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Magnetoelectric Effect of Functional Materials: Theoretical
Analysis, Modeling, and Experiment
Jia-Wei Zhang1, 2, Hong-Yan Guo1, Xiao Chen1, and Rui-Tong Liu3

1Northeast Electric Power University, School of Electrical Engineering,169 Changchun Road, Jilin 132013,
China
2Harbin University of Science and Technology, Key Laboratory of Engineering Dielectric and its Application of
Ministry of Education, Harbin, China
3State Grid Liaoning Province Power Company Limited Power Research Institute, Shenyang 110181, China

1.1 Introduction of Magnetoelectric Effect

Magnetoelectric (ME) effect is defined as an induced dielectric polarization
under an applied magnetic field and/or an induced magnetization under an
external electric field [1]. Materials with ME properties are called magnetoelec-
tric materials (MMs).There are single- and multiphaseMMs. Single-phaseMMs
contain only one type of structure. Little research has been done on single-phase
MMs because the intrinsic ME coupling in single-phase compounds is generally
quite weak, especially at room temperature. The ME effect in multiphase
composite materials is the product of ferromagnetic magnetostriction and
ferroelectric piezoelectricity [2].

1.1.1 Single-PhaseMagnetoelectric Materials

Single-phase materials possessing both antiferromagnetic and ferroelectric con-
stituents in the same phase are the first discovered ME materials. In 1894, Pierre
Curie predicted the possibility of an intrinsic ME effect in some single-phase
materials. Although the terminology “magnetoelectric effect” was defined by
Debye in 1926, it remained a speculation until 1960 when the first real MM
Cr2O3 was discovered [3]. In 1969, Homreich discovered some candidates
of MMs based on the magnetic point group, including Fe2TeO6, Cr2TeO6,
FeCrWO6, Cr2WO6, Ca2FeAlO5, and FeNaO2. In 1970, BiFeO3 was found to
be unique among various ME multiferroics because of its exceptionally high
antiferromagnetic and ferroelectric transition temperatures well above room
temperature [4]. An important breakthrough in 2003 was the discovery of large
room-temperature ferroelectric polarization in coexistence with magnetization
in BiFeO3 thin films, which presents a theoretical investigation on BiFeO3 bulks,
films, and heterostructures.

Magnetoelectric Polymer-Based Composites: Fundamentals and Applications, First Edition.
Edited by Senentxu Lanceros-Méndez and Pedro Martins.
© 2017Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 byWiley-VCH Verlag GmbH & Co. KGaA.



2 1 Magnetoelectric Effect of Functional Materials

1.1.2 MultiphaseMaterials

In the past century, to overcome the drawbacks of weakME effect in single-phase
materials, ME materials have evolved from single-phase compounds to multi-
phase materials. Multiphase materials are usually prepared by combining ferro-
magnetic and ferroelectric phases in the bulk and laminated forms.
In 1948, Tellegen failed to synthesize bulk composites with extrinsic ME

effect by combining two different types of macroscopic particle composites
with magnetic and electric dipole moments as the beginning of the investi-
gation. In the early 1990s, bulk composites of ferrites and BaTiO3 or Pb(Zr,
Ti)O3 (PZT) had been prepared by Newnham’s group and Russian scientists
through a conventional sintering process. In 2001, Patankar et al. performed
extended experiments on several doped ferrite/titanate bulk composites
such as CuFe1.8Cr0.2O4/Ba0.8Pb0.2TiO3. Recently, experiments on many doped
titanate/ferrite composites were reported. The piezoelectric constituents
include Bi4Ti3O12, polyvinylidene fluoride (PVDF), PbMg1/3V2/3O3, and
PbX1/3Nb2/3O3-PbTiO3 (X=Mg, Zn), and the alternative magnetostrictive
constituents include LiFe5O8, yttrium iron garnet (YIG), and Permendur [5].
Laminated composites are typically made of magnetostrictive material layers

bonded with piezoelectric material layers with different arrangements of the
magnetization and polarization directions. Figure 1.1 shows an example of
the epoxy-bonded-type three-phase laminated composites constructed by
sandwiching a thickness-polarized PZT plate between two length-magnetized
epoxy-bonded Terfenol-D particulate composite plates [7].
Recently, the direct-coupling Lorentz force effect in the metallic phase with

the piezoelectric effect in the piezoelectric phase induced by an extrinsic “dc”
ME effect was observed inmetallic/piezoelectric heterostructures. Guiffard et al.
developed anME current sensor with ME coupling in a simple piezoelectric uni-
morph bender induced by the eddy currents within the silver electrodes of the
piezoelectric ceramic PZT subjected to ac magnetic flux [8].Therefore, theMMs
without the magnetic phase can be used in ME current sensors.

1.2 Applications of Magnetoelectric Effect

So far bulk composites, laminated composites, and metallic/piezoelectric
heterostructures exhibit practically useful ME effect above room temperature.

Hac, Hdc

P

M

M

Figure 1.1 Schematic of
proposed laminated composites
configuration of magnetostrictive
and piezoelectric materials [6].
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Nowadays, there are some main promising device applications, including ME
sensors, ME transducers, ME microwave devices, and so on.

1.2.1 Magnetoelectric Sensors

In the work of Leung et al., a high-sensitive magnetoelectric sensor was obtained
using ME composites by increasing the corresponding ME voltage coefficient of
27mVOe−1 during measurement [9].
Theworking principle of the sensor was as follows: when an ac vortexmagnetic

field was induced along the length of the electric cable by an ac electric current in
the cable in accordance with Ampère’s law, the sensor transduced the ac vortex
magnetic field to an ac electric voltage based on the giant ME effect.

1.2.2 Magnetoelectric Transducer

Today, the magnetoelectric transducer has become a hot research topic, partly
because the energy harvest from the environment has been considered to be a
significant investigation by researchers. There are four main types of vibration
energy harvesters (VEHs), namely electrostatic, piezoelectric, ME, and electro-
magnetic (EM) [10].
The VEH that consisted of a ME/EM composite transducer, a cantilever

beam, and magnetic circuits was reported by Qiu and coworkers. The schematic
diagram of the proposed ME/EM composite VEH is shown in Figure 1.2a. The
ME/EM composite transducer was placed at the tip of the cantilever beam
and could act as masses, which lowered the natural frequency of the cantilever
beam and scavenged lower frequency vibration energy from environments
more effectively. The schematic diagram of the ME/EM composite transducer is
shown in Figure 1.2b. The transducer was made up of a coil and a three-phase
laminate, which is composed of two Terfenol-D layers and a piezoelectric layer.
The working principle of theME/EM composite transducer is as follows: based

on Faraday’s law of electromagnet induction, when the composite transducers
undergo alterations of magnetic flux gradient generated by a vibration source,

Magnets

Composite transducer

Cantilever beam

Coil

T-D

PZT

T-D

(a) (b)

Figure 1.2 Schematic diagrams of (a) the proposed ME/EM composite VEH and (b) the ME/EM
composite transducer [10].
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+V Microstrip

Input ME element Output

V

PMN–PT

YIG

GGG

⊥

Figure 1.3 Design of microstrip ME attenuator and ME resonator [13]. Tatarenko and Bichurin
2012 https://www.hindawi.com/journals/acmp/2012/286562/abs/. Used under CC BY 3.0
license.

the coil would induce an electromotive force due to the relative motion between
the coil and themagnetic circuit. Meanwhile, based on theME effect, the stresses
induced by Terfenol-D layers would transmit to the piezoelectric layer, and finally
the electrical power is generated.

1.2.3 Magnetoelectric Microwave Devices

Magnetoelectric microwave devices are the devices that can be tuned by mag-
netostatic field and electrostatic field when the devices are applied with com-
posited MMs. Because of the advantages of low power consumption, low noise,
and high-quality factor, theMEmicrowave devices have great potential inmobile
communication system, electronic warfare systems, active phased-array radar
under the national defense platform, and so on [11].
The attenuator with a microstrip transmission line on dielectric substrate and

ME resonator was reported by Tatarenko et al. With the influence of an exter-
nal electrical field, the ME effect shifted the line of FMR (ferromagnetic reso-
nance), which is a powerful tool for the studies of microwave ME interaction in
ferrite-piezoelectric structures [12].
As shown in Figure 1.3, the sample of layered structure consisted of the mag-

netic part with the YIG thin film placed on the GGG film and the piezoelectric
part with the thin PMN–PT plate. Based on resonance ME effect phenomena,
when applying the control voltage to electrodes of the ME resonator, a shift of
FMR line would occur due to the resonance ME effect, and hence electrical tun-
ing is realized.

1.3 Magnetoelectric Effect of Piezoelectric Ceramic

Previous reports of magnetoelectric materials with magnetostrictive/piezo-
electric magnetoelectric laminates have been discussed by many researchers.
However, it requires ac current supply on the electrically conductive Terfenol-D
strips. Recently, the ME effect in the piezoelectric beam based on torque
moment, which is generated from Lorentz force on the electrodes without
magnetic phase in the sample and also without applying power source on the
piezoelectric beam, has been reported by Zhang et al.
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PZT beam

Electro
magnets

Lock-in amplifier

Testing laser

Hdc

Hac

Figure 1.4 Schematic drawing of the experimental system of ME actuator and its torsion
velocity measurement [14].
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Figure 1.5 Torsion velocity of PZT beam versus the same dc magnetic field.

As shown in Figure 1.4, the measuring system was composed of a PZT beam
and an electric wire, which induced the ac magnetic field that penetrated into the
surface of the PZT beam.When the metal electrodes of the PZT beam were sub-
jected to ac magnetic fields with suitable directions, frequency, and amplitude,
the moment appearing in the sample surface would apply the Lorentz torque
force, and thus the mangetoelectric voltage was generated. The lock-in amplifier
was used formeasuring the inducedMEvoltage at room temperature.The torsion
velocity measurement was performed on the sample by using a laser vibrome-
ter system composed of laser controller and a laser sensor head to prove that
the apparent ME effect was a coupled magnetic and electrical phase through
mechanical interaction. Figures 1.5 and 1.6 show a linear ME response that the
voltage and torsion velocity of PZT beam are proportional to Hdc when 1Oe
ac magnetic field is applied with a constant frequency of 480Hz (resonance fre-
quency of piezoelectric beam).
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Figure 1.6 Torsion velocity of PZT beam versus the same dc magnetic field.
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Figure 1.7 Schematic diagram of the
rectangular shape piezoelectric beam
subjected to ac and dc magnetic fields.

In this experiment, the result of the linear ME response can be explained as
that the magnitude of dc magnetic field from 0 to ±2400Oe was proportional to
the magnitude of the moment on the metal layer due to enhanced eddy current.
From the aforementioned phenomenon, the ME response would be enhanced by
increasing the torsion deformation, which is induced by the moment. Therefore,
the generalized ME response without magnetic phase and also without applying
power source in the measuring system was observed.
In addition, in order to explore the ME effect in piezoelectric ceramic and the

application of ME sensor, the investigation with magnetic actuator has also been
developed by Zhang et al.
As shown in Figure 1.7, themeasuring system for investigating theME response

and torsion deformation of the beam was composed of a piezoelectric beam, an
electromagnet, and an ac conducting wire, which induced the ac magnetic flux
that penetrated into themetal part of the sample to generate eddy current. Due to
the coupling of the piezoelectric layer and Lorentz force from the eddy current,
piezoelectric bender’s torsion deformation could be induced by Lorentz force,
and thus piezoelectric voltage appeared on the sample [15].
As shown in Figures 1.8 and 1.9, the experimental results of PZT bender’s volt-

age and the velocity and an approximate linear relation ofME voltage and torsion
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Figure 1.8 Torsion velocity of PZT beam versus ac current in conducting wire.
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Figure 1.9 ME voltage of PZT beam versus ac current in conducting wire.

velocity versus ac current amplitude were obtained. From the results, the conclu-
sion that the ME response and torsion intensity could be controlled by adjusting
the ac current in the conducting wire close to the beam was drawn. Therefore,
the dc magnetic field actuating the beam with a linear response and high sensi-
tivity would be achieved with the acmagnetic field applied perpendicularly to the
plane of a piezoelectric beam.
The aforementioned experiments of the ME sensor and the magnetic actuator

with piezoelectric ceramic have shown that the prototype of the ME sensor and
the magnetic actuator without magnetic phase and also without applying power
source was promising to be put into practical applications of magnetic field sens-
ing and actuating technology.

1.4 Magnetoelectric Effect in Insulating Polymers

With the advent of science and technology, the performance of the insulating
polymers attracted great attention from the researchers. However, little research
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Figure 1.10 ME measurement system [16].
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Figure 1.11 Comparison of ME current between discharged and nondischarged porous PP.

work has been done on the comparison of the charge-storage ability among the
different electrets by using the ME measuring system. In order to investigate the
ME performances before and after high-voltage corona treatment of different
electrets, the discharged porous polypropylene (PP) and polyvinyl chloride (PVC)
had been chosen in the experiment.
As shown in Figure 1.10, because the ME current was induced by the inte-

grated magnetic field, the suspended piezoelectric samples would be considered
as the micro-generator whose ME effect could be suitably amplified by the cur-
rent amplifier and the current subsequently observed by the oscilloscope.
As shown in Figure 1.11, the ME current in the corona-charged porous PP and

PVC is higher than the nondischarged porous PP and PVC. Under the same pol-
ing conditions, the corona-charged porous PP possesses a higher ME current
compared with the corona-discharged porous PVC.
This phenomenon is observed because the corona poling of the specimen led

to the charge injection in the sample surface and volume and then formed a
space-charge layer, which augmented the capacitance of the charged films due to
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the interfacial polarization after corona poling. It is indicated that the porous PP,
which possesses better charge-storage ability, can enhance ME effect response.
And the charges injected in the polymers can have an effect on the ME effect
responses.
The basic element model can be established as follows: the induced eddy

currents originate from the applied magnetic field, which induces magnetic
flux through the surface measurement of the electrodes S and can be expressed
as [15]

𝜑 = ∫ ∫s
Ba cdS (1.1)

where Ba c is ac magnetic induction vector. Consequently, electromotive forces
(emfs: VFaraday) appearing around loops in the metal electrode can be expressed
as [17]

VFaraday = −d𝜑loop∕dt = −dB •S∕dt = −j𝜔Ba c •S = −j𝜔 •𝜑loop (1.2)

The equivalent circuit of the proposed modeling is as shown in Figure 1.12. In
the schematic, the circuit with a capacitance Cp, a resistance Rp, and series with
voltage source is equivalent to the sample in the magnetic field. The series with
voltage source includes VFaraday and VME, which are from Faraday effect and ME
effect, respectively. Rc is the resistance measured with current amplifier.
The magnetically induced current iLenz sources of the VFaraday in the circuit can

be expressed as [17]

iLenz = vFaraday∕(Z + Rc) (1.3)

Because Z ≫ Rc, iLenz can be expressed as [17]

iLenz = vFaraday∕Z (1.4)

where Z is the electrical impedance of the film at the measurement frequency
and can be expressed as [17]

Z = Rp∕(1∕jCp𝜔) = Rp∕(jCpRp𝜔 + 1) (1.5)

Figure 1.12 Schematic of equivalent
circuit. Zhang et al. 2014 [17].
Reproduced with permission of Elsevier.

VFaraday = −
+

–

VME = f (H)

RpCp

Rc

dϕloop

dt

+

–
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Finally, resolving Eqs (1.2), (1.4), and (1.5) gives the calculated results of the
Lenz current ILenz as follows [17]:

ILenz = 𝜔 •𝜑loop(Cp𝜔 − j∕Rp) (1.6)
The ME current iME sources of the VME in the circuit can be expressed as [17]

iME = VME∕Zc (1.7)
where VME is the ME alternative voltage and can be expressed as [17]

VME = VME(H)|H=H0
+

dVME(H)
dH

||||H=H0

H + 1
2
d2VME(H)

dH2

|||||H=H0

H2 + · · ·

= VME(H)|H=H0
+e×

dEME(H)
dH

||||H=H0

H+ 1
2
×e×

d2EME(H)
dH2

|||||H=H0

H2+· · ·

= Const + e × 𝛼E •H + 1
2
× e × 𝛽E•H2 + · · · (1.8)

where EME is the electric field, e the thickness of the sample, 𝛼E theME voltage lin-
ear coefficient, and 𝛽E is second-orderME voltage coefficient. Because the voltage
VME is alternative root mean square (RMS) of the alternative value of ME volt-
age, Const = 0. And the ME current is a function of Hdc, which is a constant (in
Figure 1.13), so 𝛽E = 0.
The total current comes from both the magnetically induced current iLenz and

the ME current iME [17]:
It = IME + ILenz (1.9)

Finally, resolving Eqs (1.5), (1.7), and (1.8) gives the calculated results of the
Lenz current iME as follows [17]:

IME = VME∕Rp(jCpRp𝜔 + 1) = VME(jCp𝜔 + 1∕Rp) (1.10)
And the ME coefficient 𝛼E is [17]

𝛼E = |IME|∕e×H
√

(Cp𝜔)2+(1∕Rp)2 = |It − ILenz|∕e×H
√

(Cp𝜔)2+(1∕Rp)2

(1.11)
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Figure 1.13 Comparison of ME effect between charged and noncharged cellular PP and PVC
(@Bac= 0.1 mT, f = 1 kHz).
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The investigation of ME performances in comparing the charge-storage abil-
ity among different electrets establishes the fact that enhanced ME performance
could be achieved by using effective corona polingmethod on insulator polymers
and not just by adding micro- or nano-additives into the specimen.

1.5 Conclusion

In this chapter, the ME effect and its application in single crystal, multilayered
composites, and piezoelectric under Lorentz force induced by eddy current were
discussed. A generalized ME effect was caused by an ac conducting wire and a
piezoelectric beam fromwhich a higherME voltage coefficient was obtained than
previous related research. The ME effects of such a designed piezoelectric beam
set a good example of newME systemswithoutmagnetic phase in the sample and
also without applying power source on the piezoelectric beam. Magnetoelectric
response of themagnetic actuator and theME sensor composed of different elec-
trets without magnetic phase is promising to be put into practical applications of
magnetic field sensing and actuating technology.
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