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Preface

The first edition of Frank Herbert Attix’s widely acclaimed book Introduction
to Radiological Physics and Radiation Dosimetry was published in 1986 and
reprinted in 2004. An update of its contents, taking into account the substantial
developments in dosimetry in the 30 years since its first appearance, was con-
sidered essential. For the present authors it has been a formidable challenge to
maintain the high level and quality, raising the former as appropriate, consistent
with the current state of knowledge and the various applications. Other recent
books of a comparable level are E. B. Podgorsak’s Radiation Physics for Medical
Physicists (Springer, 2010), B. J. McParland’s Nuclear Medicine Radiation
Dosimetry – AdvancedTheoretical Principles (Springer, 2010), and N. J. Carron’s
An Introduction to the Passage of Energetic Particles through Matter (Taylor and
Francis, 2007).
The scope of this second edition, which we abbreviate to FIORD (from Fun-

damentals of IOnizing Radiation Dosimetry) can be stated as follows: Given a
(ionizing) radiation field from whatever source, be it a radionuclide, an x-ray
generator or an accelerator, this book will enable the reader to understand the
principles/essentials/fundamentals of the determination of the physical quantity
of interest from the interaction of the radiation field with the medium. In this
context, we often refer to absorbed dose as a surrogate of the quantity fluence,
although it should be understood that energy transfer from a radiation field can
manifest itself in ways other than dose. The text is pitched at senior undergrad-
uate or graduate level, and for the latter a number of advanced topics have been
included as addenda to some of the chapters.
We concur with the sentiment expressed by Attix et al. (1966) in their edition

of the classic text Radiation Dosimetry, “Although the present work is called a
second edition, it is in many respects a new start.” Compared with the first edi-
tion, a major change in FIORD is the order of the different chapters; for example,
the description of particle interactions with matter (Chapters 2 and 3) is placed
before the definition of radiation quantities (Chapter 4). Radiation interactions
are covered at a somewhat higher level than that of the first edition, the rationale
being the extended use of theMonte Carlo (MC)method (Chapter 8) in radiation
dosimetry today, as most MC codes include certain interaction types and details
not considered in the majority of books at undergraduate level. More generally,
this edition contains everything the student and the practising radiation physi-
cist might need to know about the interactions of radiation with matter in order
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to understand the theory and practice of radiation dosimetry as covered here.
Following the description of the interactions of single particles, Chapters 5 and
6 are devoted to what we choose to call ‘macroscopic aspects,’ i.e. the interac-
tion of radiation fields and beams with matter.This is followed by the descriptors
commonly used to characterize beam quality (Chapter 7), mostly of application
in radiation therapy and radiodiagnostics. Cavity theory (Chapter 9) provides the
grounds for the theoretical aspects of dosimetry, which is followed by a general
overview of radiation detector principles (Chapter 10). The description of the
primary measurement standards in current use for the absolute determination
of air kerma and absorbed dose (Chapter 11) is followed by separate chapters
on the most important types of radiation detectors used for dose determination,
namely ionization chambers (Chapter 12), chemical dosimeters (Chapter 13),
and solid state detectors (Chapter 14). Practical applications of dosimetry in the
different areas are covered in subsequent chapters: reference dosimetry for radi-
ation therapy and dosimetry protocols are dealt with from a general perspective
(Chapter 15), complemented by the current status of dosimetry for small and
composite photon beams (Chapter 16), which, at the time of writing, is a topic
of considerable research. This is followed by the dosimetry of kilovoltage x-ray
beams used in diagnostic radiology and interventional procedures (Chapter 17).
The dosimetry of radionuclide sources in Chapter 18 follows very closely the orig-
inal text of the first edition, being complemented by the fundamentals of the
dosimetry of unsealed (e.g., for nuclear medicine) and sealed (for brachytherapy)
sources. Finally, Chapter 19 provides an update on the dosimetry of neutron
beams, nowadays far less frequently employed.
It should be noted that extensive data tables are not provided in the printed

edition; the tabulated data are mostly restricted to fundamental constants and
data. The reason for this approach is that direct internet access to most of the
data needed for numerical calculations, including periodic updates, makes data
retrieval more dynamic. For this purpose internet links are provided throughout
the various chapters. The most commonly-used practical data, including those
less accessible on the web, are however made available via an internet site
provided by the editor (http://www.wiley-vch.de/ISBN9783527409211). We
consider that the book should not include a compendium of data replacing those
in original references. Instead, the use of a large number of figures that provide
information on the trends and dependencies of the data has been preferred.
As the book is addressed also to graduate and practising physicists, the authors

have opted for the use of in-text citations to references in a style following that
of many scientific journals. The large number of ‘classic’ references given is an
attempt to address the apparent shortening of ‘scientific historical memory,’
resulting in the link to important original sources being progressively lost. Some
sections therefore include reviews of certain topics with a sufficient number
of references to map the evolution of these topics. The comprehensive list of
references makes liberal use of international publications, for example, from
the International Commission on Radiation Units and Measurements (ICRU)
and the International Atomic Energy Agency (IAEA), in an attempt to provide a
global view of radiation dosimetry. This view also justifies the prominent use of
internationally accepted symbols for the various quantities.

http://www.wiley-vch.de/ISBN9783527409211
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This second edition is dedicated to the memory of Frank H. Attix, one of
the great pioneers in radiation dosimetry and an important contributor to
this book. The authors wish to express their gratitude to colleagues who have
provided suggestions for improvements to various chapters of the book, in
particular F. Ballester, H. Bouchard, D. Emfietzoglou, C. Kessler, B. Mijnheer,
J. Perez-Calatayud, F. Salvat, A. Sanchez-Crespo, J. Sempau, and S. Vynckier.
Finally, we thank our respective families for their patience and understanding
during this seemingly never-ending task.

June 23, 2016 Pedro Andreo
David T. Burns
AlanE.Nahum
Jan Seuntjens
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Quantities and Symbols1

Roman letter symbols

A, a

A atomic mass, mass number (nucleon number)
distance between the reference plane and the collector of a
free-air ionization chamber

 activity of a radionuclide
̃ time-integrated activity (MIRD, formerly called cumulated

activity)
L activity per unit length
app apparent activity
m specific (or mass) activity
AF absorbed-dose fraction (radionuclide point isotropic source)
AFm specific absorbed-dose fraction
a surface area

B, b

B magnetic field vector
B buildup factor in broad photon beams, also denoted by B(𝜇 r),

B(k, r) or B(k, 𝜃)
Bmed backscatter factor in kV x-ray beams in medium ‘med’
BMol Molière’s expansion parameter
Bm magnetic field strength
b impact parameter

number of bits in the integer representation of computer data
(computer word length)

1 Some Roman and Greek symbols that appear with more than one description are used in rather
independent sections; thus, there should be no confusion in their meaning. Symbols appearing only
once in the text, for example, in a single equation – usually related to a change of variable – or
general mathematical functions – for example, the gamma function Γ(x)–have not been included in
the list.
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C, c

C electrical capacitance
cema

CΔ restricted cema
C(𝛽) shell correction in the stopping-power expression
Ci concentration of species i (radiation chemistry)
CK CT air-kerma index
Cw,c composite conversion factor in graphite calorimetry
CTDI CT dose index
c speed of light in vacuum
cm specific heat capacity of a material ‘m’
corgan,𝔮 organ dose conversion coefficient calculated for the quantity 𝔮

D, d

D absorbed dose
Ddet,Dmed absorbed dose to the radiation-sensitive volume of a detector, or

to a medium ‘med’
Dw,Q(z) absorbed dose to water at a depth z in a beam of quality Q
Dpl,Q(zeq-pl) absorbed dose to plastic at the equivalent depth zeq-pl
Dx absorbed dose due to a radionuclide disintegration of type x
D mean absorbed dose
DIsoE isoeffective absorbed dose by protons and heavier charged

particles
DSSD(z) absorbed dose at depth z with constant SSD (DSDD(z) for constant

SDD)
Dfield

w,Qfield
absorbed dose to water in a specific field

Dpb(z, r) dose distribution of a pencil beam as a function of depth and
radius

Dbb(z,R) central-axis depth–dose distribution of a broad beam of radius R
d collision diameter in particle interaction (closest distance of

approach)
d distance (as a generic variable)

electrode separation in a free-air ionization chamber
d80 depth of the 80% depth dose for a photon beam
d𝜎∕dΩ differential cross section per unit solid angle
d𝜎∕dE differential cross section per energy
d𝜎∕dΩ dE double differential cross section, per unit solid angle and per

energy
%dd(10) percent depth dose at a depth of 10 cm (photon beam quality

specifier)
%dd(10)x as above, in the absence of electron contamination, that is, filtered

by 1 mm Pb

E, e

E electrical field vector
E kinetic energy of charged particles
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Etot total energy of charged particles (rest energy plus kinetic energy)
E+
,E− positron and electron kinetic energy

Ea kinetic energy of the recoil atom in photon interactions
En neutron kinetic energy
Etrap energy depth of TLD trap
E mean energy of a spectrum
EΦ,EΨ,EKair

mean energy of a spectrum averaged over a fluence, energy
fluence, and air-kerma spectrum, respectively

Ez mean energy of an electron spectrum at the depth z (E0 at the
surface)

Eabs energy absorbed (water calorimetry)
Eheat energy appearing as heat (water calorimetry)
Eh Hartree energy
Ei mean energy of an i-type particle emitted in a nuclear transition
E
𝛽max

maximum energy of a beta decay spectrum
E
𝛽

mean energy of a beta decay spectrum
Ep plasma energy of a medium (also denoted by ℏ𝜔p)
E(xn) expected value of x, that is, the nth moment of f (x)
E∕A specific energy (heavy charged particles)
e elementary charge, absolute value of the electron charge

F, f

F atomic form factor
Felec calibration factor of an electrometer
FGS Goudsmit–Saunderson angular distribution for multiple elastic

scattering
FMol Molière’s angular distribution for multiple elastic scattering
Fk fraction of a detector signal produced by photons of energy

between k and k + dk
F(r, 𝜃) anisotropy function for a radioactive line source
F(x) cumulative probability distribution function (CPD)
F(E, r) scaled absorbed dose kernel (radionuclide point isotropic source)
F
𝛽

Fermi function in beta decay
f efficiency of charge collection in an ionization chamber

enhancement factor of a gas (humid air)
fd field size at the distance d (SSD or SDD) in MV photon beams
fi oscillator strength of the i-shell of an atom
ffel free-electron efficiency of charge collection
fref conventional broad reference beam (10 cm × 10 cm)
fmsr machine-specific reference (msr) field)
fpcsr plan-class-specific reference (msr) field)
f (Q,W ) generalized oscillator strength (GOS)
f (W ) optical oscillator strength (OOS)
f (x) probability distribution function (PDF) of a continuous variable x
fC(Z) Coulomb correction factor
fE(𝛽) Elwert factor (in bremsstrahlung)
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f
𝜇

detector signal fraction by photons with attenuation coefficient
between 𝜇 and 𝜇 + d𝜇

fm,F factor to correct for different radiation interaction coefficients in
Fricke dosimetry

fmed,det,Q generic cavity-theory factor (fmed,det = Dmed∕Ddet) for radiation
quality Q

G, g

G chamber geometric factor (recombination in pulsed and
continuous radiation)

G(x) radiation chemical yield; related to the G-value
G(Fe3+) radiation chemical yield of ferric ions in a Fricke dosimeter
GL(r, 𝜃) geometry function for a radioactive line source; GP(r) for a point

source
 generic quantity
g radiative fraction; related to radiation yield, Y (E)
ge free-electron Landé factor
g
L
(r) radial-dose function for a radioactive line source; g

P
(r) for a point

source

H, h

H Hamiltonian operator
HI homogeneity index of a radiotherapy dose distribution
HVL half-value layer of a kV x-ray spectrum
HVL1,HVL2 first and second half-value layers
Hi heat of formation for species i (radiation chemistry)
h relative humidity
hd heat defect (water calorimetry)
hi homogeneity index of a kV x-ray spectrum (HVL1∕HVL2)
hn+γ for a neutron detector, response to the photons in a mixed n + γ

field relative to its response in a photon calibration beam
hni for a neutron-insensitive detector, response to the photons in a

mixed n + γ field relative to its response in a photon calibration
beam

ḣT TLD heating rate (K s−1)
ℏ reduced Planck’s constant

I, i

I, Imed mean excitation energy of a medium (known as the I-value)
IE first ionization energy of an atom
I𝓁 intensity of a light beam
i ionization current measured by a detector

J, j

J particle current density (vector fluence rate)
J IA Compton profile
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Jair specific charge (charge per unit mass of air)
j phase-space current density (also termed energy distribution of

vector particle radiance, angular current density, or directional
flux)

K, k

K kerma
Kel electronic kerma (also known as collision kerma, Kcol)
Krad radiative kerma
Kair,E air-kerma spectrum or differential air kerma
Kair(t) air kerma attenuated by an absorber of thickness t
[Kair,Q]med air kerma at the quality Q determined in medium ‘med’
Kair,e entrance-surface air kerma
Kair,i incident air kerma
K̇air air-kerma rate
K̇R reference-air-kerma rate of a radioactive source
Krel(𝜃) correction factor to account for relativistic and spin effects

(in 𝜎elast)
Kscr(𝜃) correction factor to account for the screening by atomic electrons

(in 𝜎elast)
kV kilovoltage (tube potential), for x-ray spectra produced by

electrons with energies in the keV range
k wave number (k = p∕ℏ)
k photon energy
k mean energy of a photon spectrum
kB Boltzmann constant
keff effective photon energy of a spectrum
kmax maximum photon energy of a spectrum
ki correction factors for ionization chamber measurements (generic)
ka correction factor for photon attenuation in a free-air ionization

chamber
kan correction factor for the axial non-uniformity of the electrical field

within an ionization chamber
kcav correction factor for the perturbation of the electron fluence in an

ionization chamber
ke electron-loss correction factor in a free-air ionization chamber
kfl fluorescence correction factor in a free-air ionization chamber
kh correction factor for air humidity
khd correction factor for heat defect in a water calorimeter
kht correction factor for heat transfer in a water calorimeter
kn+γ for a neutron detector, response to the neutrons and photons in a

mixed n + γ field relative to its response in a photon calibration
beam

kni for a neutron-insensitive detector, response to the neutrons and
photons in a mixed n + γ field relative to its response in a photon
calibration beam
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kp perturbation correction factor for non-water materials in a water
calorimeter

ks correction factor for recombination (or saturation)
ks,fel correction factor for free-electron recombination (or saturation)
ksc correction factor for photon scattering in a free-air ionization

chamber
kppth photon threshold energy for pair production
ktpth photon threshold energy for triplet production
kwall correction factor for photon attenuation and scattering in an ion

chamber wall
kP correction factor for pressure
kT correction factor for temperature
k+, k− mobility of positive and negative ions (recombination in pulsed

radiation)
kw,plQ plastic phantom dose conversion factor to water
kQ,Q0

beam quality correction factor; kQ if Q0 = 60Co γ rays

kffield, frefQfield,Qref
correction factor to account for the difference between the
conventional broad reference beam fref (10 cm × 10 cm) and the
msr or the pcsr field

kfclin, ffieldQclin,Qfield
output correction factor for a beam clin relative to themsr field or
to the pcsr field

L, l

 optical path length in a Fricke dosimeter
L orbital angular momentum operator
L length of the region from which charge is measured in a free-air

ionization chamber
length of a radioactive source line

L(𝛽) stopping number
LΔ(E) linear energy transfer (LET)
(LΔ∕𝜌)med

det Spencer–Attix stopping-power ratio med/det, also denoted by
sSAmed,det

l length, scattering length
𝓁 orbital-angular-momentum quantum number
𝓁 mean chord length of a convex volume

M, m

air molar mass of dry air
vap molar mass of water vapor
M atomic molar mass
Mfi matrix element of an interaction
Mair,Q detector reading in air, corrected for influence quantities, in a

beam of quality Q
Mw,Q(z) detector reading at a depth z in water, corrected for influence

quantities


