be generated via sequential bulk emulsifica-

tion using shear.This method usually produces emulsions with polydisperse size.
Controlling the shear with constrained geometry [24–28], porous membranes
[17, 21], or microchannels [18] can produce emulsions with nearly monodisperse
size; these can then themselves be emulsified to produce multiple emulsions.
However, although the volume fractions of both the initial and final emulsions
can be manipulated [17, 18, 21, 24–27], accurate control over the number of
inner droplets in multiple emulsions remains difficult by using these techniques.
However, there are many cases where control of the inner droplet number
is more important than control of their volume fraction. For example, with
precise control of the number and size of inner droplets, transport kinetics of
encapsulated substances in the emulsions can be precisely manipulated. Control
of the inner droplet number is also critical for engineering colloidal assemblies
to produce nonspherical particles [29]. Moreover, it is still challenging for
co-encapsulation of droplets containing distinct contents in multiple emulsions,
with accurate control of the number, ratio, and size of different inner droplets
within each level. With such control on the structure of multicomponent
multiple emulsions, these emulsions can offer advanced platforms for design
of more complex multicompartment materials and provide synergistic delivery
systems or chemical microreactors for incompatible actives or chemicals with
versatile encapsulation and flexible mass-transfer kinetics.
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Microfluidic techniques provide an alternate route to generate monodisperse
multiple emulsions. Cascading two T-junction geometries [19, 23] can generate
monodisperse double emulsions with some control over the number and size of
inner droplets. However, the microfluidic device with standard two-dimensional
(2D) microchannels requires precise, localized modification of the microchan-
nel wettability for producing multiple emulsions. This ultimately restricts their
utility. By contrast, coaxial flow-focusing [13, 14, 16] geometries relax the con-
straints for wettability modification, but are still limited in the range of fluids that
can be used and in the accurate control afforded over the number and size of inner
droplets. Moreover, co-encapsulation of multicomponent droplets in multiple
emulsions with precise control of their number, ratio, and size within each level,
cannot be easily achieved with these devices. In addition, current microfluidic
approaches cannot be scaled up for producing higher order multiple emulsions,
such as triple emulsions.
The authors’ group developed a highly scalable and versatile microfluidic

strategy for controllable shear-induced generation of monodisperse multiple
emulsions. In this chapter, the microfluidic devices for controllable emulsion
generation and the controllable microfluidic fabrication of single emulsions,
double emulsions, triple emulsions, and multicomponent multiple emulsions
with even more complex structures are introduced.

2.2 Microfluidic Strategy for Shear-Induced Generation
of Controllable Emulsion Droplets

Usually, microfluidic devices for generating emulsion droplets consist of
droplet-making units and connecting units. The droplet-making units usu-
ally contain microchannels with co-flow (Figure 2.1a) [31], flow-focusing
(Figure 2.1b) [32], and T-junction (Figure 2.1c) [19] geometries for generating
emulsion droplets, while the connecting units usually contain microchannels for
manipulating the generated droplets.
Typically, the microchannels in microfluidic device can be constructed by

coaxially inserting cylinder glass capillaries into square glass tubes. The inner
microchannel of the inserted capillary and the interstice space between the
inserted capillary and square tube create three-dimensional (3D) microchannels
for flowing different fluids. After fixing such assembly structures of glass
capillaries and tubes on glass plates, microfluidic device with microchannels for
emulsion generation can be fabricated [33, 34]. The glass-capillary microfluidic
device can be used for emulsion generation without microchannel surface
modification due to their 3Dmicrochannel structure, but the fabrication process
of these devices requires troublesome manual assembling. Alternatively, based
on soft lithography, 2D microchannels can be etched on polydimethylsilox-
ane (PDMS) plates for fabrication of microfluidic devices [35]. These PDMS
microfluidic devices allow flexible construction of microchannel networks
for generation and manipulation of droplets. Meanwhile, their fabrication
process based on the well-established soft lithography technique allows massive
production of the devices. However, these PDMS devices require troublesome


